Реферат на тему Математическая теория информации
Работа добавлена на сайт bukvasha.net: 2015-01-09Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
МАТЕМАТИЧЕСКАЯ ТЕОРИЯ ИНФОРМАЦИИ
1. Количество информации, и ее мера
На вход системы передачи информации (СПИ) от источника информации подается совокупность сообщений, выбранных из ансамбля сообщений (рис. 1).
Помехи

x1 y1
x2 y2
… …
xn yn
Рис. 1. Система передачи информации
Ансамбль сообщений – множество возможных сообщений с их вероятностными характеристиками – {Х, р(х)}. При этом: Х={х1, х2,…, хm} – множество возможных сообщений источника; i = 1, 2,…, m, где m – объем алфавита; p(xi) – вероятности появления сообщений, причем p(xi) ³ 0 и поскольку вероятности сообщений представляют собой полную группу событий, то их суммарная вероятность равна единице

.
Каждое сообщение несет в себе определенное количество информации. Определим количество информации, содержащееся в сообщении xi, выбранном из ансамбля сообщений источника {Х, р(х)}. Одним из параметров, характеризующих данное сообщение, является вероятность его появления – p(xi), поэтому естественно предположить, что количество информации I(xi) в сообщении xi является функцией p(xi). Вероятность появления двух независимых сообщений x1 и x2 равна произведению вероятностей p(x1, x2) = p(x1).p(x2), а содержащаяся в них информация должна обладать свойством аддитивности, т.е.:
I(x1, x2) = I(x1)+I(x2). (1)
Поэтому для оценки количества информации предложена логарифмическая мера:

. (2)
При этом наибольшее количество информации содержат наименее вероятные сообщения, а количество информации в сообщении о достоверном событии равно нулю. Т. к. все логарифмы пропорциональны, то выбор основания определяет единицу информации: logax = logbx/logba.
В зависимости от основания логарифма используют следующие единицы информации:
2 – [бит] (bynary digit – двоичная единица), используется при анализе ин-формационных процессов в ЭВМ и др. устройствах, функционирующих на основе двоичной системы счисления;
e – [нит] (natural digit – натуральная единица), используется в математических методах теории связи;
10 – [дит] (decimal digit – десятичная единица), используется при анализе процессов в приборах работающих с десятичной системой счисления.
Битом (двоичной единицей информации) – называется количество информации, которое снимает неопределенность в отношении наступления одного из двух равновероятных, независимых событий.
Среднее количество информации для всей совокупности сообщений можно получить путем усреднения по всем событиям:

. (3)
Количество информации, в сообщении, состоящем из n не равновероятных его элементов равно (эта мера предложена в 1948 г. К. Шенноном):

. (4)
Для случая независимых равновероятных событий количество информации определяется (эта мера предложена в 1928 г. Р. Хартли):

. (5)
2. Свойства количества информации
1. Количество информации в сообщении обратно – пропорционально вероятности появления данного сообщения.
2. Свойство аддитивности – суммарное количество информации двух источников равно сумме информации источников.
3. Для события с одним исходом количество информации равно нулю.
4. Количество информации в дискретном сообщении растет в зависимости от увеличения объема алфавита – m.
Пример 1. Определить количество информации в сообщении из 8 двоичных символов (n =8, m = 2), если вероятности равны: pi0 = pi1 = 1/2.
Количество информации равно:
I = n log m = 8 log2 2 = 8 бит.
Пример 2. Определить количество информации в сообщении из 8 двоичных символов (n =8, m = 2), если вероятности равны:
pi0 = 3/4; pi1 = 1/4.
Количество информации равно:

3. Энтропия информации
Энтропия – содержательность, мера неопределенности информации.
Энтропия – математическое ожидание H(x) случайной величины I(x) определенной на ансамбле {Х, р(х)}, т.е. она характеризует среднее значение количества информации, приходящееся на один символ.

. (6)
Определим максимальное значение энтропии Hmax(x). Воспользуемся методом неопределенного множителя Лагранжа -l для отыскания условного экстремума функции [6]. Находим вспомогательную функцию:

(7)
Представим вспомогательную функцию F в виде:

. (8)
Найдем максимум этой функции

т. к.

.
Как видно из выражения, величина вероятности pi не зависит от i, а это может быть в случае, если все pi равны, т.е. p1 =p2 =…=pm =1/m.
При этом выражение для энтропии равновероятных, независимых элементов равно:

. (9)
Найдем энтропию системы двух альтернативных событий с вероятностями p1 и p2. Энтропия равна

4. Свойства энтропии сообщений
1. Энтропия есть величина вещественная, ограниченная, не отрицательная, непрерывная на интервале 0 £ p £ 1.
2. Энтропия максимальна для равновероятных событий.
3. Энтропия для детерминированных событий равна нулю.
4. Энтропия системы двух альтернативных событий изменяется от 0 до 1.
Энтропия численно совпадает со средним количеством информации но принципиально различны, так как:
H(x) – выражает среднюю неопределенность состояния источника и является его объективной характеристикой, она может быть вычислена априорно, т.е. до получения сообщения при наличии статистики сообщений.
I(x) – определяется апостериорно, т.е. после получения сообщения. С получением информации о состоянии системы энтропия снижается.
5. Избыточность сообщений
Одной из информационных характеристик источника дискретных сообщений является избыточность, которая определяет, какая доля максимально-возможной энтропии не используется источником

, (10)
где ? – коэффициент сжатия.
Избыточность приводит к увеличению времени передачи сообщений, уменьшению скорости передачи информации, излишней загрузки канала, вместе с тем, избыточность необходима для обеспечения достоверности передаваемых данных, т.е. надежности СПД, повышения помехоустойчивости. При этом, применяя специальные коды, использующие избыточность в передаваемых сообщениях, можно обнаружить и исправить ошибки.
Пример 1. Вычислить энтропию источника, выдающего два символа 0 и 1 с вероятностями p(0) = p(1) = 1/m и определить его избыточность.
Решение: Энтропия для случая независимых, равновероятных элементов равна: H(x) = log2m = log22 = 1 [дв. ед/симв.]
При этом H(x) = Hmax(x) и избыточность равна R = 0.
Пример 2. Вычислить энтропию источника независимых сообщений, выдающего два символа 0 и 1 с вероятностями p(0) = 3/4, p(1) = 1/4.
Решение: Энтропия для случая независимых, не равновероятных элементов равна:

При этом избыточность равна R = 1–0,815=0,18
Пример 3. Определить количество информации и энтропию сообщения из пяти букв, если число букв в алфавите равно 32 и все сообщения равновероятные.
Решение: Общее число пятибуквенных сообщений равно: N = mn = 32
Энтропия для равновероятных сообщений равна:
H = I = – log2 1/N = log2325 = 5 log232 = 25 бит./симв.
Литература
1 Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.
2 Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.
3 Кловский Д.Д. Теория передачи сигналов. – М.: Связь, 1984.
4 Кудряшов Б.Д. Теория информации. Учебник для вузов Изд-во ПИТЕР, 2008. – 320 с.
5 Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.
6 Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы матроиды, алгоритмы. – Ижевск: НИЦ «РХД», 2001, 288 стр.
1. Количество информации, и ее мера
На вход системы передачи информации (СПИ) от источника информации подается совокупность сообщений, выбранных из ансамбля сообщений (рис. 1).
Помехи
СПИ |
x2 y2
… …
xn yn
Рис. 1. Система передачи информации
Ансамбль сообщений – множество возможных сообщений с их вероятностными характеристиками – {Х, р(х)}. При этом: Х={х1, х2,…, хm} – множество возможных сообщений источника; i = 1, 2,…, m, где m – объем алфавита; p(xi) – вероятности появления сообщений, причем p(xi) ³ 0 и поскольку вероятности сообщений представляют собой полную группу событий, то их суммарная вероятность равна единице
Каждое сообщение несет в себе определенное количество информации. Определим количество информации, содержащееся в сообщении xi, выбранном из ансамбля сообщений источника {Х, р(х)}. Одним из параметров, характеризующих данное сообщение, является вероятность его появления – p(xi), поэтому естественно предположить, что количество информации I(xi) в сообщении xi является функцией p(xi). Вероятность появления двух независимых сообщений x1 и x2 равна произведению вероятностей p(x1, x2) = p(x1).p(x2), а содержащаяся в них информация должна обладать свойством аддитивности, т.е.:
I(x1, x2) = I(x1)+I(x2). (1)
Поэтому для оценки количества информации предложена логарифмическая мера:
При этом наибольшее количество информации содержат наименее вероятные сообщения, а количество информации в сообщении о достоверном событии равно нулю. Т. к. все логарифмы пропорциональны, то выбор основания определяет единицу информации: logax = logbx/logba.
В зависимости от основания логарифма используют следующие единицы информации:
2 – [бит] (bynary digit – двоичная единица), используется при анализе ин-формационных процессов в ЭВМ и др. устройствах, функционирующих на основе двоичной системы счисления;
e – [нит] (natural digit – натуральная единица), используется в математических методах теории связи;
10 – [дит] (decimal digit – десятичная единица), используется при анализе процессов в приборах работающих с десятичной системой счисления.
Битом (двоичной единицей информации) – называется количество информации, которое снимает неопределенность в отношении наступления одного из двух равновероятных, независимых событий.
Среднее количество информации для всей совокупности сообщений можно получить путем усреднения по всем событиям:
Количество информации, в сообщении, состоящем из n не равновероятных его элементов равно (эта мера предложена в 1948 г. К. Шенноном):
Для случая независимых равновероятных событий количество информации определяется (эта мера предложена в 1928 г. Р. Хартли):
2. Свойства количества информации
1. Количество информации в сообщении обратно – пропорционально вероятности появления данного сообщения.
2. Свойство аддитивности – суммарное количество информации двух источников равно сумме информации источников.
3. Для события с одним исходом количество информации равно нулю.
4. Количество информации в дискретном сообщении растет в зависимости от увеличения объема алфавита – m.
Пример 1. Определить количество информации в сообщении из 8 двоичных символов (n =
Количество информации равно:
I = n log m = 8 log2 2 = 8 бит.
Пример 2. Определить количество информации в сообщении из 8 двоичных символов (n =
pi0 = 3/4; pi1 = 1/4.
Количество информации равно:
3. Энтропия информации
Энтропия – содержательность, мера неопределенности информации.
Энтропия – математическое ожидание H(x) случайной величины I(x) определенной на ансамбле {Х, р(х)}, т.е. она характеризует среднее значение количества информации, приходящееся на один символ.
Определим максимальное значение энтропии Hmax(x). Воспользуемся методом неопределенного множителя Лагранжа -l для отыскания условного экстремума функции [6]. Находим вспомогательную функцию:
Представим вспомогательную функцию F в виде:
Найдем максимум этой функции
Как видно из выражения, величина вероятности pi не зависит от i, а это может быть в случае, если все pi равны, т.е. p1 =p2 =…=pm =1/m.
При этом выражение для энтропии равновероятных, независимых элементов равно:
Найдем энтропию системы двух альтернативных событий с вероятностями p1 и p2. Энтропия равна
4. Свойства энтропии сообщений
1. Энтропия есть величина вещественная, ограниченная, не отрицательная, непрерывная на интервале 0 £ p £ 1.
2. Энтропия максимальна для равновероятных событий.
3. Энтропия для детерминированных событий равна нулю.
4. Энтропия системы двух альтернативных событий изменяется от 0 до 1.
Энтропия численно совпадает со средним количеством информации но принципиально различны, так как:
H(x) – выражает среднюю неопределенность состояния источника и является его объективной характеристикой, она может быть вычислена априорно, т.е. до получения сообщения при наличии статистики сообщений.
I(x) – определяется апостериорно, т.е. после получения сообщения. С получением информации о состоянии системы энтропия снижается.
5. Избыточность сообщений
Одной из информационных характеристик источника дискретных сообщений является избыточность, которая определяет, какая доля максимально-возможной энтропии не используется источником
где ? – коэффициент сжатия.
Избыточность приводит к увеличению времени передачи сообщений, уменьшению скорости передачи информации, излишней загрузки канала, вместе с тем, избыточность необходима для обеспечения достоверности передаваемых данных, т.е. надежности СПД, повышения помехоустойчивости. При этом, применяя специальные коды, использующие избыточность в передаваемых сообщениях, можно обнаружить и исправить ошибки.
Пример 1. Вычислить энтропию источника, выдающего два символа 0 и 1 с вероятностями p(0) = p(1) = 1/m и определить его избыточность.
Решение: Энтропия для случая независимых, равновероятных элементов равна: H(x) = log2m = log22 = 1 [дв. ед/симв.]
При этом H(x) = Hmax(x) и избыточность равна R = 0.
Пример 2. Вычислить энтропию источника независимых сообщений, выдающего два символа 0 и 1 с вероятностями p(0) = 3/4, p(1) = 1/4.
Решение: Энтропия для случая независимых, не равновероятных элементов равна:
При этом избыточность равна R = 1–0,815=0,18
Пример 3. Определить количество информации и энтропию сообщения из пяти букв, если число букв в алфавите равно 32 и все сообщения равновероятные.
Решение: Общее число пятибуквенных сообщений равно: N = mn = 32
Энтропия для равновероятных сообщений равна:
H = I = – log2 1/N = log2325 = 5 log232 = 25 бит./симв.
Литература
1 Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.
2 Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.
3 Кловский Д.Д. Теория передачи сигналов. – М.: Связь, 1984.
4 Кудряшов Б.Д. Теория информации. Учебник для вузов Изд-во ПИТЕР, 2008. – 320 с.
5 Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.
6 Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы матроиды, алгоритмы. – Ижевск: НИЦ «РХД», 2001, 288 стр.