Реферат Альтернативные источники энергии 5
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
ГОУ ВПО «КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Альтернативные источники энергии
и их применения
Кафедра зоологии и экологии
Проверил: к.б.н.; доцент Сущёв Д.В.
Выполнила: студентка группы
Б-085 Гурьянова Д.В
Кемерово,2010
Содержание
Введение………………………………………………………………………….3
Понятие и основные виды альтернативной энергии
1 Использование геотермальной энергии (тепло земли)………………………6
2 Использование энергии солнца………………………………………………..8
3 Использование энергии ветра…………………………………………….......10
4 Использование энергии воды…………………………………………………12
5 Использование энергии волн………………………………………………….15
6 Использование энергии течений………………………………………...……18
Заключение…………………………………………………………………….....21
Литература………………………………………………………………….……23
Введение
Для человечества очень важно искать новые возобновляемые ресурсы. Первоначальной причиной использования альтернативных источников энергии является уменьшение выброса парниковых газов и ядовитых веществ, образующихся при сгорании нефти, газа и нефтепродуктов. Наша планета и его жители ощущают их действие уже давно. Человечество беспощадно использует невозобновляемые или трудновозобновляемые ресурсы, чтобы себя обогреть, осветить, перевезти на транспорте, накормить. Эти действия нарушают хрупкий экологический баланс на планете.
В природе запасы энергии огромны. Ее несут солнечные лучи, ветры и движущиеся массы воды, она хранится в древесине, залежах газа, нефти, каменного угля. Практически безгранична энергия, «запечатанная» в ядрах атомов вещества. Но не все ее формы пригодны для прямого использования.
За долгую историю энергетики накопилось много технических средств и способов добывания энергии и преобразования ее в нужные людям формы. Собственно, и человек-то стал человеком только тогда, когда научился получать и использовать тепловую энергию. Огонь костров зажгли первые люди, еще не понимавшие его природы, однако этот способ преобразования химической энергии в тепловую сохраняется и совершенствуется уже на протяжении тысячелетий.
К энергии собственных мускулов и огня люди добавили мускульную энергию животных. Они изобрели технику для удаления химически связанной воды из глины с помощью тепловой энергии огня - гончарные печи, в которых получали прочные керамические изделия. Конечно, процессы, происходящие при этом, человек познал только тысячелетия спустя.
Потом люди придумали мельницы - технику для преобразования энергии ветряных потоков и ветра в механическую энергии вращающегося вала. Но только с изобретением паровой машины, двигателя внутреннего сгорания, гидравлической, паровой и газовой турбин, электрических генератора и двигателя, человечество получило в свое распоряжение достаточно мощные технические устройства. Они способны преобразовать природную энергию в иные ее виды, удобные для применения и получения больших количеств работы. Поиск новых источников энергии на этом не завершился: были изобретены аккумуляторы, топливные элементы, преобразователи солнечной энергии в электрическую и - уже в середине ХХ столетия - атомные реакторы.
Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей более чем шестимиллиардного населения Земли становится сейчас все более насущной.
Основу современной мировой энергетики составляют тепло- и гидроэлектростанции. Однако их развитие сдерживается рядом факторов. Стоимость угля, нефти и газа, на которых работают тепловые станции, растет, а природные ресурсы этих видов топлива сокращаются. К тому же многие страны не располагают собственными топливными ресурсами или испытывают в них недостаток. В процессе производства электроэнергии на ТЭС происходит выброс вредных веществ в атмосферу. Причем если топливом служит уголь, особенно бурый, малоценный для другого вида использования и с большим содержанием ненужных примесей, выбросы достигают колоссальных размеров. И, наконец, аварии на ТЭС наносят большой ущерб природе, сопоставимый с вредом любого крупного пожара. В худшем случае такой пожар может сопровождаться взрывом с образованием облака угольной пыли или сажи.
Гидроэнергетические ресурсы в развитых странах используются практически полностью: большинство речных участков, пригодных для гидротехнического строительства, уже освоены. А какой вред причиняют природе гидроэлектростанции! Выбросов в воздух от ГЭС нет никаких, но зато вред водной среде наносит довольно большой. В первую очередь страдают рыбы, которые не могут преодолеть плотины ГЭС. На реках, где построены гидроэлектростанции, особенно если их несколько – так называемые каскады ГЭС, - резко меняется количество воды до и после плотин. На равнинных реках разливаются огромные водохранилища, и затопленные земли безвозвратно потеряны для сельского хозяйства, лесов, лугов и расселения людей. Что касается аварий на ГЭС, то в случае прорыва любой гидроэлектростанции образуется огромная волна, которая сметет все находящиеся ниже плотины ГЭС. А ведь большинство таких плотин расположено вблизи крупных городов с населением в несколько сотен тысяч жителей.
Выход из создавшегося положения виделся в развитии атомной энергетики. На конец 1989 года в мире построено и работало более 400 атомных электростанций (АЭС). Однако сегодня АЭС уже не считаются источником дешевой и экологически чистой энергией. Топливом для АЭС служит урановая руда – дорогостоящее и трудно добываемое сырье, запасы которого ограничены. К тому же строительство и эксплуатация АЭС сопряжены с большими трудностями и затратами. Лишь немногие страны сейчас продолжают строительство новых АЭС. Серьезным тормозом для дальнейшего развития атомной энергетики являются проблемы загрязнения окружающей среды. Все это дополнительно осложняет отношение к атомной энергетике. Все чаще звучат призывы, требующие отказаться от использования ядерного топлива вообще, закрыть все атомные электростанции и возвратится к производству электроэнергии на ТЭС и ГЭС, а также использовать так называемые возобновимые – малые, или «нетрадиционные», - виды получения энергии. К последним относят прежде всего установки и устройства, использующие энергию ветра, воды, солнца, геотермальную энергию, а также тепло, содержащееся в воде, воздухе и земле.
Основные виды Альтернативной энергии
1
Использование Геотермальной энергии (тепло земли)
Геотермальная энергия - в дословном переводе значит: земли тепловая энергия. Объём Земли составляет примерно 1085 млрд.куб.км и весь он, за исключением тонкого слоя земной коры , имеет очень высокую температуру.
Если учесть ещё и теплоемкость пород Земли, то станет ясно, что геотермальная теплота представляет собой, несомненно, самый крупный источник энергии, которым в настоящее время располагает человек. Причём это энергия в чистом виде, так как она уже существует как теплота, и поэтому для её получения не требуется сжигать топливо или создавать реакторы.
В некоторых районах природа доставляет геотермальную энергию к поверхности в виде пара или перегретой воды, вскипающей и переходящей в пар при выходе на поверхность. Природный пар можно непосредственно использовать для производства электроэнергии. Имеются также районы, где геотермальными водами из источников и скважин можно обогревать жилища и теплицы ( островное государство на севере Атлантического океана -Исландия; и наши Камчатка и Курилы).
Однако в целом, особенно с учётом величины глубинного тепла Земли, использование геотермальной энергии в мире крайне ограничено.
Для производства электроэнергии с помощью геотермального пара от этого пара отделяют твёрдые частицы, пропуская его через сепаратор и затем направляют его в турбину. "Стоимость топлива" такой электростанции определяется капитальными затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом также невелика, так как последняя не имеет топки, котельной установки и дымовой трубы. В таком удобном естественном виде геотермальная энергия является экономически выгодным источником электрической энергии. К сожалению, на Земле редко встречаются поверхностные выходы природного пара или перегретых ( то есть, с температурой гораздо выше 100oС ) вод, вскипающих с образованием достаточного кол-ва пара.
Валовой мировой потенциал геотермальной энергии в земной коре на глубине до
Геотермальная энергия по времени использования — наиболее старый источник альтернативной энергии. В
В России перспективными в этом смысле районами являются Камчатка и Курильские острова. С 60-х годов на Камчатке успешно работает полностью автоматизированная Паужетская ГеоТЭС мощностью 11 МВт, на Курилах — станция на о. Кунашир. Такие станции могут быть конкурентоспособны лишь в районах с высокой отпускной ценой на электроэнергию, а на Камчатке и Курилах она очень высока в силу дальности перевозок топлива и отсутствия железных дорог.
2
Использование энергии солнца
Общее количество солнечной энергии, достигающее поверхности Земли в 6,7 раз больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Сев. Технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.
Полное количество солнечной энергии, поступающей на поверхность Земли за неделю, превышает энергию всех мировых запасов нефти, газа, угля и урана. И в России наибольший теоретический потенциал, более 2000 млрд. тонн условного топлива (т.у.т.), имеет солнечная энергия . Несмотря на такой большой потенциал в новой энергетической программе России вклад возобновляемых источников энергии на
Известно, что каждый год в мире потребляется столько нефти, сколько ее образуется в природных условиях за 2 млн.лет. Гигантские темпы потребления не возобновляемых энергоресурсов по относительно низкой цене, которые не отражают реальные совокупные затраты общества, по существу означают жизнь в займы, кредиты у будущих поколений, которым не будет доступна энергия по такой низкой цене. Энергосберегающие технологии для солнечного дома являются наиболее приемлемыми по экономической эффективности их использования. Их применение позволит снизить энергопотребление в домах до 60%. В качестве примера успешного применения этих технологий можно отметить проект "2000 солнечных крыш" в Германии. В США солнечные водонагреватели общей мощностью 1400 МВт установлены в 1,5 млн. домов.
При КПД солнечной электростанции (СЭС) 12% все современное потребление электроэнергии в России может быть получено от СЭС активной площадью около 4000 кв.м, что составляет 0.024% территории.
Наиболее практическое применение в мире получили гибридные солнечно-топливные электростанции с параметрами: КПД 13,9%, температура пара 371 гр.С , давление пара 100 бар, стоимость вырабатываемой электроэнергии 0,08-0,12 долл/кВт.ч, суммарная мощность в США 400 МВт при стоимости 3 долл/Вт. СЭС работает в пиковом режиме при отпускной цене за 1 кВт.ч электроэнергии в энергосистеме: с 8 до 12 час.-0,066 долл. и с 12 до 18 час.- 0,353 долл.. КПД СЭС может быть увеличен до 23% - среднего КПД системных электростанций, а стоимость электроэнергии снижена за счет комбинированной выработки электрической энергии и тепла.
Основным технологическим достижением этого проекта является создание Германской фирмой Flachglass Solartechnik GMBH технологии производства стеклянного параболоцилиндрического концентратора длиной
Принципиально новые типы солнечных концентратов, использующие технологию голографии, предложены ВИЭСХом.
Его главные характеристики - сочетание положительных качеств солнечных электростанций с центральным приемником модульного типа и возможность использования в качестве приемника как традиционных паронагревателей, так и солнечных элементов на основе кремния.
Одной из наиболее перспективных технологий солнечной энергетики является создание фотоэлектрических станций с солнечными элементами на основе кремния, которые преобразуют в электрическую энергию прямую и рассеянную составляющие солнечной радиации с КПД 12-15%. Лабораторные образцы имеют КПД 23%. Мировое производство солнечных элементов превышает 50 МВт в год и увеличивается ежегодно на 30%. Современный уровень производства солнечных элементов соответствует начальной фазе их использования для освещения, подъема воды, телекоммуникационных станций, питания бытовых приборов в отдельных районах и в транспортных средствах. Стоимость солнечных элементов составляет 2,5-3 долл/Вт при стоимости электроэнергии 0,25-0,56 долл/кВт.ч. Солнечные энергосистемы заменяют керосиновые лампы, свечи, сухие элементы и аккумуляторы, а при значительном удалении от энергосистемы и малой мощности нагрузки - дизельные электрогенераторы и линии электропередач.
3 Использование энергии ветра
Уже очень давно, видя, какие разрушения могут приносить бури и ураганы, человек задумывался над тем, нельзя ли использовать энергию ветра.
Ветряные мельницы с крыльями-парусами из ткани первыми начали сооружать древние персы свыше 1,5 тыс. лет назад. В дальнейшем ветряные мельницы совершенствовались. В Европе они не только мололи муку, но и откачивали воду, сбивали масло, как, например в Голландии. Первый электрогенератор был сконструирован в Дании в
Энергия ветра очень велика. Ее запасы по оценкам Всемирной метеорологической организации, составляют 170 трлн кВт·ч в год. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: его энергия сильно рассеяна в пространстве и он непредсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломают ветряки.
Строительство, содержание, ремонт ветроустановок, круглосуточно работающих в любую погоду под открытым небом, стоит недешево. Ветроэлектростанция такой же мощности, как ГЭС, ТЭЦ или АЭС, по сравнению с ними должна занимать большую площадь. К тому же ветроэлектростанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями, создавая помехи приему телепередач в близлежащих населенных пунктах.
Принцип работы ветроустановок очень прост: лопасти, которые вращаются за счет силы ветра, через вал передают механическую энергию к электрогенератору. Тот в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается электрический ток.
Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью (тогда у нее есть груз противовес); вертикальные роторы, напоминающие разрезанную вдоль и насажанную на ось бочку; некое подобие «вставшего дыбом» вертолетного винта: наружные концы его лопастей загнуты вверх и соединены между собой. Вертикальные конструкции хороши тем, что улавливают ветер любого направления. Остальным приходится разворачиваться по ветру.
Чтобы как-то компенсировать изменчивость ветра, сооружают огромные «ветреные фермы». Ветродвигатели там стоят рядами на обширном пространстве и работают на единую сеть. На одном краю «фермы» может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком близко, чтобы они не загораживали друг друга. Поэтому ферма занимает много места. Такие фермы есть в США, во Франции, в Англии, а в Дании «ветряную ферму» разместили на прибрежном мелководье Северного моря: там она никому не мешает и ветер устойчивее, чем на суше.
Чтобы снизить зависимость от непостоянного направления и силы ветра, в систему включают маховики, частично сглаживающие порывы ветра, и разного рода аккумуляторы. Чаще всего они электрические. Но применяют также воздушные (ветряк нагнетает воздух в баллоны; выходя оттуда, его ровная струя вращает турбину с электрогенератором) и гидравлические (силой ветра вода поднимается на определенную высоту, а, падая вниз, вращает турбину). Ставят также электролизные аккумуляторы. Ветряк дает электрический ток, разлагающий воду на кислород и водород. Их запасают в баллонах и по мере необходимости сжигают в топливном элементе (т.е. в химическом реакторе, где энергия горючего превращается в электричество) либо в газовой турбине, вновь получая ток, но уже без резких колебаний напряжения, связанного с капризами ветра.
Сейчас в мире работает более 30 тыс. ветроустановок различной мощности. Германия получает от ветра 10% своей электроэнергии, а всей Западной Европе ветер дает 2500 МВт электроэнергии. По мере того как ветряные электростанции окупаются, а их конструкции совершенствуются, цена воздушного электричества падает. Так, в
4 Использование энергии воды
Уровень воды на морских побережьях в течение суток меняется три раза. Такие колебания особо заметны в заливах и устьях рек, впадающих в море. Древние греки объясняли колебание уровня воды волей повелителя морей Посейдона. В XVIII в. английский физик Исаак Ньютон разгадал тайну морских приливов и отливов: огромные массы воды в мировом океане приводятся в движение силами притяжения Луны и Солнца. Через каждые 6 ч 12 мин прилив сменяется отливом. Максимальная амплитуда приливов в разных местах нашей планеты неодинакова и составляет от 4 до
Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. Считается экономически целесообразным строительство ПЭС в районах с приливными колебаниями уровня моря не менее
В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. ПЭС двустороннего действия способна вырабатывать электроэнергию непрерывно в течение 4-5 ч с перерывами в 1-2 ч четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы – с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока.
Первая приливная электростанция мощностью 240 МВт была пущена в
В
Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-
Работы в этой области ведутся и за рубежом. В
С точки зрения экологии ПЭС имеет бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения недавно созданной трубы Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на их строительство. Первые бесплотинные ПЭС намечено соорудить в ближайшие годы в Южной Корее.
5. Использование энергии волн
Идея получения электроэнергии от морских волн была изложена еще в
В основе работы волновых энергетических станций лежит воздействие волн на рабочие органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений с помощью электрогенераторов преобразуется в электрическую. Когда буй качается по волне, уровень воды внутри него меняется. От этого воздух то выходит из него, то входит. Но движение воздуха возможно только лишь через верхнее отверстие (такова конструкция буя). А там установлена турбина, вращающаяся всегда в одном направлении независимо от того в каком направлении движется воздух. Даже довольно небольшие волны высотой
В настоящее время волноэнергетические установки используются для энергопитания автономных буев, маяков, научных приборов. Попутно крупные волновые станции могут быть использованы для волнозащиты морских буровых платформ, открытых рейдов, морекультурных хозяйств. Началось промышленное использование волновой энергии. В мире уже около 400 маяков и навигационных буев получают питание от волновых установок. В Индии от волновой энергии работает плавучий маяк порта Мадрас. В Норвегии с
Создание волновых электростанций определяется оптимальным выбором акватории океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Считается, что эффективно волновые станции могут работать при использовании мощности около 80 кВт/м. Опыт эксплуатации существующих установок показал, что вырабатываемая ими электроэнергия пока в 2-3 раза дороже традиционной, но в будущем ожидается значительное снижение ее стоимости.
В волновых установках с пневматическими преобразователями под действием волн воздушный поток периодически изменяет свое направление на обратное. Для этих условий и разработана турбина Уэллса, ротор которой обладает выпрямляющим действием, сохраняя неизменным направление своего вращения при смене направления воздушного потока, следовательно, поддерживается неизменным и направление вращения генератора. Турбина нашла широкое применение в различных волноэнергетических установках.
Волновая энергетическая установка "Каймей" ("Морской свет") – самая мощная действующая энергетическая установка с пневматическими преобразователями – построена в Японии в
Конструкция второй установки состоит из конусовидного канала в ущелье длиной около
А в Великобритании разрабатывается оригинальная конструкция волновой энергетической установки типа "моллюск", в которой в качестве рабочих органов используются мягкие оболочки – камеры. В них находится воздух под давлением, несколько большим атмосферного. Накатом волн камеры сжимаются, образуется замкнутый воздушный поток из камер в каркас установки и обратно. На пути потока установлены воздушные турбины Уэллса с электрогенераторами. Сейчас создается опытная плавучая установка из 6 камер, укрепленных на каркасе длиной
Впервые конструкция волнового плота была запатентована в СССР еще в
В СССР модель волнового плота испытывалась в 70-х гг. на Черном море. Она имела длину
Проект, известный под названием "утка Солтера", представляет собой преобразователь волновой энергии. Рабочей конструкцией является поплавок ("утка"), профиль которого рассчитан по законам гидродинамики. В проекте предусматривается монтаж большого количества крупных поплавков, последовательно укрепленных на общем валу. Под действием волн поплавки приходят в движение и возвращаются в исходное положение силой собственного веса. При этом приводятся в действие насосы внутри вала, заполненного специально подготовленной водой. Через систему труб различного диаметра создается разность давления, приводящая в движение турбины, установленные между поплавками и поднятые над поверхностью моря. Вырабатываемая электроэнергия передается по подводному кабелю. Для более эффективного распределения нагрузок на валу следует устанавливать 20 – 30 поплавков. В
6 Использование энергии течений
Наиболее мощные течения океана – потенциальный источник энергии. Современный уровень техники позволяет извлекать энергию течений при скорости потока более 1 м/с. При этом мощность от
Для океанской энергетики представляют интерес течения в проливах Гибралтарском, Ла-Манш, Курильских. Однако создание океанских электростанций на энергии течений связано пока с рядом технических трудностей, прежде всего с созданием энергетических установок больших размеров, представляющих угрозу судоходству.
Программа "Кориолис" предусматривает установку во Флоридском проливе в
После того как большая часть Южного Пассатного течения проникает в Карибское море и Мексиканский залив, вода возвращается оттуда в Атлантику через Флоридский залив. Ширина течения становится минимальной –
Материал турбины- алюминий. Срок службы – 80 лет. Ее постоянное место – под водой. Подъем на поверхность воды только для профилактического ремонта. Ее работа практически не зависит от глубины погружения и температуры воды. Лопасти вращаются медленно, и небольшие рыбы могут свободно проплывать через турбину. А вот крупным вход закрыт предохранительной сеткой.
Американские инженеры, считают, что строительство такого сооружения даже дешевле, чем возведение тепловых электростанций. Здесь не нужно возводить здание, прокладывать дороги, устраивать склады. Да и эксплуатационные расходы существенно меньше.
Полезная мощность каждой турбины с учетом затрат на эксплуатацию и потерь при передаче на берег составит 43 МВт, что позволит удовлетворить потребности штата Флориды (США) на 10%.
Первый опытный образец подобной турбины диаметром
Заключение
Нужно отметить, что в России ещё нет таких законов, которые бы регулировали альтернативную энергетику и стимулировали ее развитие. Равно как и нет структуры, которая бы защищала интересы альтернативной энергетики. Как, например, атомной энергетикой отдельно занимается Минатом. Запланирован доклад правительству об обосновании необходимости и разработке концепции проекта федерального закона "О развитии возобновляемых источников энергии". За подготовку этого доклада отвечают целых четыре министерства: Минэнерго, Минэкономразвития, Минпромнауки и Минюст. Когда они договорятся, неведомо.
Чтобы отрасль развивалась быстро и полноценно, закон должен предусматривать налоговые льготы предприятиям, производящим оборудование для получения энергии возобновляемых источников (например, снижение ставки НДС хотя бы до 10%). Важны также вопросы сертификации и лицензирования (прежде всего в том, что касается оборудования), потому что приоритет возобновляемой энергии также должен соответствовать требованиям качества.
Развитие альтернативных способов получения энергии тормозят производители и добытчики традиционных источников энергии: у них сильные позиции во власти и есть возможность отстаивать свои интересы. Альтернативная энергия до сих пор довольно дорога по сравнению с традиционной, потому что практически у всех предприятий-производителей установки выходят опытными партиями в очень небольших количествах и соответственно являются очень дорогими. Организация серийного производства и проведение сертификации установок требуют значительных инвестиций, которые полностью отсутствуют. Удешевлению стоимости могла бы способствовать господдержка. Однако же это противоречит интересам тех, чей бизнес основан на добыче традиционного углеводородного топлива. Лишняя конкуренция никому не нужна.
В результате преимущественному использованию возобновляемых источников и развитию альтернативной энергетики отдается предпочтение в основном в тех регионах, где это является наиболее очевидным решением сложившихся энергетических проблем. Россия располагает значительными ресурсами ветровой энергии, в том числе в тех регионах, где отсутствует централизованное электроснабжение - побережье Северного Ледовитого океана, Якутия, Камчатка, Чукотка, Сахалин, но даже в этих районах энергетические проблемы таким образом решать почти не пытаются.
О дальнейшем развитии альтернативной энергетики говорится в "Энергетической стратегии России на период до 2020 года". Цифры, которых должна достичь наша альтернативная энергетика, очень низки, задачи минимальны, поэтому перелома в российской энергетике ждать не приходится. За счет альтернативной энергетики к 2020 году планируется экономить меньше 1% всех топливных ресурсов. Приоритетом своей "энергетической стратегии" Россия выбирает атомную промышленность как "важнейшую часть энергетики страны".
В последнее время были предприняты некоторые шаги в сторону развития альтернативной возобновляемой энергетики. Минэнерго начало переговоры с французами о перспективах сотрудничества в области альтернативной энергетики. В целом же можно отметить, что состояние и перспективы развития альтернативной энергетики на ближайшие 10-15 лет в целом представляются плачевными.
Литература
1. Копылов В.А. География промышленности России и стран СНГ. Учебное пособие. – М.: Маркетинг, 2001 – 184 с.
2. Видяпин М.В., Степанов М.В. Экономическая география России. – М.: Инфра – М., 2002 – 533 с.
3. Морозова Т.Г. Экономическая география России – 2 -е изд., ред.- М.: ЮНИТИ, 2002 – 471 с.
4. Арустамов Э.А. Левакова И.В.Баркалова Н.В. Экологические основы природопользования. М. Изд. «Дашков и К». 2002.
5. Рахилин В. общество и живая природа. М. Наука. 1989.
6. Лаврус В.С. Источники энергии К: НиТ, 1997
7. Э.Берман. Геотермальная энергия – Москва: Мир,1978г.