Реферат

Реферат Трехфазный цепи

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 19.4.2025



3.11 Трехфазные цепи.

Трехфазные цепи являются частным случаем многофазных систем, под которыми понимают совокупность нескольких нагрузок и источников питания, имеющих одинаковую частоту и смещенных по фазе на некоторый угол друг относительно друга. Каждая пара источник-нагрузка может рассматриваться как отдельная цепь и называется фазой системы.

http://normalizator.com/manuals/lessons/toe/ac/sac_11_1.gifЕсли отдельные фазы системы не соединены между собой электрически (рис. 1 а)), то такую систему называют несвязанной. Несвязанная система не обладает никакими особыми свойствами, и если между фазами отсутствует и магнитная связь, то такая совокупность цепей вообще не может рассматриваться как многофазная.

Соединение фаз системы между собой (рис. 1б)) придает ей особые качества, благодаря которым многофазные системы ( в особенности трехфазные) получили исключительное распространение в области передачи и преобразования электрической энергии. Одним из очевидных преимуществ связанной системы (рис. 1) является сокращение с шести до четырех числа проводников, соединяющих источники с нагрузкой. При благоприятных обстоятельствах это число может быть уменьшено до трех. В дальнейшем мы отметим целый ряд других преимуществ, которым обладают связанные системы.

Любая многофазная система может быть симметричной и несимметричной. Симметрия системы определяется симметрией ЭДС, напряжений и токов. Под симметричной многофазной системой ЭДС, напряжений или токов понимают совокупность соответствующих величин, имеющих одинаковые амплитуды и смещенных по фазе на угол 2p /m по отношению друг к другу, где m - число фаз системы. Если для обозначения фаз трехфазной системы использовать первые буквы латинского алфавита, то симметричную систему ЭДС можно записать в виде

http://normalizator.com/manuals/lessons/toe/ac/image243.gif

Û

http://normalizator.com/manuals/lessons/toe/ac/image244.gif

(1)

Аналогичные выражения можно написать и для токов и падений напряжения в симметричной трехфазной системе.

Основное свойство симметричных многофазных систем заключается в том, что сумма мгновенных значений величин образующих систему в каждый момент времени равна нулю. Для изображений величин образующих систему это свойство означает равенство нулю суммы фазных векторов. В справедливости этого утверждения легко убедиться на примере трехфазной системы, если в области изображений сложить числа в скобках в правой части выражений (1).

Многофазная система симметрична только тогда, когда в ней симметричны ЭДС, токи и напряжения. Если принять равными нулю внутренние сопротивления источников питания или включить их значения в сопротивления нагрузки, то условие симметрии системы сводится к симметрии ЭДС и равенству комплексных сопротивлений нагрузки. Это условие для трехфазной системы записывается в виде

Za = Zb = Zc .

(2)

В дальнейшем мы будем считать, что источники питания являются источниками ЭДС и использовать условия симметрии системы в виде выражений (1) и (2).


В многофазные системы объединяют источники ЭДС и нагрузки. Для обеспечения правильного соотношения сдвига фаз при соединения или связывании системы в общем случае необходимо определить выводы элементов, по отношению к которым выполняются условия (1). Они называются начало и конец фазы источника или нагрузки. Для источников многофазной системы принято за положительное направление действия ЭДС от начала к концу.

На электрических схемах, если это необходимо, начало и конец обозначают буквами латинского алфавита. На рис. 1 а) начала элементов соответствуют индексам XYZ, а концы - ABC. В дальнейшем мы будем использовать строчные буквы для нагрузки, а прописные для источников ЭДС.

http://normalizator.com/manuals/lessons/toe/ac/sac_11_7.gifСуществуют два способа связывания элементов в многофазную систему - соединение звездой и соединение многоугольником. Звезда это такое соединение, в котором начала всех элементов объединены в один узел, называемый нейтральной точкой. Подключение к системе при этом осуществляется концами элементов (рис. 2 а)). Многоугольник это соединение, в котором все элементы объединены в замкнутый контур так, что у соседних элементов соединены между собой начало и конец. С системой многоугольник соединяется в точках соединения элементов. Частным случаем многоугольника является треугольник рис. 2 б).

Источники питания и нагрузки в многофазных системах в общем случае могут быть связаны разными способами.

При анализе многофазных систем вводится ряд понятий, необходимых для описания процессов. Проводники, соединяющие между собой источники и нагрузку, называются линейными проводами, а проводник соединяющий нейтральные точки источников и нагрузки - нейтральным проводом.

Электродвижущие силы источников многофазной системы (eA, EA, EA, eB, EB, EB, eC, EC, EC), напряжения на их выводах (uA, UA, UA, uB, UB, UB, uC, UC, UC) и протекающие по ним токи (iA, IA, IA, iB, IB, IB, iC, IC, IC) называются фазными. Напряжения между линейными проводами (UAB, UAB, UBC, Uac, UCA, UCA) называются линейными.

http://normalizator.com/manuals/lessons/toe/ac/sac_11_3.gifСвязь линейных напряжений с фазными можно установить через разность потенциалов линейных проводов рис. 1 б) как uAB = uAN + uNB = uAN - uBN = uA - uB или в символической форме

U
AB
= UA - UB ; UBC = UB - UC ;

U
CA
= UC - UA .

(3)

Построим векторную диаграмму для симметричной трехфазной системы фазных и линейных напряжений (рис. 3). В теории трехфазных цепей принято направлять вещественную ось координатной системы вертикально вверх.

Каждый из векторов линейных напряжений представляет собой сумму одинаковых по модулю векторов фазных напряжений (Uф = UA = UB =UC), смещенных на угол 60° . Поэтому линейные напряжения также образуют симметричную систему и модули их векторов (Uл = UAB = UBC =UCA) можно определить как http://normalizator.com/manuals/lessons/toe/ac/image245.gif.

Выражения (3) справедливы как для симметричной системы, так и для несимметричной. Из них следует, что векторы линейных напряжений соединяют между собой концы фазных (вектор UCA рис. 3). Следовательно, при любых фазных напряжениях они образуют замкнутый треугольник и их сумма всегда равна нулю. Это легко подтвердить аналитически сложением выражений (3) - UAB + UBC + UCA = UA - UB + UB - UC + UC - UA = 0.

Тот факт, что геометрически векторы линейных напряжений соединяют концы векторов фазных, позволяет сделать заключение о том, что любой произвольной системе линейных напряжений соответствует бесчисленное множество фазных. Это подтверждается тем, что для создания фазной системы векторов при заданной линейной, достаточно произвольно указать на комплексной плоскости нейтральную точку и из нее провести фазные векторы в точки соединения многоугольника линейных векторов.

Из уравнений Кирхгофа для узлов a, b и c нагрузки соединенной треугольником (рис. 2 б)) можно представить комплексные линейные токи через фазные в виде

I
A
= Iab - Ica ; IB = Ibc - Iab ; IC = Ica - Ibc .

(4)

В случае симметрии токов IA = IB = IC = Iл и Iab = Ibc = Ica = Iф, поэтому для них будет справедливо такое же соотношение, как для линейных и фазных напряжений в симметричной системе при соединении звездой, т.е http://normalizator.com/manuals/lessons/toe/ac/image246.gif. Кроме того, их сумма в каждый момент времени будет равна нулю, что непосредственно следует из суммирования выражений (4).


Перейдем теперь к рассмотрению конкретных соединений трехфазных цепей.

http://normalizator.com/manuals/lessons/toe/ac/sac_11_2.gifПусть фазы источника и нагрузки соединены звездой с нейтральным проводом (рис. 4а)). При таком соединении нагрузка подключена к фазам источника и UA = Ua , UB = Ub и UC = Uc., а IA = Ia , IB = Ib и IC = Ic. Отсюда по закону Ома токи в фазах нагрузки равны

I
a
= UA/Za ; Ib = UB/Zb и

I
c
= UC/Zc.

(5)

Ток в нейтральном проводе можно определить по закону Кирхгофа для нейтральной точки нагрузки. Он равен

I
N
=Ia +Ib +Ic .

(6)

Выражения (5) и (6) справедливы всегда, но в симметричной системе Za = Zb = Zc= Z, поэтомуIN =Ia +Ib +Ic= UA/Za+UB/Zb+UC/Zc = (UA+UB+UC)/Z = 0, т.к. по условию симметрии UA+UB+UC=0. Следовательно, в симметричной системе ток нейтрального провода равен нулю и сам провод может отсутствовать. В этом случае связанная трехфазная система будет передавать по трем проводам такую же мощность, как несвязанная по шести. На практике нейтральный провод в системах передачи электроэнергии сохраняют, т.к. его наличие позволяет получать у потребителя два значения напряжения - фазное и линейное (127/220 В, 220/380 В и т.д.). Однако сечение нейтрального провода обычно существенно меньше, чем у линейных проводов, т.к. по нему протекает только ток, создаваемый асимметрией системы.

При симметричной нагрузке токи во всех фазах одинаковы и смещены по отношению друг к другу на 120° . Их модули или действующие значения можно определить как I = Uф/Z.

Векторные диаграммы для симметричной и несимметричной нагрузки в системе с нейтральным проводом приведены на рис. 4 б) и в).


http://normalizator.com/manuals/lessons/toe/ac/sac_11_4.gifПри отсутствии нейтрального провода сумма токов в фазах нагрузки равна нулю Ia+Ib+Ic =0. В случае симметричной нагрузки режим работы системы не отличается от режима в системе с нейтральным проводом.

При несимметричной нагрузке между нейтральными точками источника и нагрузки возникает падение напряжения. Его можно определить по методу двух узлов, перестроив для наглядности схему рис. 5 а). В традиционном для теории электрических цепей начертании она будет иметь вид рис. 5 б). Отсюда

http://normalizator.com/manuals/lessons/toe/ac/image247.gif,

(7)

где Ya=1/Za, Y
b
=1/Zb, Y
c
=1/Zc - комплексные проводимости фаз нагрузки.

http://normalizator.com/manuals/lessons/toe/ac/sac_11_6.gifНапряжение UnN представляет собой разность потенциалов между нейтральными точками источника и нагрузки. По схеме рис. 5 б) его можно представить также через разности фазных напряжений источника и нагрузки UnN = UA - Ua = UB - Ub = U
C
- Uc. Отсюда фазные напряжения нагрузки

U
a
= UA - UnN ; Ub = UB - UnN ; Uc = UC - UnN .

(8)

Токи в фазах нагрузки можно определить по закону Ома

I
a
= Ua/Za ; Ib = Ub/Zb ; Ic = Uc/Zc.

(9)

Векторные диаграммы для симметричной и несимметричной нагрузки приведены на рис. 6. Диаграммы симметричного режима (рис. 6 а)) ничем не отличаются от диаграмм в системе с нулевым проводом.

Диаграммы несимметричного режима (рис. 6 б)) иллюстрируют возможность существования множества систем фазных напряжений для любой системы линейных. Здесь системе линейных напряжений UAB UBC UCA соответствуют две системы фазных. Фазные напряжения источника UA UB UC и фазные напряжения нагрузки Ua Ub Uc..


http://normalizator.com/manuals/lessons/toe/ac/sac_11_5.gifВ трехфазных цепях нагрузка и источник могут быть соединены по-разному. В частности нагрузка, соединенная треугольником, может быть подключена к сети, в которой источник питания соединен звездой (рис. 7 а)).

При этом фазы нагрузки оказываются подключенными на линейные напряжения

U
ab
= UAB ; Ubc =UBC ; Uca = UCA.

Токи в фазах можно найти по закону Ома

I
ab
= Uab/Zab ; Ibc = Ubc/Zbc ;

I
ca
= Uca/Zca,

а линейные токи из уравнений Кирхгофа для узлов треугольника нагрузки

I
A
= Iab - Ica ; IB = Ibc - Iab ; IC = Ica - Ibc .

(10)

Векторы фазных токов нагрузки на диаграммах для большей наглядности принято строить относительно соответствующих фазных напряжений. На рис. 7 б) векторные диаграммы построены для случая симметричной нагрузки. Как и следовало ожидать, векторы фазных и линейных токов образуют симметричные трехфазные системы.

На рис. 7 в) построена векторная диаграмма для случая разных типов нагрузки в фазах. В фазе ab нагрузка чисто резистивная, а в фазах bc и ca индуктивная и емкостная. В соответствии с характером нагрузки, вектор Iab совпадает по направлению с вектором Uab; вектор Ibc отстает, а вектор Ica опережает на 90° соответствующие векторы напряжений. После построения векторов фазных токов можно по выражениям (10) построить векторы линейных токов IA, IB и IC.


Трехфазная цепь является совокупностью трех однофазных цепей, поэтому ее мощность может быть определена как сумма мощностей отдельных фаз.

При соединении звездой активная мощность системы будет равна

P = Pa + Pb + Pc = Ua
I
a
cosj a + Ub
I
b
cosj b + Uc
I
c
cosj c =

=Ia2R
a
+ Ib2R
b
+ Ic2R
c
,

(11)

а реактивная

Q = Qa + Qb + Qc = Ua
I
a
sinj a + Ub
I
b
sinj b + Uc
I
c
sinj c =

=Ia2X
a
+ Ib2X
b
+ Ic2X
c
.

(12)

Если нагрузка соединена треугольником, то активная и реактивная мощности будут равны

P = Pab + Pbc + Pca = Uab
I
ab
cosj ab + Ubc
I
bc
cosj bc + Uca
I
ca
cosj ca =

=Iab2R
ab
+ Ibc2R
bc
+ Ica2R
ca
,

(13)

Q = Qab + Qbc + Qca = Uab
I
ab
sinj ab + Ubc
I
bc
sinj bc + Uca
I
ca
sinj ca =

=Iab2X
ab
+ Ibc2X
bc
+ Ica2X
ca
.

(14)

Полную мощность можно определить из треугольника мощностей как

http://normalizator.com/manuals/lessons/toe/ac/image248.gif.

(15)

Следует обратить внимание на то, что полная мощность трехфазной цепи не является суммой полных мощностей фаз.

При симметричной нагрузке мощности всех фаз одинаковы, поэтому полная мощность и ее составляющие для соединения звездой будут равны

http://normalizator.com/manuals/lessons/toe/ac/image249.gif

(16)

При соединении нагрузки треугольником

http://normalizator.com/manuals/lessons/toe/ac/image250.gif

(17)

Из выражений (16) и (17) следует, что полная мощность трехфазной сети и ее составляющие при симметричной нагрузке могут быть определены по линейным токам и напряжениям независимо от схемы соединения.

3.5 Мощность цепи переменного тока.


Понятие потенциала или разности потенциалов u позволяет определить работу, совершаемую электрическим полем при перемещении элементарного электрического заряда dq, как dA = udq. В то же время, электрический ток равен i = dq/dt. Отсюда dA = ui dt, следовательно, скорость совершения работы, т.е. мощность в данный момент времени или мгновенная мощность равна

http://normalizator.com/manuals/lessons/toe/ac/image226.gif,

(1)

где u и i - мгновенные значения напряжения и тока.

Величины тока и напряжения, входящие в выражение (1), являются синусоидальными функциями времени, поэтому и мгновенная мощность является переменной величиной и для ее оценки используется понятие средней мощности за период. Ее можно получить, интегрируя за период T работу, совершаемую электрическим полем, а затем соотнося ее с величиной периода, т.е.

http://normalizator.com/manuals/lessons/toe/ac/image227.gif.

(2)

Пусть u=U
m
sinw t и I
m
sin(wt-j ), тогда средняя мощность будет равна

http://normalizator.com/manuals/lessons/toe/ac/image228.gif

(3)

т.к. интеграл второго слагаемого равен нулю. Величина cos
j называется коэффициентом мощности
.

Из этого выражения следует, что средняя мощность в цепи переменного тока зависит не только от действующих значений тока I и напряжения U, но и от разности фаз j между ними. Максимальная мощность соответствует нулевому сдвигу фаз и равна произведению UI. При сдвиге фаз между током и напряжением в ± 90° средняя мощность равна нулю. Максимальные значения напряжения и тока любой электрической машины определяются ее конструкцией, а максимальная мощность, которую они могут развивать - произведением этих величин. Если электрическая цепь построена нерационально, т.е. сдвиг фаз j имеет значительную величину, то источник электрической энергии и нагрузка не могут работать на полную мощность. Поэтому в любой системе источник-нагрузка существует т.н. "проблема cos
j
", которая заключается в требовании возможного приближения cosj к единице.

Выражение (3) можно представить также с помощью понятий активных составляющих тока Iа и напряжения Uа в виде

P = UI cosj = U(I cosj ) = UIа = I(U cosj ) = IUа
.

(4)

Учитывая, что активные составляющие тока и напряжения можно выразить через резистивную состаляющую комплексного сопротивления цепи как Iа=U/R или Uа=IR , выражение (4) можно записать также в форме

P = I2R = U2/R .

(5)

Среднюю мощность P называют также активной мощностью и измеряют в ваттах [Вт].


Выделим подинтегральную функцию выражения (3)

http://normalizator.com/manuals/lessons/toe/ac/image229.gif

(6)

Отсюда следует, что мгновенная мощность изменяется с двойной частотой сети относительно постоянной составляющей UIcosj равной средней или активной мощности.

При cosj = 1 (j = 0) , т.е. для цепи, обладающей чисто резистивным сопротивлением

http://normalizator.com/manuals/lessons/toe/ac/image230.gif

(7)

Временные диаграммы, соответствующие этому случаю приведены на рис. 1 а).

http://normalizator.com/manuals/lessons/toe/ac/sac_8_2.gif

Положительные значения мгновенной мощности соответствуют поступлению энергии от источника в электрическую цепь. Следовательно, при резистивной нагрузке вся энергия поступающая от источника преобразуется в ней в тепло.

При cosj = 0 (j = ± p /2) , т.е. для чисто реактивной цепи

http://normalizator.com/manuals/lessons/toe/ac/image231.gif

(8)

Временные диаграммы, соответствующие чисто индуктивной и чисто емкостной нагрузке приведены на рис. 1 б) и г). Из выражений (8) и временных диаграмм следует, что мощность колеблется относительно оси абсцисс с двойной частотой, изменяя свой знак каждые четверть периода. Это означает, что в течение четверти периода (p > 0) энергия поступает в электрическую цепь от источника и запасается в магнитном или электрическом поле, а в течение следующей четверти (p < 0) она целиком возвращается из цепи в источник. Так как площади, ограниченные участками с положительной мощностью и с отрицательной одинаковы, то средняя мощность отдаваемая источником нагрузке равна нулю и в цепи не происходит преобразования энергии.

В общем случае произвольной нагрузки 1 > cosj > 0 ( 1< |j | < p /2) и

http://normalizator.com/manuals/lessons/toe/ac/image232.gif

(8)

Как следует из временных диаграмм рис. 1 в), большую часть периода мощность потребляется нагрузкой (p > 0), но существуют также интервалы времени, когда энергия запасенная в магнитных и электрических полях нагрузки возвращается в источник. Участки с положительным значением p независимо от характера реактивной составляющей нагрузки всегда больше участков с отрицательным значением, поэтому средняя мощность P положительна. Это означает, что в электрической цепи преобладает процесс преобразования электрической энергии в тепло или механическую работу.


Рассмотрим энергетические процессы в последовательном соединении rLC (рис. 2). Падение напряжения на входе цепи уравновешивается суммой падений напряжения на элементах u=ur+uL+uC . Мгновенная мощность в цепи равна

http://normalizator.com/manuals/lessons/toe/ac/sac_8_1.gifui=uri+uLi+uCi

(9)

Пусть напряжение и ток на входе равны u=U
m
sinwt и I
m
sin(wt-j ). Тогда падения напряжения на элементах будут ur= rI
m
sin(wt-j ), uL= w LI
m
sin(wt-j +p /2) = xLI
m
sin(wt-j +p /2), uC= I
m
sin(wt-j -p /2)/(w C) = xCI
m
sin(wt-j -p /2). Подставляя эти выражения в (9), получим

http://normalizator.com/manuals/lessons/toe/ac/image233.gif

(10)

Уравнение (10) в левой и правой частях имеет постоянную и переменную составляющие. Постоянная составляющая представляет собой активную или среднюю мощность. Второе слагаемое в правой части это переменная составляющая активной мощности с амплитудой равной P = UIcosj . Третье слагаемое правой части также является переменной составляющей мгновенной мощности, но эта составляющая находится в квадратуре с переменной составляющей активной мощности и имеет амплитуду Q = UIsinj . Эту величину называют реактивной мощностью. Она равна среднему за четверть периода значению энергии, которой источник обменивается с магнитным и электрическим полями нагрузки. Реактивная мощность не преобразуется в тепло или другие виды энергии, т.к. ее среднее значение за период равно нулю.

Реактивную мощность также можно представить через реактивные составляющие тока или напряжения

Q = UI sinj = U(I sinj ) = UIр = I(U sinj ) = IUр .

(11)

В отличие от всегда положительной активной мощности, реактивная мощность положительна при j > 0 и отрицательна при j < 0 .

Из условия равенства переменных составляющих левой и правой частей уравнения (10) можно найти связь между P, Q и S = UI в виде

http://normalizator.com/manuals/lessons/toe/ac/image234.gif

(12)

Величина S называется полной или кажущейся мощностью. Из выражения (12) следует, что полную мощность можно представить гипотенузой прямоугольного треугольника с углом j , катетами которого являются активная и реактивная мощности.

Таким образом, полная мощность это максимально возможная активная мощность, т.е. мощность, выделяющаяся в чисто резистивной нагрузке (cosj = 0). Именно эта мощность указывается в паспортных данных электрических машин и аппаратов.

Реактивные составляющие токов и напряжений можно представить через активные и реактивные составляющие комплексного сопротивления, тогда для составляющих мощности

P = UIа = I2R = UаI = U2/R = U2G ;

Q = UIр = I2X = UрI = U2/X = U2B ;

S = UI = I2Z = U2/Z = U2Y.

(13)

Треугольник мощностей можно описать также с помощью комплексных чисел и изобразить векторами на комплексной плоскости в виде

http://normalizator.com/manuals/lessons/toe/ac/image235.gif,

(14)

где S - комплексная полная мощность, http://normalizator.com/manuals/lessons/toe/ac/image236.gif- сопряженный комплексный ток.

http://normalizator.com/manuals/lessons/toe/ac/sac_8_3.gifПользуясь представлением активной и реактивной составляющих мощности через активные и реактивные составляющие токов и напряжений (выражения (4) и (11)), треугольник мощностей можно построить в двух вариантах (рис. 3 а) и б)). В первом случае активная и реактивная составляющие полной мощности выражаются через активную и реактивную составляющие напряжения U и треугольник мощностей получается изменением масштаба треугольника напряжений (рис. 3 а)). Во втором случае (рис. 3 б)), построение выполнено с помощью активной и реактивной составляющих тока I.

Очевидно, что все виды мощности имеют одинаковую размерность, поэтому для их отличия от активной мощности, измеряемой в ваттах [Вт], для полной мощности введена единица, называемая вольт-амперы [ВА], а для реактивной мощности - вольт-амперы реактивные [ВАр]


http://normalizator.com/manuals/lessons/toe/ac/sac_8_4.gifВыражение для активной мощности P = UIcosj позволяет определить коэффициент мощности с помощью ваттметра, вольтметра и амперметра.

Для этого на вход цепи включают приборы по схеме рис. 4 и по их показаниям определяют коэффициент мощности в виде

http://normalizator.com/manuals/lessons/toe/ac/image242.gif,

где W, V и A - показания соответственно ваттметра, вольтметра и амперметра действующих значений. Из этого выражения можно также определить угол сдвига фаз j между током и напряжением на входе двухполюсника.

·  Обзорные статьи

·  Промо-статьи

·  Презентации

·  Качество электроэнергии

·  Учебные пособия по электротехники для самостоятельного изучения

·  Рефераты по электротехнике и радиоэлектронике



Учебное пособие по курсу электротехники
Электрические микромашины. Курс лекций
Общая Электротехника. Учебное пособие
Сборник лекций по теоретическим основам электротехники

Карта сайта

1. Курсовая Гражданский иск в уголовном деле 2
2. Курсовая Стимулирование математической деятельности младших школьников в процессе поиска решения задач с
3. Реферат Экономический рост в Казахстане
4. Реферат на тему Monopoly Power In The Computer Industry Essay
5. Реферат Поняття методів навчання та їх класифікація
6. Реферат Плавание в xxi веке прогнозы и перспективы
7. Реферат на тему English Composition Driving Essay Research Paper ENGLISH
8. Реферат Банкротство юридического лица 2
9. Отчет_по_практике на тему Проектирование рабочего места
10. Реферат Англо-американская конвенция 1818