Реферат

Реферат Влияние на организм человека электромагнитных полей лазерного и ультрафиолетового излучения

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024





Влияние на организм человека электромагнитных полей лазерного и ультрафиолетового излучения.

Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).                                                                Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.                                               К электромагнитному излучению относятся радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и жесткое (гамма-)излучение.                                         Электромагнитное излучение способно распространяться в вакууме (пространстве, свободном от вещества), но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

Источники и воздействие электромагнитных излучений                          Среди различных физических факторов окружающей среды, которые могут оказывать неблагоприятное воздействие на человека и биологические объекты, большую сложность представляют электромагнитные поля неионизирующей природы, особенно относящиеся к радиочастотному излучению. Электромагнитные поля - это особая форма существования материи, характеризующаяся совокупностью электрических и магнитных свойств. Основными параметрами, характеризующими электромагнитное поле, являются: частота, длина волны и скорость распространения. Электромагнитные поля окружают нас повсюду, но мы не можем их почувствовать и вообще заметить, - поэтому мы не видим излучений милицейского радара, не видим лучей, поступающих от телевизионной башни или линии электропередачи.

Природные источники электромагнитных полей                                 Природные источники электромагнитных полей делят на две группы. Первая - поле Земли - постоянное электрическое и постоянное магнитное поле. Вторая группа - радиоволны, генерируемые космическими источниками (Солнце, звезды и т.д.), атмосферные процессы - разряды молний и т.д. Естественное электрическое поле Земли создается избыточным отрицательным зарядом на поверхности; его напряженность обычно от 100 до 500 В/м. Грозовые облака могут увеличивать напряженность поля до десятков, а то и сотен кВ/м. Вторая группа природных электромагнитных полей характеризуется широким диапазоном частот.

Антропогенные источники электромагнитных полей также делятся на 2 группы:

·                   Источники низкочастотных излучений (0 - 3 кГц).                                Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.                                              Уже сегодня электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека. Транспорт на электроприводе является мощным источником магнитного поля в диапазоне от 0 до 1000 Гц. Железнодорожный транспорт использует переменный ток. Городской транспорт - постоянный. Максимальные значения индукции магнитного поля в пригородном электротранспорте достигают 75 мкТл, средние значения - около 20 мкТл. Средние значения на транспорте с приводом от постоянного тока зафиксированы на уровне 29 мкТл. У трамваев, где обратный провод - рельсы, магнитные поля компенсируют друг друга на гораздо большем расстоянии, чем у проводов троллейбуса, а внутри троллейбуса колебания магнитного поля невелики даже при разгоне. Но самые большие колебания магнитного поля - в метро. При отправлении состава величина магнитного поля на платформе составляет 50-100 мкТл и больше, превышая геомагнитное поле. Даже когда поезд давно исчез в туннеле, магнитное поле не возвращается к прежнему значению. Лишь после того, как состав минует следующую точку подключения к контактному рельсу, магнитное поле вернется к старому значению. Правда, иногда не успевает: к платформе уже приближается следующий поезд и при его торможении магнитное поле снова меняется. В самом вагоне магнитное поле еще сильнее - 150-200 мкТл, то есть в десять раз больше, чем в обычной электричке.

·                   Источники высокочастотных излучений (от 3 кГц до 300 ГГц).             К этой группе относятся функциональные передатчики - источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц - 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.). Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

Излучение бытовых приборов                                                                  Источником электромагнитного поля в жилых помещениях является разнообразная электротехника - холодильники, утюги, пылесосы, электропечи, телевизоры, компьютеры и др., а также электропроводка квартиры. На электромагнитную обстановку квартиры влияют электротехническое оборудование здания, трансформаторы, кабельные линии. Электрическое поле в жилых домах находится в пределах 1-10 В/м. Однако могут встретиться точки повышенного уровня, например, незаземленный монитор компьютера.

Замеры напряженности магнитных полей от бытовых электроприборов показали, что их кратковременное воздействие может оказаться даже более сильным, чем долговременное пребывание человека рядом с линией электропередачи. Если отечественные нормы допустимых значений напряженности магнитного поля для населения от воздействия линии электропередачи составляют 1000 мГс, то бытовые электроприборы существенно превосходят эту величину.                                                     Индукция магнитного поля от электроплит типа "Электра" на расстоянии 20-30 см от передней панели - там, где стоит хозяйка, - составляет 1-3 мкТл. У конфорок, оно, естественно, больше. А на расстоянии 50 см уже неотличимо от общего поля в кухне, которое составляет около 0,1-0,15 мкТл.              Невелики и магнитные поля от холодильников и морозильников. Так, по данным Центра электромагнитной безопасности (см. ниже), у обычного бытового холодильника поле выше предельно допустимого уровня (0,2 мкТл) возникает в радиусе 10 см от компрессора и только во время его работы. Однако у холодильников, оснащенных системой "no frost", превышение предельно допустимого уровня можно зафиксировать на расстоянии метра от дверцы.                                                                                                                  СВЧ-печи, в силу принципа своей работы, служат мощнейшим источником излучения. Но по той же причине их конструкция обеспечивает соответствующую экранировку, да и пища разогревается или готовится в них быстро. Но все же опираться локтем на включенную "микроволновку" не стоит. На расстоянии 30 см печь создает заметное переменное (50 Гц) магнитное поле (0,3-8 мкТл). Неожиданно малыми оказались поля от мощных электрических чайников. Так, на расстоянии 20 см от чайника "Tefal" поле составляет около 0,6 мкТл, а на расстоянии 50 см неотличимо от общего электромагнитного поля в кухне.                                                                У большинства утюгов поле выше 0,2 мкТл обнаруживается на расстоянии 25 см от ручки и только в режиме нагрева.                                                        Зато поля стиральных машин оказались достаточно большими. Например, у малогабаритной "Спини" поле на частоте 50 Гц у пульта управления составляет более 10 мкТл, на высоте 1 метра - 1 мкТл, сбоку на расстоянии 50 см - 0,7 мкТл. В утешение можно заметить, что большая стирка - не столь частое занятие, да и при работе автоматической или полуавтоматической стиральной машины хозяйка может отойти в сторонку или просто выйти из ванной. Еще больше поле у пылесоса "Тайфун". Оно порядка 100 мкТл. Впрочем, здесь тоже есть утешительное обстоятельство: пылесос обычно таскают за шланг и находятся от него достаточно далеко. Рекорд держат электробритвы. Их поле измеряется сотнями мкТл. Таким образом, бреясь электробритвой, убивают сразу двух зайцев: приводят себя в порядок и попутно проводят магнитную обработку лица.

Западная промышленность уже реагирует на повышающийся спрос к бытовым приборам и персональным компьютерам, чье излучение не угрожает жизни и здоровью людей, рискнувших облегчить себе жизнь с их помощью. Так, в США многие фирмы выпускают безопасные приборы, начиная от утюгов с бифилярной намоткой и кончая неизлучающими компьютерами.                                                                                                             В нашей стране существует Центр электромагнитной безопасности, где разрабатываются всевозможные средства защиты от электромагнитных излучений: специальная защитная одежда, ткани и прочие защитные материалы, которые могут обезопасить любой прибор. Но до внедрения подобных разработок в широкое и повседневное их использование пока далеко. Так что каждый пользователь должен позаботиться о средствах своей индивидуальной защиты сам, и чем скорее, тем лучше. Сотрудники Центра электромагнитной безопасности провели независимое исследование ряда компьютеров, наиболее распространенных на нашем рынке, и установили, что "уровень электромагнитных полей в зоне размещения пользователя превышает биологически опасный уровень".

Излучения от длинноволновых радиопередающих центров

Радиоволны большой длины "накрывают" соответственно и большее пространство. Электрическую составляющую волны экранируют стены зданий, но магнитную они ослабляют мало. Большую проблему составляют ведомственные и частные РПЦ, которые в последние годы растут как грибы после дождя. К примеру, только Министерству связи РФ принадлежит более 100 передающих радиоцентров (а ведь под них отводится большая площадь - до 1000 га). Телевизионные передатчики расположены почти всегда в городах. Их антенны размещены на высоте 110 м на расстоянии 1 км, типичные значения напряженности электрического поля достигают 15 В/м от передатчика мощностью 1 МВт.

Единственное, что радует, это то, что на фоне РПЦ антенны базовых станций сотовой телефонной связи вносят незначительный вклад в электромагнитное загрязнение городских улиц. Разумеется, если не влезать на крышу дома, где их обычно устанавливают, и не изучать конструкцию антенны.
Воздействие электромагнитных полей на организм

Степень биологического воздействия электромагнитных полей на организм человека зависит от частоты колебаний, напряженности и интенсивности поля, режима его генерации (импульсное, непрерывное), длительности воздействия. Биологическое воздействие полей разных диапазонов неодинаково. Чем короче длина волны, тем большей энергией она обладает. Высокочастотные излучения могут ионизировать атомы или молекулы в соматических клетках - и т.о. нарушать идущие в них процессы. А электромагнитные колебания длинноволнового спектра хоть и не выбивают электроны из внешних оболочек атомов и молекул, но способны нагревать органику, приводить молекулы в тепловое движение. Причем тепло это внутреннее - находящиеся на коже чувствительные датчики его не регистрируют. Чем меньше тело, тем лучше оно воспринимает коротковолновое излучение, чем больше - тем лучше воспринимает длинноволновое.

Особенно чувствительны к неблагоприятному воздействию электромагнетизма эмбрионы и дети. Человек, создав такой вид излучения, не успел выработать к нему защиты. Первичным проявлением действия электромагнитной энергии является нагрев, который может привести к изменениям и даже к повреждениям тканей и органов. Механизм поглощения энергии достаточно сложен. Наиболее чувствительными к действию электромагнитных полей являются центральная нервная система (субъективные ощущения при этом - повышенная утомляемость, головные боли и т. п) и нейроэндокринная система.

С нарушением нейроэндокринной регуляции связывают эффект со стороны сердечно-сосудистой системы, системы крови, иммунитета, обменных процессов, воспроизводительной функции и др. Влияние на иммунную систему выражается в снижении фагоцитарной активности нейтрофилов, изменениях комплиментарной активности сыворотки крови, нарушении белкового обмена, угнетении Т-лимфоцитов. Было установлено, что клинические проявления воздействия радиоволн наиболее часто характеризуются астеническими, астеновегетативными и гипоталамическими синдромами:

1. Астенический синдром. Этот синдром, как правило, наблюдается в начальных стадиях заболевания и проявляется жалобами на головную боль, повышенную утомляемость, раздражительность, нарушение сна, периодически возникающие боли в области сердца.

2. Астеновегетативный или синдром нейроциркулярной дистонии. Этот синдром характеризуется веготонической направленностью реакций (гипотония, брадикардия и др.).

3. Гипоталамический синдром. Больные повышенно возбудимы, эмоционально лабильны, в отдельных случаях обнаруживаются признаки раннего атеросклероза, ишемической болезни сердца, гипертонической болезни.

Поля сверхвысоких частот могут оказывать воздействие на глаза, приводящее к возникновению катаракты (помутнению хрусталика), а умеренных - к изменению сетчатки глаза по типу ангиопатии. В результате длительного пребывания в зоне действия электромагнитных полей наступают преждевременная утомляемость, сонливость или нарушение сна, появляются частые головные боли, наступает расстройство нервной системы и др. Многократные повторные облучения малой интенсивности могут приводить к стойким функциональным расстройствам центральной нервной системы, стойким нервно-психическим заболеваниям, изменению кровяного давления, замедлению пульса, трофическим явлениям (выпадению волос, ломкости ногтей и т. п.).

Аналогичное воздействие на организм человека оказывает электромагнитное поле промышленной частоты в электроустановках сверхвысокого напряжения. В последние годы появляются сообщения о возможности индукции ЭМИ злокачественных заболеваний. Еще немногочисленные данные все же говорят, что наибольшее число случаев приходится на опухоли кроветворных тканей и на лейкоз в частности. Это становится общей закономерностью канцерогенного эффекта при воздействии на организм человека и животных физических факторов различной природы и в ряде других случаев.

Исследователи США и Швеции установили факт возникновения опухолей у детей при воздействии на них магнитных полей частоты 60 Гц и напряженностью 2-3 мГс в течение нескольких дней или даже часов. Такие поля излучаются телевизором, персональной ЭВМ. Наблюдения за людьми, которые регулярно пользовались электродрелями, показали неблагоприятное для здоровья действие низкочастотных электромагнитных полей частотой 50 - 60 Гц: ночью у большинства испытуемых повышался в крови уровень мелатонина - гормона шишковидной железы, или эпифиза. Эпифиз играет роль основного "ритмоводителя" функций организма Нарушение этого ритма может повлечь за собой серьёзные заболевания, в частности, образование опухоли.

В конце 1995 года было опубликовано 14 работ по исследованию возможного развития рака молочной железы у лиц, имеющих контакт с электромагнитным полем в производственных условиях или в быту. В Варшаве проводилось исследование, которое показало, что у лиц, облучавшихся электромагнитным полем, вероятность развития рака лимфатической системы и кроветворных органов была больше в 6,7 раза, рака щитовидной железы - в 4,3 раза, наиболее обычен рак легкого при действии микроволнового излучения.

Защита от электромагнитных излучений

Бурное развитие машиностроительных отраслей народного хозяйства привело к использованию в некоторых производствах электромагнитных волн. Причем в ряде случаев человек оказывается подвержен их воздействию. Электромагнитные волны, КЕН.

10взаимодействуя с тканями тела человека, вызывают определенные функциональные изменения. При интенсивном облучении эти изменения могут оказать вредное воздействие на организм человека. Знание природы воздействия электромагнитных волн на организм человека, норм допустимых облучений, методов контроля интенсивности излучений и средств защиты от них является совершенно необходимым для специалистов машиностроения в их многогранной практической деятельности.

Действие электромагнитного излучения на организм человека в основном определяется поглощенной в нем энергией. Известно, что излучение, попадающее на тело человека, частично отражается и частично поглощается в нем. Поглощенная часть энергии электромагнитного поля превращается в, тепловую энергию. Эта часть излучения проходит через кожу и распространяется в организме человека в зависимости от электрических свойств тканей (абсолютной диэлектрической проницаемости, абсолютной магнитной проницаемости, удельной проводимости) и частоты колебаний электромагнитного поля.

Существенные различия электрических свойств кожи, подкожного жирового слоя, мышечной и других тканей обусловливают сложную картину распределения энергии излучения в организме человека. Точный расчет распределения тепловой энергии, выделяемой в организме человека при облучении, практически невозможен. Тем не менее, можно сделать следующий вывод: волны миллиметрового диапазона поглощаются поверхностными слоями кожи, сантиметрового — кожей и подкожной клетчаткой, дециметрового — внутренними органами.

Кроме теплового действия электромагнитные излучения вызывают поляризацию молекул тканей тела человека, перемещение ионов, резонанс макромолекул и биологических структур, нервные реакции и другие эффекты.

Из сказанного следует, что при облучении человека электромагнитными волнами в тканях его организма происходят сложнейшие физико-биологические процессы, которые могут явиться причиной нарушения нормального функционирования как отдельных органов, так и организма в целом.

Люди, работающие под чрезмерным электромагнитным излучением, обычно быстро утомляются, жалуются на головные боли, общую слабость, боли в области сердца. У них увеличивается потливость, повышается раздражительность, становится тревожным сон. У отдельных лиц при длительном облучении появляются судороги, наблюдается снижение памяти, отмечаются трофические явления (выпадение волос, ломкость ногтей и т. д.).

Нормы допустимого облучения устанавливаются для обеспечения безопасных условий труда обслуживающего персонала источников излучения и всех окружающих лиц.

Если облучение людей превышает указанные предельно допустимые уровни, то необходимо применять защитные средства.

Защита человека от опасного воздействия электромагнитного облучения осуществляется рядом способов, основными из которых являются: уменьшение излучения непосредственно от самого источника, экранирование источника излучения, экранирование рабочего места, поглощение электромагнитной энергии, применение индивидуальных средств защиты, организационные меры защиты.

Для реализации этих способов применяются: экраны, поглотительные материалы, аттенюаторы, эквивалентные нагрузки и индивидуальные средства.

Экраны предназначены для ослабления электромагнитного поля в направлении распространения волн. Степень ослабления зависит от конструкции экрана и параметров излучения. Существенное влияние на эффективность защиты оказывает также материал, из которого изготовлен экран.

Очень часто для экранирования применяется металлическая сетка. Экраны из сетки имеют ряд преимуществ. Они просматриваются, пропускают поток воздуха, позволяют достаточно быстро ставить и снимать экранирующие устройства.

Лазер или оптический квантовый генератор - это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.

Лазеры благодаря своим уникальным свойствам (высокая направленность луча, когерентность, монохроматичность) находят исключительно широкое применение в различных областях промышленности, науки, техники, связи, сельском хозяйстве, медицине, биологии и др.

В основу классификации лазеров положена степень опасности лазерного излучения для обслуживающего персонала. По этой классификации лазеры разделены на 4 класса:

класс 1 (безопасные) - выходное излучение не опасно для глаз;

класс II (малоопасные) - опасно для глаз прямое или зеркально отраженное излучение;

класс III (среднеопасные) - опасно для глаз прямое, зеркально, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи прямое или зеркально отраженное излучение;

класс IV (высокоопасные)- опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

В качестве ведущих критериев при оценке степени опасности генерируемого лазерного излучения приняты величина мощности (энергии), длина волны, длительность импульса и экспозиция облучения.

Предельно допустимые уровни, требования к устройству, размещению и безопасной эксплуатации лазеров регламентированы "Санитарными нормами и правилами устройства и эксплуатации лазеров" № 2392-81, которые позволяют разрабатывать мероприятия по обеспечению безопасных условий труда при работе с лазерами. Санитарные нормы и правила позволяют определить величины ПДУ для каждого режима работы, участка оптического диапазона по специальным формулам и таблицам. Нормируется энергетическая экспозиция облучаемых тканей. Для лазерного излучения видимой области спектра для глаз учитывается также и угловой размер источника излучения.

Предельно допустимые уровни облучения дифференцированы с учетом режима работы лазеров - непрерывный режим, моноимпульсный, импульсно-периодический.

В зависимости от специфики технологического процесса работа с лазерным оборудованием может сопровождаться воздействием на персонал главным образом отраженного и рассеянного излучения. Энергия излучения лазеров в биологических объектах(ткань, орган) может претерпевать различные превращения и вызывать органические изменения в облучаемых тканях (первичные эффекты) и неспецифические изменения функционального характера (вторичные эффекты), возникающие в организме в ответ на облучение.

Влияние излучения лазера на орган зрения (от небольших функциональных нарушений до полной потери зрения) зависит в основном от длины волны и локализации воздействия.

При применении лазеров большой мощности и расширении их практического использования возросла опасность случайного повреждения не только органа зрения, но и кожных покровов и даже внутренних органов с дальнейшими изменениями в центральной нервной и эндокринной системах.

Основными нормативными правовыми актами при оценке условий труда с оптическими квантовыми генераторами являются:

·                   "Санитарные нормы и правила устройства и эксплуатации лазеров" № 2392-81; методические рекомендации "Гигиена труда при работе с лазерами", утвержденные МЗ РСФСР 27.04.81 г.;

·                   ГОСТ 24713-81 "Методы измерений параметров лазерного излучения. Классификация";

·                   ГОСТ 24714-81 "Лазеры. Методы измерения параметров излучения. Общие положения";

·                   ГОСТ 12.1.040-83 "Лазерная безопасность. Общие положения";

·                   ГОСТ 12.1.031 -81 "Лазеры. Методы дозиметрического контроля ла- зерного излучения".

Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, планировочного, организационного, санитарно-гигиенического характера.

При использовании лазеров II-III классов в целях исключения облучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения. Экраны и ограждения должны изготавливаться из материалов с наименьшим коэффициентом отражения, быть огнестойкими и не выделять токсических веществ при воздействии на них лазерного излучения.

Лазеры IV класса опасности размещаются в отдельных изолированных помещениях и обеспечиваются дистанционным управлением их работой.

При размещении в одном помещении нескольких лазеров следует исключить возможность взаимного облучения операторов, работающих на различных установках. Не допускаются в помещения, где размещены лазеры, лица, не имеющие отношения к их эксплуатации. Запрещается визуальная юстировка лазеров без средств защиты.

Для удаления возможных токсических газов, паров и пыли оборудуется приточно-вытяжная вентиляция с механическим побуждением. Для защиты от шума принимаются соответствующие меры звукоизоляции установок, звукопоглощения и др.

К индивидуальным средствам защиты, обеспечивающим безопасные условия труда при работе с лазерами, относятся специальные очки, щитки, маски, обеспечивающие снижение облучения глаз до ПДУ.

Средства индивидуальной защиты применяются только в том случае, когда коллективные средства защиты не позволяют обеспечить требования санитарных правил.                                                                                  

Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 103 м (радиоволны) до 10-8 см (рентгеновские лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.

Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовым концом видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9×1014 — 3×1016 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Виды ультрафиолетового излучения

Наименование

Аббревиатура

Длина волны в нанометрах

Количество энергии на фотон

Ближний

NUV

400 нм — 300 нм

3.10 — 4.13 эВ

Средний

MUV

300 нм — 200 нм

4.13 — 6.20 эВ

Дальний

FUV

200 нм — 122 нм

6.20 — 10.2 эВ

Экстремальный

EUV, XUV

121 нм — 10 нм

10.2 — 124 эВ

Вакуумный

VUV

200 нм — 10 нм

6.20 — 124 эВ

Ультрафиолет А, длинноволновой диапазон, Чёрный свет

UVA

400 нм — 315 нм

3.10 — 3.94 эВ

Ультрафиолет B (средний диапазон)

UVB

315 нм — 280 нм

3.94 — 4.43 эВ

Ультрафиолет С, коротковолновой, гермицидный диапазон

UVC

280 нм — 100 нм

4.43 — 12.4 эВ

Чёрный свет                                                                                                                      Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении (прохождении) от некоторых материалов спектр переходит в область фиолетового видимого излучения.

Воздействие на здоровье человека                                                                 Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:
  • Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
  • УФ-B лучи (UVB, 280—315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)

Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA, и, в небольшой доле — UVB.

Положительные эффекты                                                                                    В солнечном свете 40% спектра составляет видимый свет, 50% — инфракрасное излучение и 10% — ультрафиолет. В ХХ веке было впервые показано как УФ-излучение оказывает благотворное воздействие на человека. Физиологическое действие Уф-лучей было исследовано отечественными и зарубежными исследователями в середине прошлого столетия (Г. Варшавер. Г. Франк. Н. Данциг, Н. Галанин. Н. Каплун, А. Парфенов, Е. Беликова. В. Dugger. J. Hassesser. Н. Ronge, Е. Biekford и др.). Общеизвестно, что именно УФ-лучи инициируют процесс образования витамина Д, который необходим для усвоения организмом кальция и обеспечения нормального развития костного скелета. Кроме того, ультрафиолет активно влияет на синтез гормонов, отвечающих за суточный биологический ритм. Исследования показали, что при облучении УФ-лучами сыворотки крови в ней на 7 % увеличивалось содержание серотонина — «гормона бодрости», участвующего в регуляции эмоционального состояния. Его дефицит может приводить к депрессии, колебаниям настроения. При этом количество мелатонина, обладающего тормозящим действием на эндокринную и центральную нервную системы, снижалось на 28%. Еще один аспект положительного влияния УФ-лучей на организм - их бактерицидная функция.  Было убедительно доказано в сотнях экспериментов, что излучение в УФ области спектра (290—400 нм) повышает тонус симпатико-адреналиновой системы, активирует защитные механизмы, повышает уровень неспецифического иммунитета, а также увеличивает секрецию ряда гормонов. Под воздействием УФ излучения (УФИ) образуются гистамин и подобные ему вещества, которые обладают сосудорасширяющим действием, повышают проницаемость кожных сосудов. Изменяется углеводный и белковый обмен веществ в организме. Действие оптического излучения изменяет легочную вентиляцию — частоту и ритм дыхания; повышается газообмен, потребление кислорода, активизируется деятельность эндокринной системы. Особо следует отметить, что длительная недостаточность УФИ может иметь неблагоприятные последствия для человеческого организма, называемые «световым голоданием». Наиболее частым проявлением этого заболевания является нарушение минерального обмена веществ, снижение иммунитета, быстрая утомляемость и т. п.

Действие на кожу                                                                                             Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар) приводит к ожогам.  Длительное действие ультрафиолета способствует развитию меланомы, различных видов рака кожи, ускоряет старение и появление морщин. При контролируемом воздействии на кожу ультрафиолетовых лучей, одним из основных положительных факторов считается образование на коже витамина D, при условии, что на ней сохраняется естественная жировая пленка. Жир кожного сала, находящийся на поверхности кожи, подвергается воздействию ультрафиолета и затем снова впитывается в кожу. Но если смыть кожный жир перед тем, как выйти на солнечный свет, витамин D не сможет образоваться. Если принять ванну сразу же после пребывания на солнце и смыть жир, то витамин D может не успеть впитаться в кожу.

Действие на сетчатку глаза                                                                        Ультрафиолетовое излучение неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки). Так, 1 августа 2008 года десятки россиян повредили сетчатку глаза во время солнечного затмения, несмотря на многочисленные предупреждения о вреде его наблюдения без защиты глаз. Они жаловались на резкое снижение зрения и пятно перед глазами.                                         Тем не менее, ультрафиолет чрезвычайно нужен для глаз человека, о чем свидетельствуют большинство офтальмологов. Солнечный свет оказывает расслабляющее воздействие на окологлазные мускулы, стимулирует радужную оболочку и нервы глаз, увеличивает циркуляцию крови. Регулярно укрепляя с помощью солнечных ванн нервы сетчатки, вы избавитесь от болезненных ощущений в глазах, возникающих при интенсивном солнечном свете.                                                                                                                      Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.                                                                                                 Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей (обратите внимание на маркировку упаковки).

Негативное

Существует ряд эффектов, возникающих при воздействии УФ-излучения на организм человека, которые могут приводить к ряду серьезных структурных и функциональных повреждений. Как известно, эти повреждения можно разделить на:

·                   вызванные большой дозой облучения, полученной за короткое время (например, солнечный ожог). Они происходят преимущественно за счет лучей UVB, энергия которых многократно превосходит энергию лучей UVA.

·                   вызванные длительным облучением умеренными дозами. Они возникают преимущественно за счет лучей спектра UVA, которые несут меньшую энергию, но способны глубже проникать в кожу, и их интенсивность мало меняется в течение дня и практически не зависит от времени года.

Жесткое ультрафиолетовое излучение могло быть именно тем фактором, который заставил первые органические молекулы соединяться вместе для создания РНК - рибонуклеиновой кислоты, которая считается основой жизни. Но, не будь озонного слоя, все живое на земле исчезло бы под действием солнечной радиации, в составкоторой входит и УФ- излучение.

Заключение

Электромагнитные поля - это особая форма существования материи, характеризующаяся совокупностью электрических и магнитных свойств. Основными параметрами, характеризующими электромагнитное поле, являются: частота, длина волны и скорость распространения.

Степень биологического воздействия электромагнитных полей на организм человека зависит от частоты колебаний, напряженности и интенсивности поля, режима его генерации (импульсное, непрерывное), длительности воздействия. Биологическое воздействие полей разных диапазонов неодинаково. Чем короче длина волны, тем большей энергией она обладает.

Люди, работающие под чрезмерным электромагнитным излучением, обычно быстро утомляются, жалуются на головные боли, общую слабость, боли в области сердца. У них увеличивается потливость, повышается раздражительность, становится тревожным сон. У отдельных лиц при длительном облучении появляются судороги, наблюдается снижение памяти, отмечаются трофические явления (выпадение волос, ломкость ногтей и т. д.).

Если облучение людей превышает указанные предельно допустимые уровни, то необходимо применять защитные средства.

Защита человека от опасного воздействия электромагнитного облучения осуществляется рядом способов, основными из которых являются: уменьшение излучения непосредственно от самого источника, экранирование источника излучения, экранирование рабочего места, поглощение электромагнитной энергии, применение индивидуальных средств защиты, организационные меры защиты.


Ионизирующие излучения и защита от них. Нормы радиационной безопасности (НРБ-99).

С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана. Нет необходимости говорить о том положительном, что внесло в нашу жизнь проникновение в структуру ядра, высвобождение таившихся там сил. Но как всякое сильнодействующее средство, особенно такого масштаба, радиоактивность внесла в среду обитания человека вклад, который к благотворным никак не отнесёшь. Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.

Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами органолептически: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления. Такими опасными элементами, в которых соотношение числа протонов и нейтронов превышает 1…1,6, т.е. Р > 1…1,6. В настоящее время из всех элементов таблицы Д.И. Менделеева известно более 1500 изотопов. Из этого количества изотопов лишь около 300 стабильных и около 90 являются естественными радиоактивными элементами. Продукты ядерного взрыва содержат более 100 нестабильных первичных изотопов.

Большое количество радиоактивных изотопов содержится в продуктах деления ядерного горючего в ядерных реакторах АЭС. Таким образом, источниками ионизирующего излучения являются  искусственные радиоактивные вещества, изготовленные на их основе медицинские и научные препараты, продукты ядерных взрывов при применении ядерного оружия, отходы атомных электростанций при авариях на них.

Ионизирующее излучение — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим.

Природа ионизирующего излучения
                                       
Наиболее значимы следующие типы ионизирующего излучения: коротковолновое электромагнитное излучение (рентгеновское и гамма-излучения), потоки заряженных частиц: бета-частиц (электронов и позитронов), альфа-частиц (ядер атома гелия-4), протонов, других ионов, мюонов и др., а также нейтронов.

Источники ионизирующего излучения                                                             В природе ионизирующее излучение обычно генерируется в результате спонтанного радиоактивного распада радионуклидов, ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.), а также при ускорении заряженных частиц в космосе (природа такого ускорения космических частиц до конца не ясна). Искусственными источниками ионизирующего излучения являются искусственные радионуклиды (генерируют альфа-, бета- и гамма-излучения), ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение), радионуклидные нейтронные источники, ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновские аппараты (генерируют тормозное рентгеновское излучение).

Применение ионизирующих излучений                                            Ионизирующие излучения применяются в различных отраслях тяжёлой (интроскопия) и пищевой (стерилизация медицинских инструментов, расходных материалов и продуктов питания) промышленности, а также в медицине (лучевая терапия, ПЭТ-томография).

Для лечения опухолей используют тяжёлые ядерные частицы такие как протоны, тяжёлые ионы, отрицательные π-мезоны и нейтроны разных энергий. Создаваемые на ускорителях пучки тяжёлых заряженных частиц имеют малое боковое рассеяние, что дает возможность формировать дозные поля с чётким контуром по границам опухоли.

Физические свойства ионизирующих излученийhttp://upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Alfa_beta_gamma_radiation.svg/280px-Alfa_beta_gamma_radiation.svg.png  
Альфа-излучение
представляет собой поток альфа-частиц — ядер гелия-4. Альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги.                   Бета-излучение — это поток электронов, возникающих при бета-распаде; для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной несколько мм. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом; для защиты эффективны тяжёлые элементы (свинец и т.д.), поглощающие МэВ-ные фотоны в слое толщиной несколько см. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

По механизму взаимодействия с веществом выделяют непосредственно потоки заряженных частиц и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц — фотонов и нейтронов). По механизму образования — первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение.

Энергия частиц ионизирующего излучения лежит в диапазоне от нескольких сотен электрон-вольт (рентгеновское излучение, бета-излучение некоторых радионуклидов) до 1015 — 1020 и выше электрон-вольт (протоны космического излучения, для которых не обнаружено верхнего предела по энергии).

В зависимости от типа частиц и их энергии сильно различаются длина пробега и проникающая способность ионизирующего излучения — от долей миллиметра в конденсированной среде (альфа-излучение радионуклидов, осколки деления) до многих километров (высокоэнергетические мюоны космических лучей).

Важными показателями взаимодействия ионизирующего излучения с веществом служат такие величины, как линейная передача энергии (ЛПЭ), показывающая, какую энергию излучение передаёт среде на единице длины пробега при единичной плотности вещества, а также поглощённая доза излучения, показывающая, какая энергия излучения поглощается в единице массы вещества. В Международной системе единиц (СИ) единицей поглощённой дозы является грэй (Гр), численно равный отношению 1 Дж к 1 кг. Ранее широко применялась также экспозиционная доза излучения — величина, показывающая, какой заряд создаёт фотонное (гамма- или рентгеновское) излучение в единице объёма воздуха. Наиболее часто применяющейся единицей экспозиционной дозы был рентген (Р), численно равный 1 СГСЭ-единицы заряда к 1 см³ воздуха.

Биологическое действие ионизирующих излучений                            Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

Из-за того, что разные типы ионизирующего излучения обладают разной ЛПЭ, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятия относительной биологической эффективности (коэффициента качества) излучения по отношению к излучению с низкой ЛПЭ (коэффициент качества фотонного и электронного излучения принимают за единицу) и эквивалентной дозы ионизирующего излучения, численно равной произведению поглощённой дозы на коэффициент качества.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело. В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации).

Радиационная опасность для населения и всей окружающей среды связана с появлением ионизирующих излучений (ИИ), источником которых являются искусственные радиоактивные химические элементы (радионуклиды), которые образуются в ядерных реакторах или при ЯВ. Радионуклиды могут попадать в окружающую среду в результате аварий на радиационно-опасных объектах (АЭС и др. объектах ядерного топливного цикла – ЯТЦ), усиливая радиационный фон земли. Ионизирующими излучениями называют излучения, которые прямо или косвенно способны ионизировать среду (создавать раздельные электрические заряды)

При авариях реакторов образуются a+,b± частицы и g-излучение. При ЯВ дополнительно образуются нейтроны -n°. Рентгеновское и g-излучение обладают высокой проникающей и достаточно ионизирующей способностью (g в воздухе может распространяться до 100м и косвенно создать 2-3 пары ионов за счёт фотоэффекта на 1 см пути в воздухе). Они представляют собой основную опасность как источники внешнего облучения. Для ослабления g-излучения требуются значительные толщи материалов.
Бета - частицы (электроны b - и позитроны b+ ) краткобежны в воздухе (до 3,8м/МэВ), а в биоткани – до несколько миллиметров. Их ионизирующая способность в воздухе 100-300 пар ионов на 1 см пути. Эти частицы могут действовать на кожу дистанционно и контактным путём (при загрязнении одежды и тела), вызывая «лучевые ожоги». Опасны при попадании внутрь организма. Альфа – частицы (ядра гелия) a+ краткобежны в воздухе (до 11 см), в биоткани до 0,1 мм. Они обладают большой ионизирующей способностью (до 65000 пар ионов на 1 см пути в воздухе) и особо опасны при попадании внутрь организма с воздухом и пищей. Облучение внутренних органов значительно опаснее наружного облучения. Заметим, что ионизирующая способность альфа и бета – частиц будет во многом зависеть от энергии, с которой они покидают «материнское» («дочернее») ядро. Проходя через среду (биологическую ткань) ИИ ионизируют ее, что приводит к физико-химическим или биологическим изменениям свойств среды (ткани). При ионизации организма нарушаются обменные процессы, нормальное функционирование нервной, эндокринной, иммунной, дыхательной, сердечно-сосудистой и др. систем, в результате чего люди (животные) заболевают. Элементы технических устройств, особенно радиоэлектронной аппаратуры, при ионизации теряют или изменяют свои свойства и параметры, а при сильном облучении могут выйти из строя. Короче говоря, все живое и «неживое» не терпит излишнего облучения. Последствия облучения для людей могут быть самыми различными. Они во многом определяются величиной дозы облучения и временем её накопления.


До́за излуче́ния — в физике и радиобиологии — величина, используемая для оценки воздействия ионизирующего излучения на любые вещества, ткани и живые организмы.

Экспозиционная доза                                                                                        Основная характеристика взаимодействия ИИ и среды — это ионизационный эффект. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза. В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица — рентген (Р).         1 Кл/кг = 3880 Р

Поглощенная доза                                                                                                  Процесс, дающий начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ИИ веществом. В результате этого возникло понятие поглощенная доза. За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр).       1 Гр — это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр=100 рад.

Эквивалентная доза                                                                                            Различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент — коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества.

Коэффициент относительной биологической эффективности для различных видов излучений

Вид излучения

Коэффициент , Зв/Гр

Рентгеновское и γ-излучение

1

β-излучение(электроны, позитроны)

1

Нейтроны с энергией меньше 20 кэВ

3

Нейтроны с энергией 0,1-10 МэВ

10

Протоны с энергией меньше 10 МэВ

10

α-излучение с энергией меньше 10 МэВ

20

Тяжелые ядра отдачи

20

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (до 1963 года - биологический эквивалент рентгена, после 1963 года - биологический эквивалент рада – Энциклопед. словарь). 1 Зв = 100 бэр.

Эффективная доза                                                                                            Эффективная доза (E) — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты, например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска. Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма.                                                  Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Фиксированная эффективная эквивалентная доза (CEDE — the committed effective dose equivalent)- это оценка доз радиации на человека, в результате ингаляции или употребления некоторого количества радиоактивного вещества. СЕDЕ выражается в бэрах или зивертах (Зв) и учитывает радиочувствительность различных органов и время, в течение которого вещество остается в организме (вплоть до всей жизни).

Эффективная и эквивалентная дозы - это нормируемые величины, т. е.величины, являющиеся мерой ущерба (вреда) от воздействия ИИ на человека и его потомков. К сожалению, они не могут быть непосредственно измерены. Поэтому в практику введены операционные дозиметрические величины, однозначно определяемые через физические характеристики поля излучения в точке, максимально возможно приближенные к нормируемым. Основной операционной величиной является амбиентный эквивалент дозы. Амбиентный эквивалент дозы Н*(d) - эквивалент дозы, который был создан в шаровом фантоме МКРЕ (международной комиссии по радиационным единицам) на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном, т. е. амбиентный эквивалент дозы Н*(d) - это доза, которую получил бы человек, если бы он находился на месте, где проводится измерение. Единица амбиентного эквивалента дозы - зиверт (Зв).

Групповые дозы                                                                                              Подсчитав индивидуальные эффективные дозы, полученные отдельными людьми, можно прийти к коллективной дозе — сумме индивидуальных эффективных доз в данной группе людей за данный промежуток времени. Единицей измерения коллективной дозы является человеко-зиверт (чел.-Зв.), внесистемная единица — человеко-бэр (чел.-бэр).
Кроме того, выделяют следующие дозы:


·                     коммитментная;

·                     коллективная;

·                     пороговая;

·                     предельно допустимые дозы (ПДД);

·                     предотвращаемая;

·                     удваивающая;

·                     биологическая доза гамма-нейтронного излучения;

·                     минимально летальная.

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощенной, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например, Зв/час, бэр/мин, сЗв/год и др.).

Последствия облучения людей.

Радиационные эффекты облучения Телесные (соматические). Воздействуют на облучаемого. Имеют дозовый порог.

Вероятностные телесные (соматические-стохастические). Условно не имеют дозового порога.  

 Гинетические. Условно не имеют дозового порога.
Острая лучевая болезнь. Сокращение продолжительности жизни. Доминантные генные мутации. Хроническая лучевая болезнь. Лейкозы (скрытый период 7-12 лет). Рецессивные генные мутации. Локальные лучевые повреждения. Опухоли разных органов (скрытый период до 25 лет и более). Хромосомные абберации. Чтобы избежать ужасных последствий ИИ, необходимо производить строгий контроль служб радиационной безопасности с применением приборов и  различных методик. Для принятия мер защиты от воздействия ИИ их необходимо своевременно обнаружить и количественно оценить. Воздействуя на различные среды ИИ вызывают в них определенные физико-химические изменения, которые можно зарегистрировать.


На этом основаны различные методы обнаружения ИИ. К основным относятся:

·                   ионизационный, в котором используется эффект ионизации газовой среды, вызываемой воздействием на неё ИИ, и как следствме – изменение ее электропроводности;

·                   сцинтилляционный, заключающийся в том, что в некоторых веществах под воздействием ИИ образуются вспышки света, регистрируемые непосредственным наблюдением или с помощью фотоумножителей;

·                   химический, в котором ИИ обнаруживаются с помощью химических реакций, изменения кислотности и проводимости, происходящих при облучении жидкостных химических систем;

·                   фотографический, заключающийся в том, что при воздействии ИИ на фотопленку на ней в фотослое происходит выделение зерен серебра вдоль траектории частиц.

·                   метод, основанный на проводимости кристаллов, т.е. когда под воздействием ИИ возникает ток в кристаллах, изготовленных из диэлектрических материалов и изменяется проводимость кристаллов из полупроводников и др.

Пострадиационное восстановление                                                  
Восстановление от облучения
 — восстановление исходной структуры или жизнеспособности клетки, ткани, органа, системы органов, организма после облучения.                                                                                                  Восстановление ДНК — репарация.                                                 Восстановление организма — пролиферация тканей критических органов за счёт сохранивших жизнеспособность стволовых клеток костного мозга и кишечника.

Радиационная безопасность — состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения.                                                                         Основные принципы обеспечения радиационной безопасности   Радиационная безопасность персонала, населения и окружающей природной среды считается обеспеченной, если соблюдаются основные принципы радиационной безопасности (обоснование, оптимизация, нормирование) и требования радиационной защиты, установленные Федеральными законами РФ, действующими нормами радиационной безопасности и санитарными правилами.

·                     Принцип обоснования — запрещение всех видов деятельности по использованию источников излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного облучением.

·                     Принцип оптимизации предусматривает поддержание на возможно низком и достижимом уровне как индивидуальных (ниже пределов, установленных действующими нормами), так и коллективных доз облучения, с учетом социальных и экономических факторов. Также известен, в том числе в международной практике как принцип ALARA(ALARP).

·                     Принцип нормирования, требующий непревышения установленных Федеральными законами РФ и действующими нормами РБ индивидуальных пределов доз и других нормативов РБ, должен соблюдаться всеми организациями и лицами, от которых зависит уровень облучения людей.

Пути обеспечения радиационной безопасности                                 Радиационная безопасность на объекте и вокруг него обеспечивается за счет:

·                     качества проекта радиационного объекта;

·                     обоснованного выбора района и площадки для размещения радиационного объекта;

·                     физической защиты источников излучения;

·                     зонирования территории вокруг наиболее опасных объектов и внутри них;

·                     условий эксплуатации технологических систем;

·                     санитарно-эпидемиологической оценки и лицензирования деятельности с источниками излучения;

·                     санитарно-эпидемиологической оценки изделий и технологий;

·                     наличия системы радиационного контроля;

·                     планирования и проведения мероприятий по обеспечению радиационной безопасности персонала и населения при нормальной работе объекта, его реконструкции и выводе из эксплуатации;

·                     повышения радиационно-гигиенической грамотности персонала и населения.

Радиационная безопасность персонала обеспечивается:

·                     ограничениями допуска к работе с источниками излучения по возрасту, полу, состоянию здоровья, уровню предыдущего облучения и др.показ.;

·                     знанием и соблюдением правил работы с источниками излучения;

·                     достаточностью защитных барьеров, экранов и расстояния от источников излучения, а также ограничением времени работы с источниками излучения;

·                     созданием условий труда, отвечающих требованиям действующих норм и правил РБ;

·                     применением индивидуальных средств защиты;

·                     соблюдением установленных контрольных уровней;

·                     организацией радиационного контроля;

·                     организацией системы информации о радиационной обстановке;

·                     проведением эффективных мероприятий по защите персонала при планировании повышенного облучения в случае угрозы и возникновении аварии.

Радиационная безопасность населения обеспечивается:

·                     созданием условий жизнедеятельности людей, отвечающих требованиям действующих норм и правил РБ;

·                     установлением квот на облучение от разных источников излучения;

·                     организацией радиационного контроля;

·                     эффективностью планирования и проведения мероприятии по радиационной защите в нормальных условиях и в случае радиационной аварии;

·                     организацией системы информации о радиационной обстановке.

Виды защиты от ионизирующего излучения

·                     химическая

·                     физическая: применение различных экранов, ослабляющих материалов и т. п.

·                     биологическая: представляет собой комплекс репарирующих энзимов и др.

Химическая защита от ионизирующего излучения — это ослабление результата воздействия излучения на организм при условии введения в него химических веществ, называемых радиопротекторами.

Основные свойства радиопротекторов

·                     Действие при однократном кратковременном облучении

·                     Эффективность при введении до облучения

·                     Узкое терапевтическое действие

·                     Применение в токсических или субтоксических дозах

·                     Эффективность при внутривенном введении

·                     Вызывание сильных физиологических и биохимических сдвигов в организме.

Действующие в России правила и нормы

·                     Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ 99/2010);

·                     Санитарные правила проектирования и эксплуатации атомных станций (СП АС-2003);

·                     Правила радиационной безопасности при эксплуатации атомных станций (ПРБ АС-99);

·                     Нормы радиационной безопасности (НРБ-99/2009).

·                     Федеральный закон «О санитарно-эпидемиологическом благополучии населения»

Нормы радиационной безопасности (НРБ) представляют собой основополагающий документ в системе государственного регулирования, в котором регламентируются основные дозовые пределы, допустимые уровни воздействия ионизирующего излучения и другие требования по ограничению облучения человека. НРБ в концентрированном виде отражают в определенный исторический период времени научные представления о действии ионизирующего излучения на человека, цели и принципы радиационной защиты, основные дозиметрические и радиометрические величины, используемые в системе ограничения облучения профессиональных работников и населения от различных видов радиационного воздействия.                                                                                    На начальном этапе развития знаний в области радиобиологии человека существовала уверенность в том, что если индивидуальная доза не превысит определенного порогового уровня, то вреда здоровью человека нанесено не будет. Это убеждение основывалось на наблюдениях детерминированных эффектов при достаточно больших дозах рентгеновского излучения или излучения радиоактивных веществ, которые вызывали явные повреждения биологической ткани. Исходя из этого, ранние системы радиационной защиты были направлены на поддержание доз у ограниченного круга специалистов, непосредственно контактирующих с источниками ионизирующих излучений ниже предельно допустимых, которые не приводили бы к проявлению детерминированных эффектов. До 1956 г. основная допустимая недельная доза составляла 0,3 бэр. Если человек подвергается профессиональному облучению такой мощности дозы в течение 50 лет (50 недель в году), то допустимая суммарная доза составит 750 бэр (7,5 Зв) в наиболее важных органах человека и по существу во всем теле.                                                                                                              Основанием для пересмотра первоначальной системы радиационной безопасности послужили новые научные знания, — выяснилось, что существуют и другие последствия для здоровья человека — стохастические, являющиеся, возможно, беспороговыми.

Признание того, что не существует абсолютно безопасного уровня радиации, привело к формулировке принципа ограничения облучения настолько, насколько это разумно возможно.                                                            Гигиеническое нормирование ионизирующих излучений                

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь — 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

Доза Эффект Грей Рад 50 5000 Пороговая доза поражения центральной нервной системы («электронная смерть») 6,0 600 Минимальная абсолютно-смертельная доза 4,0 400 Средне-смертельная доза (доза 50% выживания) 1,5 150 Доза возникновения первичной лучевой реакции (в зависимости от дозы облучения различают четыре степени острой лучевой болезни: 100-200 рад – 1ст., 200-400 рад – 2 ст., 400-600 рад – 3 ст., свыше 600 рад – 4ст.) 1,0 100 Порог клинических эффектов 0,1 10 Уровень удвоения генных мутаций Основные положения НРБ-99 сводятся к следующим.
1. Требования НРБ-99 распространяются на следующие виды воздействия ИИ на человека:


а) облучение персонала и населения в условиях радиационной аварии;

б) облучение персонала и населения в условиях нормальной эксплуатации техногенных источников ИИ;

в) облучение работников предприятий и населения природными источниками ИИ;

г) медицинское облучение населения. Требования НРБ сформулированы для каждого вида облучения. 

2. Требования НРБ не распространяются на источники ИИ, создающие годовую эффективную дозу не более 10 мкЗв (1 мбэр) и коллективную годовую дозу не более 1 чел - Зв при любых условиях их использования, а также на космическое излучение на поверхности земли и облучение, создаваемое содержащимися в организме человека калием-40, на которые практически невозможно влиять. Освобождаются автоматически от регламентации следующие источники: генераторы излучений, разрешённые органами Госсанэпиднадзора без радиационного контроля; генераторы, мощность которых в условиях нормальной эксплуатации создаёт мощность эквивалентной дозы в любой точке на расстоянии 0,1 м от любой доступной поверхности аппаратуры не превышает 1,0мкЗв/ч (0,1 мбэр/ч); генераторы излучения, максимальная энергия которых не превышает 5 кэВ; радиоактивные вещества, удельная или суммарная активность которых меньше установленных норм (приводятся в специальном приложении НРБ). 3. Устанавливаются ряд терминов и определений.

4. Установлен нижний предел радиоактивного загрязнения. Под ним понимается присутствие РВ техногенного происхождения на поверхности или внутри материала или тела человека, в воздухе или в др. месте, которые  может привести к облучению в индивидуальной дозе более 10 мкЗв/год (1 мбэр/год).

5. Установлены следующие категории облучаемых лиц:

а) персонал (лица, работающие с техногенными источниками – группа А, или находящиеся по условиям работы в сфере их воздействия – группа Б);

б) всё население, включая лиц из персонала вне сферы и условий их производственной деятельности.

Для всех категорий облучаемых лиц устанавливаются три класса нормативов:

а) основные дозовые пределы;

б) допустимые уровни монофакторного (для одного радионуклида или одного вида внешнего излучения, пути поступления) воздействия, являющиеся производными от основных дозовых пределов: пределы годового поступления, допустимые среднегодовые объёмные активности ДОА) и удельные активности ДУА) и т.д. Причём в практике дозиметрических измерений могут также широко использоваться: - Эффективная - коллективная, полувековая и другие дозы; - Десятичные кратные и дольные части указанных единиц – дека, гекто, кило, мега, деци, санти, милли, микро и другие; - Активность – удельная (Бк/кг), объёмная (мкКи/литр), поверхностная (мкКи/см2) или Ки/км2 и другие.

6. Ограничение облучения для населения: - от техногенных источников - не должно превышать основных дозовых пределов - 1мЗв/год; - при проектировании новых зданий жилищного и общественного назначения должно быть предусмотрено, чтобы среднегодовая эквивалентная объёмная активность изотопов радона и торона в воздухе помещений А Rnэкв +Tnэкв не превышала 100 Бк/м3, а мощность дозы  g-изл. не превышала мощности дозы на открытой местности более чем на 0,3мкЗв/ч. При больших значениях должны проводиться различные защитные мероприятия. Если же показатели превышают нормативы, то ставится вопрос о переселении жильцов (с их согласия) и перепрофилировании помещений или их сносе; - удельная эффективная активность (Аэфф) естественных р/н в строительных материалах (щебень, гравий, песок) не должна превышать: 370 Бк/кг – для жилых и общественных зданий 1 класса; 740 Бк/кг – для материалов, используемых в дорожном строительстве в пределах населённых пунктов и сооружений 2класса; 2,8 КБк/кг - для материалов, используемых в дорожном строительстве вне населённых пунктов – 3 класса; - эффектная доза за счет естественных р/н в питьевой воде не должна превышать 0,2 мЗв; - при радиационных авариях доза облучения на все тело не должна превышать 1 Гр (100 рад) за 2-е суток. При превышении этой дозы необходимы срочное вмешательство и меры защиты.

Радиационный контроль является важнейшей частью обеспечения радиационной безопасности, начиная со стадии проектирования радиационно-опасных объектов. Он имеет целью определение степени соблюдения принципов радиационной безопасности и требований нормативов, включая непревышение установленных основных пределов доз и допустимых уровней при нормальной работе, получение необходимой информации для оптимизации защиты и принятия решений о вмешательстве в случае радиационных аварий, загрязнения местности и зданий радионуклидами, а также на территориях и в зданиях с повышенным уровнем природного облучения. Радиационный контроль осуществляется за всеми источниками излучения.

Радиационному контролю подлежат: - радиационные характеристики источников излучения, выбросов в атмосферу,  жидких и твердых радиоактивных отходов; - радиационные факторы, создаваемые технологическим процессом на рабочих местах и в окружающей среде; - радиационные факторы на загрязненных территориях и в зданиях с повышенным уровнем природного облучения; - уровни облучения персонала и населения от всех источников излучения, на которые распространяется действие настоящих Норм. Основными контролируемыми параметрами являются: - годовая эффективная и эквивалентная дозы; - поступление радионуклидов в организм и их содержание в организме для оценки годового поступления; - объёмная или удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных материалов; - радиоактивное загрязнение кожных покровов, одежды, обуви, рабочих поверхностей. Поэтому, администрация организации может вводить дополнительные, более жесткие числовые значения контролируемых параметров – административные уровни. Причём государственный надзор за выполнением Норм радиационной безопасности осуществляют органы Госсанэпиднадзора и другие органы, уполномоченные Правительством Российской Федерации в соответствии с действующими нормативными актами. Контроль за соблюдением Норм в организациях, независимо от форм собственности, возлагается на администрацию этой организации.
Контроль за облучением населения возлагается на органы исполнительной власти субъектов Российской Федерации. Контроль за медицинским облучением пациентов возлагается на администрацию органов и учреждений здравоохранения



Список литературы

1.                 Экология и безопасность жизнедеятельности: учеб. пособие для вузов/ Д.А.Кривошеин, Л.А.Муравей, Н.Н.Роева и др.; Под ред. Л.А.Муравья. – М.: ЮНИТИ-ДАНА, 2002. – 447с.

2.                 Т.А.Хван, П.А.Хван. Основы экологии. Серия "Учебники и учебные пособия". Ростов н/Д: "Феникс", 2003. – 256с.

3.                 А. Г. Молчанов Лазеры в вакуумной ультрафиолетовой и рентгеновской областях спектра // УФН. — 1972. — Т. 106. — С. 165—173.

4.                 Ультрафиолетовый лазер // Научная сеть nature.web.ru

5.                 http://ru.wikipedia.org/wiki/Ультрафиолетовое излучение

6.                 «Радиобиология человека и животных», С. П. Ярмоненко, А. А. Вайнсон, 2004 г.

7.                 http://ru.wikipedia.org/wiki/Ионизация | Радиобиология | Охрана труда | Радиационная безопасность

8.                 М. Н. Савкин  (Государственный научный центр «Институт биофизики»), И. И. Линге  (ИБРАЭ РАН)

9.                 В.Е. Анофриков, С.А. Бобок, М.Н. Дудко, Г.Д. Елистратов Безопасность жизнедеятельности: Учебное пособие – М., 1999.

10.            Нормы радиационной безопасности (НРБ-99). Минздрав России, 1999.

11.            Основы защиты населения и территории в чрезвычайных ситуациях/ Под ред. В.В. Тарасова – М.:МГУ, 1998.

12.            В.М. Пряхин, В.Я. Попов Защиты населения и территорий в чрезвычайных ситуациях – М., 1997.

13.            В.И. Юртушкин, М.Н. Дудко Безопасность в ЧС – М., 2000.



1. Диплом на тему Маркетинговая деятельность на предприятии
2. Контрольная работа на тему Культура речи 5
3. Реферат Принципы составления коммерческой переписки
4. Кодекс и Законы Происхождение государства и права 4
5. Кодекс и Законы Аудит финансовой отчетности 3
6. Диплом Перевод на природный газ котла ДКВР 2013 котельной Речицкого пивзавода
7. Реферат на тему Antigone Essay Research Paper Antigone1 Biography Sophocles
8. Курсовая Рецидив преступлений уголовно-правовое значение и последствия
9. Биография Яаа Асантева
10. Контрольная работа на тему Состав строительных материалов