Реферат

Реферат Электрокерамика

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024





Московский Государственный Университет Приборостроения и Информатики
Реферат по дисциплине «Основы художественной обработки материалов»

на тему: «Электрокерамика».
Выполнил: студент III курса ТИ-4

Ледовский Василий Владимирович

Проверил: Доцент, К.Т.Н.

Бойко Юлия Алексеевна
Москва 2009

Содержание:
Введение.

1. Классификация и основные свойства электрокерамики.

2. Основные сырьевые материалы для производства электрокерамики.

3. Технология производства электрокерамических материалов и изделий.

4. Механическая обработка и металлизация керамических изделий.

Заключение.

Список использованных источников.

Введение.

Электрокерамика представляет собой материал, получаемый из формовочной массы заданного химического состава из ми­нералов и оксидов металлов. Любая керами­ка, в том числе и электроизоляционная,— мате­риал многофазный, состоящий из кристалличе­ской, аморфной и газовой фаз. Ее свойства зависят от химического и фазового составов, макро- и микроструктуры и от технологических приемов изготовления.

insulators02_b.jpgВ электрической и радиоэлектронной промышленности керамическая технология широко применяется для изготовления диэлектричес­ких, полупроводниковых, пьезоэлектрических, магнитных, металлокерамических и других из­делий. В настоящее время, особенно с прони­кновением в быт электронной техники, из электроизоляционной керамики изготавливаются десятки тысяч наименований изделий массой от десятых долей грамма до сотен килограм­мов и размерами от нескольких миллиметров до нескольких метров (Рисунок 1). В ряде случаев изделия из керамики, главным образом из электрофарфора, покрываются гла­зурями, что уменьшает возможность загрязне­ния, улучшает электрические и механические свойства, а также внешний вид изделия.

Подпись: Рисунок 1. Электрокерамические изделия

1. 
Классификация и основные свойства электрокерамики.


Электрофарфор является основным кера­мическим материалом, используемым в произ­водстве широкого ассортимента низковольт­ных и высоковольтных изоляторов и других изоляционных элементов с рабочим напряже­нием до 1150 кВ переменного и до 1500 кВ постоянного тока.

В связи с передачей энергии высоким и сверхвысоким напряжением на дальнее рас­стояние резко возросли требования к качеству высоковольтных изоляторов, главным образом к механической прочности.

В последние годы выпускаются надежные высокопрочные изоляторы оптимизированной конструкции из электрофарфора высокого ка­чества. Известно, что прочность фарфора при сжатии в 10—20 раз выше прочности при из­гибе или растяжении.

По назначению компоненты фарфора раз­личаются на пластичные и отощающие, а по роли при термической обработке — на плавни и кристаллорбразующие.

Механическая прочность фарфора в значительной степени зависит от механических свойств и кристаллической структуры отощающего материала, а также образованных в процессе обжига сетчатых волокнистых микроструктур кристаллической фазы (в частности, игл муллита). Стеклофаза в структуре фарфора ухудшает механическую прочность, так же как и наличие пор, неблагоприятно влияющих на распределение напряжений.

Наравне с обычным фарфором налажен выпуск фарфора с повышенным содержанием муллита, фарфор кристобалитовый и корундовый. В последнем кремнезем в шихте частично заменен корундом.

Большинство корундовых кристаллов при обжиге остается в исходной форме и благодаря высокому сопротивлению упругой деформации образует прочный каркас микроструктуры. Незначительная часть растворяется в стек-лофазе и является причиной возникновения вторичного муллита. Как следует из табл. 1, механическая прочность корундового фарфора значительно выше прочности обычного фарфора.

Следует ожидать, что традиционные спо­собы производства, т. е. литье изоляторов в гипсовые формы, а для больших опорных изо­ляторов — склейка отдельных элементов до обжига, заменяется пластическим прессовани­ем, выдавливанием массивного цилиндра или трубки с дополнительной обработкой на копи­ровальных станках, а также изостатическим прессованием заготовок с последующей авто­матической обработкой. Использование послед­него способа производства изоляторов суще­ственно сократит технологический цикл и объ­ем трудозатрат.

По ГОСТ 20419-83 (соответствует СТ СЭВ 3567-83) «Материалы керамические электро­технические» эти материалы по их составу клас­сифицируются следующим образом:
Таблица 1. Классификация керамических электроматериалов.

Группа

Подгруппа

Описание

100



Материалы на основе щелочных алюмосиликатов (фарфоры):



110

Силикатный фарфор, содержащий до 30% Аl2О3



110.1

Силикатный фарфор тонкодисперсный



111

Силикатный фарфор прессованный



112

Силикатный фарфор высокой прочности



120

Глиноземистый фарфор (содержащий 30-50% Аl203)



130

Глиноземистый фарфор высокой прочности, содержащий свыше 50% Аl203

200



Материалы на основе силикатов магния (стеатиты):



210

Стеатит прессованный



220

Стеатит пластичный



220.1

Стеатит литейный

300



Материалы на основе оксида титана, титанов, станнатов и ниобатов:



310

Материалы на основе оксида титана



340

Материалы на основе титанов стронция, висмута, кальция



340.1

Материалы на основе титана кальция



340.2

Материалы на основе стронций-висмутового титаната

400



Материалы на основе алюмосиликатов магния (кордиерит) или бария (цельзиан), плотные:



410

Кордиерит



420

Цельзиан

500



Материалы на основе алюмосиликатов магния, пористые:



510, 511, 512

Материалы на основе алюмосиликатов магния, пористые термостойкие



520

Высококордиеритоовый материал, пористый



530

Высокоглиноземистый материал, пористый, термостойкий

600



Глиноземистые материалы (муллитокорундовые):



610

Глиноземистый материал, содержащий   50  —65 % Аl203                  



620

Глиноземистый материал, содержащий   65  —80 % Аl203

700



Высокоглиноземистые ма­териалы (корундовые):



780

Высокоглиноземистый материал, содержащий 80—86 % Аl2О3



786

Высокоглиноземистый материал, содержащий 86—95 % Аl2О3



795

Высокоглиноземистый материал, содержащий 95—99 % Аl2О3



799

Высокоглиноземистый материал, содержащий свыше 99% Аl2О3



Электроизоляционные керамические мате­риалы по назначению классифицируются со­гласно следующей таблице:

Таблица 2. Классификация по назначению керамических материалов.

Класс

Применение

Вид керамики

Характерные особенности

1

Изоляторы для ус-тройств высокого и низкого напряжения, низкой частоты

Электрофарфор и глиноземистый фарфор

Хорошие электромеханические свойства, возмож-ность изготовления изоляторов любых размеров

2

Низкочастотные и вы-сокочастотные изоля-торы и конденсаторы малой ёмкости

Стетит, ультрафарфор, корундо-муллитовая керамика, цельзиановая керамика

Небольшое значение εr

3

Конденсаторы высо-кого и низкого напря-жения, высокой и низ-кой частоты

Рутиловая, перовскитовая, титано-циркониевая керамика, стронций-висмутовый титанат, алюминат-лантановая керамика

Высокое и очень вы-сокое значение εr, за-данное или не регла-ментированное зна-чение ТКε

4

Термодугостойкие узлы: искрогаситель-ные камеры, основа-ния нагревательных элементов и проволоч-ных резисторов, изоля-торы в вакуумных приборах

Кордиерит, литий-содержащая, высокоглиноземистая и цирконовая кера-мика

Высокая механи-ческая стойкость при нагреве и стойкость к термоударам

5

Высоконагревостойкие изоляторы

Керамика на основе чистых оксидов алю-миния, магния, бе-риллия и т. д.

Высокие электри-ческие свойства при высокой температу-ре, высокая тепло-проводность

6

Резисторы

Смесь керамики с са-жей или графитом; керамика на основе смешанных кристал-лов оксида цинка и оксидов металлов с переменной валент-ностью

Повышенная и высо-кая электропровод-ность, линейная и нелинейная вольт-амперные харак-теристики



Если поры керамики сообщаются между собой и поверхностью изделия, то она назы­вается «пористой», т. е. имеющей «открытые» поры.

Все керамические материалы более или менее пористые. Даже в обожженной до мак­симальной плотности керамике объем пор (за­крытых) составляет 2—6 %, а в пористых ма­териалах— 15—25 %.

Открытая пористость измеряется значени­ем водопоглощения, т. е. количеством воды, по­глощаемым материалом до насыщения и отне­сенным к массе сухого образца.

В тех случаях, когда водопоглощение об­разца не превышает 0,5 %, для определения пористости часто применяется качественный метод: прокраска образцов в 1 %-ном спирто­вом растворе фуксина. Наличие открытой пористости определяется по проникновению кра­сителя в толщу образца.

Для характеристики плотности керамики употребляют параметр — кажущаяся плотность, ее значение 1800—5200 кг/м3.

2. 
Основные сырьевые материалы для производства электрокерамики.


Сырьевые материалы для производства электрофарфора. Для изготовления электро­фарфора основными сырьевыми материалами служат огнеупорные глины, кварц, пегматиты, полевые шпаты, каолины, глинозем, ашарит и циркон (для производства соответственно гли­ноземистого, ашаритового и цирконового фар­фора), мел и доломит (в качестве плавней, главным образом, в глазури) и др.

Огнеупорные глины и каолины представ­ляют собой тонкозернистые (от коллоидной дисперсности до размеров частиц менее 2 мкм) водные алюмосиликаты; для них характерна слоистая структура.

Основными составляющими тонкозернистой фракции глинистых пород являются минералы каолиновой группы с химическими формулами Аl2О3 x x2SiO2 • 2Н2О (каолинит), Аl2О3 • 2SiO2 • 4Н2О (галлуазит) и др.

Кварцевые материалы. Кристаллический кремнезем SiO2 является одним из основных компонентов фарфоровой массы, который вво­дят в состав шихты в виде кварцевого песка или жильного кварца. Размер гранул кварце­вых песков составляет 0,05—3 мм. Кристалли­ческий кремнезем существует в нескольких по­лиморфных формах; три основные — кварц, тридимит и кристобалит. В свою очередь кварц и кристобалит имеют α- и β-модификации, тридимит — α-, β- и  γ-модификации. Стабиль­ными формами являются β-кварц (при темпера­туре ниже 573 °С), α-тридимит (870—1470 °С) и α-кристобалит (1470—1710°С). Переход из одной модификации кремнезема в другую со­провождается изменением объема, плотности и других параметров. При производстве электро­керамики используются пески и жильный кварц.

В зависимости от месторождения кварце­вые пески имеют примеси (Fe2O3, TiO2, A12O3, CaO, MgO и др.), наиболее нежелательные из которых Fe2O3 и ТiO2 (допустимое содержание не более 0,15 %), СаО и MgO (не более 0,2 %).

Полевые шпаты представляют собой без­водные алюмосиликаты, содержащие щелочные (Na+, К+) и щелочно-земельные (Са2+) катио­ны. Основные виды применяемых в керамиче­ском производстве полевых шпатов: калиевый (микроклин) с приблизительной формулой К2О•А12O3•6SiO2, натриевый (альбит) Na2OAl2O3•6SiO2, кальциевый (анортит) СаО•А12О3•2SiO2 и бариевый (цельзиан) ВаО•А12О3•2SiO2. Полевые шпаты всегда содержат примеси оксидов железа, магния, кальция и др.

Лучшим для изоляционной керамики по­левым шпатом является микроклин. Из-за повышенного содержания Na2O в полевом шпа­те снижаются температура обжига, вязкость стеклофазы керамики и существенно ухудша­ются его электрофизические свойства. Чем больше соотношение К2О и Na2O в полевом шпате, тем лучше свойства керамики.

В связи с ограниченностью запасов высо­кокачественного полевого шпата для производ­ства высоковольтных изоляторов используют пегматиты.

Пегматиты представляют собой крупнозер­нистые кристаллические породы — смесь полевого шпата с кварцем.

Глинозем — безводный оксид алюминия Al2О3 — представляет собой порошок со сред­ними размерами сферических гранул 50— 200 мкм. Глинозем широко применяется как основной компонент электро­фарфора и ультрафарфора (на основе корун­да) и в качестве самостоятельного материала для изготовления высоковольтных, высокочас­тотных изоляторов, конденсаторов, деталей вакуум-плотных узлов (корпусов предохраните­лей, колб натриевых ламп, корпусов полупро­водниковых вентилей, обтекателей антенн, плат для интегральных схем и др.).

Безводный оксид алюминия существует в нескольких кристаллических модификациях, из которых самой устойчивой является α-Аl2О3 (корунд). Эта модификация характеризуется малым tgδ≈2•10-4, высоким ρ≈1014 Ом•м, высокой теплопроводностью и стойкостью к термоударам,   наибольшей   плотностью   (3999 кг/м3).

Две другие модификации: γ-Аl2О3 и β-Аl2О3, последняя из которых представляет собой со­единение глинозема со щелочными и щелочно­земельными оксидами, имеют меньшую плот­ность (соответственно 3600 и 3300—3400 кг/м3) и более высокие значения  tgδ (≈50•10-4 и 1000•10-4). Технический глинозем представляет собой в основном γ-Аl2О3 с частичным содержанием гидратов глинозема.

При нагреве γ-Аl2О3 переходит в α-Аl2О3 с уменьшением объема на 14,3 процента. Для уменьше­ния усадки керамики при обжиге технический глинозем предварительно обжигают при темпе­ратуре 1450—1550 °С.

Спектрально чистый корунд плавится при 2050 °С, а изделия из него при небольшой ме­ханической нагрузке могут быть использованы даже при температуре до 1800°С.

Для производства электроизоляционной ке­рамики применяются технический глинозем (шесть сортов), электроплавленный корунд и глинозем особой чистоты в зависимости от на­значения керамики.

Кальцит — карбонат кальция СаСО3, пред­ставляющий собой плотный кристаллический агрегат, называется мрамором, а при тонко­дисперсной структуре — мелом. При нагреве СаСО3 разлагается с выделением СО2 соглас­но реакции СаСО3 → СаО + СО2↑.  Скорость раз­ложения зависит от скорости подъема темпе­ратуры и от давления воздуха. При нормальных условиях температура разложения состав­ляет порядка 900 °С.

Для производства электроизоляционной ке­рамики в основном используют мел Белгород­ского месторождения с содержанием СаСО3 не менее 98 %.

В керамике карбонат кальция использует­ся как основной компонент кристаллических фаз титанатов, станнатов и цирконатов каль­ция, анортита, волластонита, а также входит в состав стеклофазы различных электрокерамик и глазурей.

Ашарит — борат магния 2MgOB2O3H2O является стеклообразующим оксидом. Его твер­дость по Моосу — 4. Он добавляется в керами­ческие массы в количестве 2—3 %. Ашарит в состав ашаритового фарфора вводится в виде предварительно приготовленного спека из гли­нозема, ашарита и полевого шпата в количест­ве до 60 % массы, для улучшения электроизо­ляционных свойств фарфора.

Циркон ZrO2SiO2 (цирконовая руда) име­ет твердость 7—8; плотность его около 4700 кг/м3. Руду обогащают, в результате получен­ный циркон содержит ZrO2 не менее 60 % и Fe2O3 не более 0,15 %. Циркон используется в качестве основного компонента в стойкой к тер­моударам керамике и в виде части кристалли­ческой фазы цирконового фарфора. В послед­нем случае циркон вводится в состав фарфора вместо кварца, кристаллическая фаза керами­ки в таком случае представлена цирконом и муллитом.

3. 
Технология производства электрокерамических материалов и изделий.


Для каж­дого конкретного случая процесс будет не­сколько видоизменяться, однако можно отме­тить общие для большинства случаев основные этапы производства: приготовление формовоч­ной массы; оформление заготовок изделий; сушка, глазурование и обжиг изделий. В неко­торых случаях обожженные изделия могут подвергаться дополнительной механической об­работке.

Приготовление формовочной массы. Керамическая формовочная масса характеризуется размерами и распределением частиц; от этого зависят плотность упаковки, влагосодержание и прочность заготовки до обжига, технологиче­ские свойства материала, а также характери­стики обожженных керамических изделий.

Измельчение компонентов является одним из основных процессов при приготовлении фор­мовочных масс. Как правило, твердые мине­ральные компоненты массы сначала подверга­ют грубому измельчению в щековых дробилках и на бегунах, затем просеивают на виброситах для получения заданной фракции, далее про­изводят мокрый или сухой тонкий помол на ро­тационных шаровых мельницах периодического или непрерывного действия. Сверхтонкий по­мол производят в струйных мельницах с ис­пользованием сжатого воздуха.

Степень измельчения отдельных компонен­тов массы зависит от требований, предъявляе­мых к материалу, размеров изделий и приме­няемых способов оформления, сушки и обжига. При измельчении обычно происходит смешение компонентов массы. Степень измельчения про­веряют ситовым и микроскопическим анализа­ми, а в лабораторных условиях — седиментационным. Для удаления частиц железа измель­ченную массу пропускают через магнитный се­паратор.

Обезвоживание водного шликера после мокрого помола производится на фильтр-прес­се под давлением 0,8—3 МПа. Масса, остаю­щаяся между пластинами фильтра в виде кор­жей, в зависимости от назначения проходит различную обработку. При изготовлении масс для пластичной формовки коржи поступают для переминки в вакуум-прессы, с помощью ко­торых обеспечивается хорошее извлечение воздуха, окончательная переминка массы и выдавливание ее через мундштук, придающий заго­товкам определенный профиль. Заготовки ис­пользуются для формовки изделий пластичными методами.

Для приготовления водного литейного шли­кера коржи распускаются в шликерных мешалках в воде с добавкой электролита и доводят­ся до нужной влажности. После вакуумирования шликер подается на литье. Безглинистые массы или массы с небольшим содержанием глинистых веществ (например, конденсаторные массы с содержанием около 3 % бентонита) не подвергают обезвоживанию на фильтр-прессе, а используют как литейный шликер после вакуумировки.

При приготовлении масс, предназначенных для изготовления изделий методом прессова­ния, коржи с добавкой отходов формовочной массы подвергают сушке и дроблению. Затем масса просеивается, пропускается через маг­нитный сепаратор, вводятся связующие вещества, производится тщательное перемешивание и приготовляются гранулированные (гранулы размером 0,5—2 мм отделяют от пыли на соот­ветствующих ситах) пресс-порошки.

В качестве связующего и пластифицирую­щего вещества в глинистых массах служит во­да, а в безглинистых массах — растворы орга­нических веществ, например раствор поливини­лового спирта, бакелитовой смолы, воскообразные вещества — парафин, церезин и др.

Для приготовления гра­нулированного пресс-порошка широко приме­няют распылительные сушилки. При этом вод­ный шликер с влажностью 35—50 % распыля­ют форсункой или вращающимся диском в ба­шенной сушилке для подсушки и получения гранул заданной влажности. Шарообразные гранулы (размерами преимущественно 0,3— 0,5 мм) имеют более высокую текучесть, чем порошок, получаемый измельчением сухой мас­сы в мельницах ударного действия.

При применении распылительных сушилок достигается существенная экономия за счет ис­ключения из производственного цикла ряда операций, снижения трудовых и эксплуатаци­онных затрат.

При приготовлении шликера для горячего литья в металлические формы под давлением масса предварительно синтезируется, дробится, измельчается в барабанных или вибрационных мельницах до заданной дисперсности (обычно удельная поверхность 350—800 м2/кг). Затем вводится парафин с добавкой олеиновой кис­лоты в обогреваемую до 70—80 °С лопастную, пропеллерную или иную мешалку.

Ориентировочное количество связующего, состоящего из 95—97 % парафина и 3—5 % олеиновой кислоты, в шликерах составляет око­ло 10 —15%.

Перед заливкой в формы горячий шликер вакуумируют в аппаратах различной конст­рукции.

Оформление заготовок изделий. В зависи­мости от состава, технологических особенностей приготовления массы, конфигурации, габаритных размеров и масштаба производства изде­лий в основном применяются следующие спо­собы изготовления заготовок: пластичное фор­мование, прессование из пресс-порошков, литье водного шликера в гипсовые формы, горячее литье под давлением в металлические формы и высокотемпературное прессование.

Пластичное формование относится к важ­нейшим методам оформления электротехниче­ских изделий. Этот метод в основном применя­ется при массовом производстве различных фарфоровых изоляторов, иногда для изготов­ления специальных изделий, стеатитовых, кордиеритовых, конденсаторных, глиноземистых и др., в том числе и из масс, не содержащих глины, но пластифицированных органическими связующими.

При изготовлении изделий пластичным формованием керамическую массу подвергают тщательной обработке, многократной перемеш­ке в ленточном прессе, вакуумированию.

Сплошные толстостенные трубчатые кера­мические изделия оформляются из пластичной массы с помощью мощных вакуум-прессов. Окончательная конфигурация заготовок дости­гается пластичным формованием во вращаю­щихся гипсовых или металлических формах и механической обработкой резанием. Этот ме­тод применяется при изготовлении крупногаба­ритных высоковольтных изоляторов и подоб­ных им изделий. Трубки, оси, стержни с одним или несколькими каналами и другие изделия с постоянным поперечным сечением изготавлива­ют из пластичной массы способом протяжки через фильерные мундштуки на поршневых винтовых, гидравлических или шнековых прес­сах. Этот способ является основным для оформ­ления заготовок различной конфигурации при изготовлении конденсаторов, резисторов и дру­гих изделий.

Изделия, не имеющие форму тел вращения, при небольших выпусках изготовляются мето­дом ручной лепки в гипсовых формах.

Прессование из пресс-порошков является одним из распространенных и производитель­ных способов изготовления полностью оформленных изделий заданной конфигурации или заготовок для последующей механической об­работки изделий.

В зависимости от конфигурации прессуе­мых изделий, степени пластичности пресс-по­рошка и требований к изделиям прессование можно осуществлять различными способами. Так, широкий ассортимент установочных дета­лей из стеатита и форстерита, высоковольтные конденсаторы и другие изделия изготовляются сухим прессованием с применением малоплас­тичных пресс-порошков с неводными органиче­скими (парафин, смесь парафина с керосином и др.) или гидроорганическими (водный рас­твор поливинилового спирта) связующими. Для малопластичных пресс-порошков в СССР ис­пользуют 2—5 %-ный водный раствор поливи­нилового спирта или 6—14 %-ный раствор па­рафина в бензине или керосине.

Штампование применяется главным обра­зом для установочных деталей различной кон­фигурации из высокопластичных материалов с большим содержанием глин (фарфора, радио­фарфора, ультрафарфора и т. д.) и добавкой гидроорганических пластификаторов.

Изостатическое прессование основано на всестороннем обжатии засыпанного в эластич­ную форму пресс-порошка или предварительно оформленной каким-либо способом заготовки жидкостью или сжатым газом. Изостатическое прессование в резиновой форме путем прило­жения гидростатического давления жидкости обычно называют гидростатическим прессова­нием. Этот способ применяется для оформле­ния заготовок некоторых видов изоляторов, пьезокерамических элементов и других подоб­ных изделий. Он обеспечивает получение плот­ных и однородных заготовок.

Высокотемпературное прессование приме­няется преимущественно для получения неко­торых специальных изделий простой формы. Оно заключается в спекании керамического ма­териала под давлением при высокой темпера­туре в нагревостойких формах, при этом оформ­ление и обжиг изделий совмещаются в единой операции. Исходный материал применяется в виде порошков или гранул. Давление, темпе­ратура и продолжительность прессования оп­ределяются составом материала, размером и конфигурацией изделий и т. п.

Литье водных шликеров в пористые формы является одним из самых старых способов оформления керамических изделий. Этот способ широко применяется и сейчас, главным обра­зом для изделий из специальных видов кера­мики — для крупногабаритных керамических конденсаторов, антенных обтекателей, а также различных изделий сложной формы.

При заливке шликера в пористую, чаще всего гипсовую форму, вследствие поглощения влаги стенками формы на ее поверхности об­разуется достаточно плотный и прочный слой керамической массы.

Различают два основных способа отливки изделий. При сливном способе после образо­вания на внутренней стороне формы слоя мас­сы требуемой толщины оставшийся шликер вы­ливается из формы. При наливном способе от­фильтрованная масса заполняет всю полость формы. Для оформления заготовок с внутрен­ней полостью наливным способом в форму вставляется пористый сердечник.

Горячее литье под давлением применяется преимущественно для изготовления изделий сложной формы с точными размерами из не­пластичных материалов и толщиной стенки не более 10 мм. Литье производится на специаль­ных аппаратах в металлические формы при температуре 70—80 °С и избыточном давлении 0,1—1 МПа.

В форму заливается вакуумированный шликер, который поступает под давлением в полость металлической формы и хорошо ее за­полняет. Затвердевание шликера происходит при охлаждении формы. Метод оформления из­делий очень трудоемок.

Обточка необожженных керамических изделий широко применяется при изготовлении изоляторов и других изделий, имеющих форму тел вращения.

Заготовки для последующей обточки полу­чают методом протяжки (экструзии) пластич­ной массы. В некоторых случаях заготовки мо­гут быть получены и другими способами — изостатическим прессованием, шликерным литьем и т. п.

Для обточки используют горизонтальные и вертикальные токарные станки, снабженные специальными резцедержателями. На обточку материал подается либо в подвяленном (влаж­ная обточка), либо в сухом состоянии (сухая обточка). В некоторых случаях производится обточка заготовок, прошедших предваритель­ный (утильный) обжиг.

Сушка, глазурование и обжиг электрофар­форовых изделий. Сушка. Электрофарфоровые изделия, полученные методами протяжки, прессования и другими методами и прошедшие обточку на станках, содержат 17—18 % влаги; несколько меньшую влажность имеют заготов­ки установочных изделий. Для удаления влаги до остаточной влажности 0,2—2,0 % фарфоро­вые изделия подвергаются сушке в сушильных камерах различной конструкции. Чем больше габаритные размеры и толщина стенки изоля­торов, тем меньше должна быть остаточная влажность.

Существуют следующие виды сушки изде­лий: конвективная, при которой изделия на­греваются теплым воздухом, уносящим испа­ряющуюся влагу; радиационная, при которой лучистая энергия поступает от электрических нагревателей; радиационно-конвективная, в ко­торой сочетается конвективный и радиацион­ный нагрев. Этот способ наиболее эффективен при сушке крупных и средних изоляторов. Сушка токами промышленной и высокой час­тоты применяется для провялки крупногаба­ритных влажных заготовок.

Для сушки используются сушильные агре­гаты периодического и непрерывного действия. Первые, главным образом, используются для крупногабаритных изоляторов. Для изделий среднего габарита и мелких в основном при­меняют сушилки непрерывного действия (кон­вейерные, туннельные) с большей производи­тельностью.

По способу нагрева изделий существуют сушилки конвективные, радиационные и конвективно-радиационные, по способу использо­вания газов — однократного и многократного насыщения, а также использующие воздух в замкнутом цикле, по способу движения изде­лий в сушильных камерах и каналах — туннельные (с периодическим перемещением из­делий) и конвейерные (с непрерывным гори­зонтальным или вертикальным). Горизонталь­ная конвейерная сушилка представляет собой камеру длиной 8—10, шириной 3—5 и высо­той 3—4 м, вертикальная конвейерная сушил­ка — камеру длиной и высотой 5—6 м. Туннельные сушилки непрерывного действия представляют собой камеру длиной 20 — 25, высотой 2,5—3,5 м. Их ширина зависит от ко­личества параллельно идущих в туннеле ваго­неток с изоляторами.

Глазурование. Электрокерамические изде­лия покрывают тонким (0,1—0,3 мм) слоем гла­зури (стекловидный покров), что значительно повышает их механические свойства, изолиру­ет от воздействия окружающей среды, улучша­ет внешний вид и электроизоляционные свой­ства, обеспечивает самоочистку изоляторов в процессе эксплуатации.

Химический процентный состав (по массе) глазури, используемой при изготовлении изоля­торов в электротехнической промышленности: SiO2—66,0—72,2; А12О3—11,7—17,2; RO—5,7—7,7; R2O—4,2—5,4. Для приготовления коричне­вых глазурей обычно вместо части кварцевого песка вводят фарфоровый бой и красители, со­держание которых в шихтовом составе состав­ляет 16,0—35,4 %.

Красители для глазурей применяются для придания глазури определенного цвета. В ка­честве красителей обычно применяются оксиды железа, хрома, марганца и др., чаще всего — хромистый железняк, марганцевая руда и пиро­люзит. Содержание красителей в глазури со­ставляет 8—13 %.

Химический процентный состав коричневой глазури: SiO2—65,7—68,3; А12О3iO2)—13,4—13,8; Fe2O3—2,1—2,3; СаО —3,8—5,1; MgO—3,7—4,7; Na2O—1,2—2,1; К2О—1,9—2,2; Сr2О3— 2,6—3,1. Сырьем для этих глазурей служат природные материалы.

В радиотехнической и электронной про­мышленности для глазурования широко исполь­зуются стеклоэмали различных марок с темпе­ратурой размягчения 560—710°С.

От качества глазурного покрытия зависит механическая прочность глазурованных изделий (наличие микротрещин и других дефектов мо­жет служить причиной снижения этого пока­зателя). Возникновение начальных трещин в глазури зависит от степени гладкости ее поверхности и от обеспечения состояния сжатия глазури на керамическом изделии. Значения на­пряжений в глазурованных изделиях и их рас­пределение зависят от условий обжига и ох­лаждения, от соотношения значений ТКl кера­мики и глазури, от степени развития промежу­точной зоны на контакте керамика — глазурь. Наиболее существенный фактор — различие в значениях ТКl керамического материала и гла­зури. Возникновение цека и отскакивание гла­зури также зависит от значения ТКl. Глазурь только тогда повышает механическую проч­ность керамики, когда она находится в состоя­нии сжатия. Когда ТКl глазури больше ТКl ке­рамики, создается напряжение растяжения, и механическая прочность керамики снижается. Так, при ТКl глазури (4,5—5,5)/10-6 К-1 проч­ность при разрыве глазурованного фарфора со­ставляет 140—130 МПа, а при ТКl глазури (6—7) • 10-6 К-1 — 120—70 МПа.

Высушенные заготовки изоляторов перед обжигом глазуруются методами полива, окуна­ния или распыления глазурной суспензии плот­ностью 1400—1700 кг/м3. Глазурование в за­висимости от размеров заготовок изоляторов осуществляют с применением станков кару­сельного типа, конвейерных машин и подъем­ных устройств для крупных изоляторов.

В проходных и подвесных изоляторах элек­трическое поле по поверхности изоляторов не­равномерно, а в увлажненных и загрязненных изоляторах степень неравномерности резко уси­ливается и приводит к частичным разрядам, а иногда и к перекрытию. В ряде случаев для выравнивания электрического поля, а также для защиты от радио- и телевизионных помех применяют изоляторы полностью или частично покрытые полупроводящей глазурью. Удельное поверхностное сопротивление полупроводящей глазури составляет 102—109 Ом.

Для выравнивания электрического поля (особенно при покрытии внутренней поверхно­сти проходных изоляторов) более благоприятно низкое сопротивление полупроводниковой гла­зури, но при этом должны быть учтены осо­бенности конструкции изолятора. Кроме того, при низком сопротивлении глазури вероятнее возникновение теплового пробоя по глазури. Обычно верхний предел определяют экспери­ментальным путем в зависимости от термоус­тойчивости, сопротивления и условий эксплуа­тации изолятора. При этом под термоустойчи­востью подразумевается температура, при ко­торой удельное поверхностное сопротивление глазури уменьшается в 2 раза по сравнению с сопротивлением при температуре, принятой нормальной. Чем выше эта температура, тем выше термоустойчивость глазури.

Качество изоляторов с полупроводящей глазурью при их эксплуатаци в наружных уста­новках ухудшается вследствие эрозии проводя­щего компонента в местах контакта с металли­ческой арматурой. Износоустойчивость глазурных покрытий зависит от химического состава.

Полупроводящая глазурь представляет со­бой композиционный материал преимуществен­но с электронным характером электропровод­ности и состоит из 20—40 % (по массе) элект­ропроводящих кристаллических компонентов и 60—80 % стеклообразующих оксидов. В качест­ве электропроводящих компонентов использу­ют Fe2O3, TiO2, Cr2O3, ZnO, SnO2, Sb2O3 и др. оксиды и их твердые растворы или химические соединения, а в качестве стеклообразующих компонентов обычно применяют оксиды SiO2, А12О3, CaO, MgO, BaO и др.

Полупроводящую глазурь приготовляют различными способами. По одному способу электропроводящие и стеклообразующие окси­ды измельчают и смешивают помолом мокрым способом. Полученный шликер необходимой консистенции наносят на поверхность заготов­ки изолятора по принятой технологии глазурования.

При применении других способов электро­проводящий компонент синтезируют отдельно в виде химического соединения или твердого раствора путем обжига. Полученный продукт измельчают мокрым способом в известных про­порциях, затем осуществляют помол со стекло-образующими компонентами.

Применяемая в электротехнической про­мышленности полупроводящая глазурь для изо­ляторов имеет следующий процентный хими­ческий состав (по массе): F2O3—7,9; А12О3—13,4; SiO2—52,5; TiO2—20,2; CaO—1,07: MgO—1,2; R2O—2,4; потери при прокаливании—2,18. Из такой смеси совместным мокрым помолом в шаровых мельницах приготовляется глазур­ная масса, которая наносится на поверхность заготовки изолятора. Обжиг изоляторов произ­водят в туннельной печи или в горне при тем­пературе 1320—1420 °С. Удельное поверхност­ное сопротивление имеет значение 10—80 МОм, термостойкость составляет 60—70 К, механи­ческая прочность при статическом изгибе гла­зурованных стандартных образцов повышается примерно на 15—20 %.

Опубликовано большое количество работ с описанием получения полупроводящей глазури. Используя оксиды металлов в качестве прово­дящего компонента глазури ТiO2—10÷40, Fe2O3—50÷10, Сг2О3—40÷50% (по массе) и стеклообразующие оксиды SiO2 — 73÷77, Аl2О3— 12÷17, MgO —2÷9, CaO—2÷8 % (по массе), совместным смешением можно получить глазури с удельным сопротивлением 10—1000 МОм. Сопротивление глазури может быть уменьшено за счет уменьшения концентрации ТiO2. Полупроводящая глазурь на базе окси­дов металлов Fe2O3—16, ТiO2—7,2, SnO2—13,6 в качестве электропроводящего компонента и оксидов металлов SiO2—44,1, Аl2О3—8,6, CaO— 2,9, MgO—1,7, R2O—2,2 % (по массе) в каче­стве стеклообразующего компонента может иметь удельные поверхностные сопротивления 3,4—12,2 МОм, термостойкость 70 К.

Обжиг фарфоровых изделий является важ­ным, в ряде случаев завершающим процессом производства. В процессе обжига, преимущест­венно в стадии нагрева, удаляется вода, выде­ляются газы, происходят полиморфные превращения материала, изменяются размеры и плот­ность, образуются кристаллические и аморфные фазы и происходят другие процессы. Обжиг и охлаждение ведутся при заданных температурном, газовом и гидравлическом режимах с учетом габаритов изделий и конструкции приме­няемых печей. Для обжига фарфоровых изде­лий используют пламенные печи периодического и непрерывного действия, для малогабаритных изделий и изделий специального назначения — электрические печи периодического и непрерыв­ного действия с использованием силитовых и других нагревателей и на основе дисилицида молибдена, а иногда нагревателей с защитной средой. Обжиг керамических изоляторов явля­ется наиболее дорогостоящей операцией техно­логического процесса приготовления фарфора. Для обжига крупногабаритных изоляторов также используют пламенные печи периодичес­кого действия, круглые (горны), прямоуголь­ные, одно-, двух- и трехэтажные, со стационар­ным или выдвижным подом. Рабочий объем круглых печей, используемых в производстве, составляет от нескольких до 120 м3. Нагрев пе­чей производится за счет тепла от сгорания жидкого или газообразного топлива; продукты сгорания поступают в рабочую камеру и обо­гревают находящиеся в горне изоляторы; ох­лаждение производится воздухом, проходящим через камеру с обожженными изоляторами. Об­жиг изделий в пламенных печах периодического действия производится в капселях, устанавли­ваемых на поду печи. Обжиг в больших круг­лых печах требует большого расхода топлива и затрудняет механизацию процесса загрузки изоляторов.

За последние годы начали применять прямоугольные камерные печи объемом до 80 м3 с высоким подом, особенно для обжига однотип­ных крупногабаритных заготовок изоляторов стержневого типа, применение которых позво­ляет механизировать и трудоемкие технологи­ческие процессы, повысить производительность труда, сократить цикл обжига, снизить удель­ный расход энергии, автоматизировать режим и среду обжига.

Печи непрерывного действия дают возмож­ность бесперебойного выпуска готовой продукции при меньшем расходе топлива. Они значи-тельно экономнее периодических печей. Условия труда обслуживающего персонала значи­тельно лучше, чем при работе на периодических печах.

Туннельные печи дают возможность для механизации и автоматизации процесса обжига. По этим причинам туннельные печи широко применяются для обжига большого ассортимен­та изоляторов и являются наиболее перспек­тивными. Для обжига фарфоровых изоляторов используются туннельные печи нескольких типов длиной 140, шириной до 2,3 и высотой до 2,2 м. Обжигаемые изделия устанавливаются в вагонетках, футерованных огнеупорным ма­териалом. Режим обжига (температурные, га­зовые и гидравлические параметры) по всей длине печи контролируется контрольно-измери­тельными приборами и во времени остается по­стоянным.

Основой правильного ведения процесса об­жига является соблюдение температурного и газового режима (создание нейтральной, окис­лительной или восстановительной среды). Ре­жим обжига выбирается в зависимости от свойств материалов и размеров изделий. Фак­тическая температура обжига, изделий может несколько отличаться от оптимальной, что не отражается на качестве изделий (в пределах интервала спекшегося состояния). Этот интервал является важной производственной характеристикой электрокерамического материа­ла: для разных материалов он находится в пределах 10—80 К. Температура обжига для различных керамик составляет 1100—2000 °С и более.

4.   
 Механическая обработка и металлизация керамических изделий.


Механическая обработка. В современной технике находят широкое применение керами­ческие изделия, соответствующие жестким тре­бованиям по точности размеров, форме и чи­стоте обработки поверхности. Обеспечить вы­полнение таких требований способами обычной керамической технологии не представляется возможным. Изготовленные изделия всегда имеют незначительные отклонения размеров от заданных, обусловленные некоторой неста­бильностью усадки в процессе сушки и обжи­га. Значения усадки зависят как от состава материалов, так и от некоторых технологиче­ских операций.

Для получения керамических изделий, имеющих точные размеры и высокую чистоту поверхности, используют механическую обработку обожженных изделий путем шлифова­ния.

Механическая обработка керамических изделий всеми видами шлифования осущест­вляется абразивными инструментами из кар­бида кремния и алмаза различной зернистости. Для шлифовки применяют шлифовальные кру­ги, головки, бруски и сегменты соответст­венно шлифуемой поверхности.

Максимальная рабочая скорость абра­зивного инструмента обусловливается типом связующего материала. Так, для алмазного шлифовального круга на керамическом связую­щем рабочая окружная скорость составляет 25 м/с, а на фенолформальдегидном — до 35 м/с.

Для обработки керамических изоляторов, обладающих высокой твердостью и хруп­костью, наиболее эффективным является ал­мазный инструмент на металлическом и фе­нолформальдегидном связующем. Алмазный абразивный инструмент на металлическом свя­зующем используется в основном для черно­вого шлифования керамики, а на фенолфор­мальдегидном связующем — для окончатель­ного, чистого шлифования.

Алмазные круги на металлическом связу­ющем имеют более длительный срок службы. Для черновой обработки керамических изде­лий используют крупнозернистые абразивные круги, а для окончательной чистовой обработ­ки поверхности применяют тонкозеристые аб­разивные инструменты.

Для шлифования керамических изделий используют обычные металлообрабатывающие станки: токарно-винторезные со шлифовальной головкой, токарно-карусельные, шлифовально-карусельные, универсально-шлифовальные и др. Крепление керамических изделий на станке производится при помощи специальной технологической оснастки, обеспечивающей прочное и безопасное положение детали в работе.

Режимы шлифования керамических изделий зависят от свойств керамического материала, от показателей используемого абразивного инструмента и устанавливаются экспериментально. При черновой обработке изделий в большинстве случаев толщина слоя, снимаемого шлифовкой за один проход, составляет примерно 0,25 мм, а при чистовой — 0,005— 0,025 мм.

Для охлаждения в процессе шлифования применяют 2—5 %-ный водный раствор кальцинированной соды, который подают со ско­ростью 20 л/мин.

При круглом шлифовании наружной по­верхности изоляторов цилиндрической формы обрабатываемый изолятор и шлифовальный круг вращаются в одну сторону, а при обра­ботке круглых внутренних поверхностей кера­мических изделий шлифовальный круг и обра­батываемая деталь вращаются в противопо­ложные стороны. Шлифование торцевых по­верхностей цилиндрических изделий может производиться на плоскошлифовальном станке с использованием соответствующей оснастки.

Металлизация керамики. Металлические покрытия на поверхности керамики могут слу­жить электродами конденсаторов, испытуемых образцов, витков катушки индуктивности или промежуточным слоем для соединения кера­мики с металлической арматурой посредством пайки.

Металлические покрытия керамики можно осуществлять методами вжигания металлосодержащей краски (пасты), испарения и кон­денсацией металла (серебра, золота, никеля, палладия и др.) в вакууме, химического осаж­дения, шоопирования и др.

Металлические покрытия должны обла­дать хорошей электропро-водностью (особенно для высокого напряжения высокой частоты) при малой толщине электродного слоя. Для таких покрытий чаще всего применяют благо­родные металлы (в основном серебро и пал­ладий), устойчивые к окислению. Покрытия, предназначенные для последующей пайки с металлической арматурой, производятся из тугоплавких металлов в сочетании с различ­ными добавками.

Вжигание паст — наиболее распростра­ненный способ металлизации. Основным ком­понентом металлосодержащей пасты является окись серебра, азотнокислое серебро или тон­кодисперсный порошок металлического сереб­ра. Для спекаемости покрытия и хорошей адгезии по отношению к поверхности керамики в пасту вводятся 5—7 % (по массе) плавней в виде борнокислого свинца, оксида висмута или других соединений висмута. Компоненты пасты смешиваются с органическими связую­щими, представленными раствором канифоли в скипидаре или смесью скипидара с касторо­вым маслом до получения однородной массы. Паста, изготовляемая промышленностью на специализированных заводах, содержит 55— 70 % (по массе) металлического серебра.

Нанесение серебряной пасты на керамиче­ские изделия производится вручную кисточкой, пульверизатором, окунанием, а в массовом производстве — шелкографией. Нанесенные покрытия сушат при температуре 80—150 °С в термостатах или в проходных сушилках. Об­жиг производится при температуре 750—850 оС в муфельных или проходных печах в воздуш­ной среде. В процессе обжига покрытия в ин­тервале температур 200—400 °С, т. е. при вы­горании органической связки, подъем темпера­туры должен быть замедленным во избежание вспучивания покрытия и образования трещин на металлизированной поверхности. Режим вжигания серебряной пасты устанавливается экспериментально. Он зависит от нагревостойкости керамики, размеров и конфигурации металлизируемого изделия. Длительность про­цесса может составлять 5—35 ч.

Толщина однократно металлизируемого слоя серебра составляет 3—10 мкм. В случае необходимости для получения покрытия с бо­лее толстым слоем деталь металлизируют 2 — 3 раза, проводя последовательно вжигание каждого нанесенного металлизированного слоя. Толщина металлизирующего слоя на из­делиях среднего размера составляет 40 — 50 мкм.

Металлизация составами на основе туго­плавких металлов применяется для различных вакуум-плотных керамических изделий из фар­фора, стеатита, форстерита и корундовой ке­рамики. В металлизирующий состав входят различные добавки: марганец, железо, крем­ний, оксиды металлов — А12О3, ТiО2, Сr2О3, карбиды, бориды и специальные плавни.

Металлизация различных типов керамиче­ских материалов производится по схеме: очист­ка изолятора от загрязнений, обезжиривание, приготовление и нанесение металлизирующего состава, вжигание покрытия, зачистка, нанесе­ние второго металлизирующего состава, вжи­гание второго покрытия и контроль качества покрытия.

Для приготовления металлизирующих паст используют материалы, получаемые с завода-изготовителя в виде тонкомолотых порошков с удельной поверхностью 4000—5000 см2/г для молибдена и 5000—7000 см2/г для марганца.

Компоненты металлизирующей пасты, взя­тые в заданном соотношении, смешиваются с раствором коллоксилина в изоамилацетате или водно-спиртовый раствор полиамидной смолы. Смешивание компонентов производится в валковой мельнице со стальным барабаном до получения однородной пасты.

Процесс вжигания металлизирующих по­крытий производится в печах с защитной га­зовой средой при температуре 1200—1350 °С с выдержкой при конечной температуре 20—30 мин. Режим вжигания устанавливается опытным путем.

Вжигание покрытия проводится в печах периодического действия или толкательных пе­чах непрерывного действия в увлажненной или азотно-водородной среде при отношении азота к водороду 2:1 или 3:1. Керамические материалы, содержащие в своем составе до­статочное количество стеклофазы (фарфор, стеатит и др.), можно металлизировать па­стами на основе тугоплавких металлов без специальных добавок, а керамические матери­алы, содержащие менее 5 % стеклофазы, не­обходимо металлизировать пастами, в состав которых входят компоненты, образующие жид­кую фазу в процессе вжигания покрытия.

Для увеличения толщины покрытия и об­легчения пайки на молибденовое покрытие методом вжигания или гальваническим путем наносится слой никеля (второе покрытие).

Мой вариант изделия.

C:\Users\ЛенивыйКот\Desktop\керамик\диэлектрические ножницы-пресс.jpg


Это диэлектрические клещи-пресс с изоляцией из электрофарфора.

Материал: Силикатный фарфор высокой прочности (группа 100, подгруппа 112. Таблица 1). Этот материал обезопасит рабочего при работе даже с очень высоким напряжением.

Покрытие: Глазурь. Химический процентный состав глазури: SiO2—66,0—72,2; А12О3—11,7—17,2; RO—5,7—7,7; R2O—4,2—5,4. Глазурь ещё больше понижает электропроводность.

Метод производства: Литье в пористые формы (как самый дешёвый), прессование из пресс-порошка.
Это конечно неистовый бред, но времени было мало. И, кстати, прокатило на отл.

Заключение.

Подпись: Рисунок 2. ЭлектрокерамикаC:\Users\ЛенивыйКот\Desktop\insulators_b.jpgПреимущества электрокерамики перед дру­гими электроизоляционными материалами со­стоят в том, что из нее можно изготовлять изоляторы сложной конфигурации, кроме то­го она имеет широкий интервал спекания. Сы­рьевые материалы мало дефицитны, технология изготовления изделий относительно проста.Электрофарфор обладает достаточно высокими электроизоляционными, механическими, тер­мическими свойствами в области рабочих тем­ператур; он выдерживает поверхностные раз­ряды, слабо подвержен старению, стоек к воздействию атмосферных осадков, многих хи­мических веществ, солнечных лучей и радиаци­онных излучений.
Список использованных источников:

1.     Google книги (http://books.google.ru/books)

2.     Библиотека Максима Мошкова (http://lib.ru/)

3.     Технология электрокерамики. Г. Н. Маслен­никова, Ф. Я. Харитонов, Н. С. Костюков, К. С. Пи­рогов.

1. Реферат Екологія і економіка людини
2. Статья Предопределенность или свобода выбора
3. Реферат на тему Totalitarianism Maos China Essay Research Paper Mao
4. Реферат на тему Cask Of Amontillado Essay Research Paper 2
5. Реферат Черный Аист
6. Реферат Личная определенность и социальный статус
7. Контрольная_работа на тему Примеры решения задач по программированию
8. Реферат на тему Trainspotting Essay Research Paper Some might say
9. Курсовая на тему Влияние английского молодежного жаргона на жаргон российской молод
10. Реферат Налоги и рыночное равновесие