Реферат Проектирование и расчет низкочастотного усилителя
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Министерство образования Российской Федерации
Уфимский государственный авиационный технический университет
Кафедра технической кибернетики
26.2.070107.421ПЗ
КУРСОВОЙ ПРОЕКТ
по дисциплине «Общая электротехника и электроника»
по теме:
Проектирование и расчет низкочастотного усилителя
Выполнил:
студентка гр. САУ-302
Иванова И.
Проверила:
доцент кафедры ТК
Костюкова Л. П.
Уфа 2007
Введение
Электроника является универсальным и исключительно эффективным средством при решении самых различных проблем в области сбора и преобразования информации, автоматического и автоматизированного управления, выработки и преобразования энергии. Знания в области электроники становятся необходимыми все более широкому кругу специалистов.
Усилители, одни из самых широко используемых устройств в радиотехнике. Усилители можно разделить по многим признакам: виду используемых усилительных элементов, количеству усилительных каскадов, частотному диапазону усиливаемых сигналов, выходному сигналу, способам соединения усилителя с нагрузкой и др. По типу используемых элементов усилители делятся на ламповые, транзисторные и диодные. По количеству каскадов усилители могут быть однокаскадными, двухкаскадными и многокаскадными. По диапазону частот усилители принято делить на низкочастотные, высокочастотные, полосовые, постоянного тока (или напряжения). Связь усилителя с нагрузкой может быть выполнена непосредственно (гальваническая связь), через разделительный конденсатор (емкостная связь) и через трансформатор (трансформаторная связь).
Все характеристики усилителя можно разделить на три группы: входные, выходные и передаточные. К входным характеристикам относятся: допустимые значения входного напряжения или тока, входное сопротивление и входная емкость. Обычно эти характеристики определяются параметрами источника входного сигнала.
Часто работа усилителя необходима в определенном спектре частот. Одним из вариантов решения подобных задач заключается в использовании усилителей низкой частоты.
Курсовой проект посвящен исследованию и разработке функциональных блоков и устройств информационных систем. К таким блокам относится усилитель низкой частоты.
Выходное сопротивление генератора очень мало. С целью его наилучшего использования, необходимо создать такое сопротивление нагрузки генератора, которое, как минимум, на порядок превышает его внутреннее сопротивление:
Rн=10*Rген=10*10 кОм=100 кОм=0.1 МОм.
1. функциональная схема усилителя
В данной работе для реализации была выбрана следующая схема:
|
Входным каскадом является на основе неинвертирующей схемы включения операционный усилитель (К140УД6), который обеспечивает высокое входное сопротивление (1 МОм). Это необходимо для согласования усилителя с источником входного сигнала, за счет снятия нагрузки с источника входного сигнала.
Каскад предварительного усиления является многозвеньевым и обеспечивает заданную форму логарифмической амплитудной характеристики.
Выходным каскадом является усилитель мощности, который обеспечивает согласование с нагрузкой и обеспечивает выходной сигнал по мощности.
В качестве усилителя мощности наиболее часто применяются бестрансформаторные усилители, которые характеризуются простотой схемного построения, отсутствием нестандартных деталей, высокими качественными показателями, малыми габаритами и весом. Наиболее удобно применение двухтактных усилителей мощности, выполненных на транзисторах с дополнительной симметрией и работающих в режимах классов В и АВ. Такие усилители хорошо сопрягаются с ОУ и могут с ними охватываться общей отрицательной обратной связью с целью уменьшения нелинейных искажений типа «ступенька». С этой целью рекомендуется использовать режим работы класса АВ.
2. Расчет и проектирование элементов усилителя
2.1 Р
асчет усилителя мощности
Рассчитаем усилитель по схеме:
Определяется амплитудное значение коллекторного напряжения одного плеча:
= =
Определим необходимое напряжение источника питания:
, где Uk min примем равным 1,5 В.
По полученному значению Ek выберем из ряда стандартных напряжений ближайший в сторону увеличения стандартный номинал напряжения источника питания. В нашем случае это 6,3 В (Ek=6,3 В).
Определим амплитуду импульса коллекторного тока транзистора VT3(VT4):
.
Определяем среднее значение тока, потребляемое от источника питания оконечным каскадом:
=,
где Iok – начальный ток коллектора транзисторов VT3 и VT4
(примем Iok=25 мА).
Определяем мощность, потребляемую от источников питания оконечным каскадом при номинальной выходной мощности
=.
Определяем мощность рассеяния на коллекторе одного транзистора оконечного каскада
=.
По рассчитанным значениям Pk, 2Ek, (Ikm+30%)
и требованиям к частотным свойствам (n³20 кГц) подбираем транзисторы VT3 и VT4. При этом они должны иметь одинаковые параметры и ВАХ.
Итак, должны выполняться следующие условия:
, т.е. ()
, т.е. ()
, т.е. ()
Этим условиям удовлетворяют параметры транзисторов КТ819А (n-p-n) и КТ818А (p-n-p). Они подходят по максимально допустимым параметрам и имеют одинаковые параметры и ВАХ.
По статическим характеристикам транзисторов VT3(VT4) определяем амплитудное значение тока базы Iбm и напряжение на базе Uбm(Рис 1):
Iбm= 180 мA,
Uбm=0,42 В.
Далее определяем входное сопротивление транзистора для переменного тока:
RвхT3~ ==
Определяем амплитуду входного напряжения каждого плеча(VT3,VT4):
Uвхт3 = Uбm+Ukm = 0,42+2,83 =3,25 В
Определяем величину сопротивлений резисторов R3 и R4. Она выбирается в 5÷10 раз больше значения входного сопротивления переменному току транзисторов VT3 и VT4 при максимальном входном сигнале:
R3=R4=(5÷10)RвхT3~=.
По полученному значению R3 (R4) выберем из ряда стандартных сопротивлений резисторов ближайший в сторону увеличения стандартный номинал сопротивления резисторов R3 (R4). В данном случае R3=R4=150 Ом
Находим сопротивление эмиттерной нагрузки транзисторов VT1 и VT2:
Rнт1=.
Рассчитаем режим работы транзисторов VT1 и VT2. Найдем амплитуду импульса коллекторного тока транзистора VT1:
IkmT1=.
Определяем среднее значение тока
I0= ,
где Iok - начальный ток коллектора транзисторов VT1 и VT2 примем равным 1,5 мА.
Определяем мощность при номинальной выходной мощности:
Р0=.
Определяем мощность рассеяния на коллекторе одного транзистора:
Рк==.
Аналогично вышеуказанному способу, выбираем пару транзисторов VT1 и VT2. В качестве транзисторов VT1 и VT2 выбираем соответственно транзисторы КТ503А(n-p-n) и КТ502А (p-n-p):
, т.е. ()
, т.е. ()
, т.е. ()
По статическим характеристикам транзисторов VT1(VT2) определяем амплитудное значение тока базы Iбм и напряжение на базе Uбм (Рис 2):
Iбm=5,3 мА, Uбm=186 мВ.
Далее определяем входное сопротивление транзистора для переменного тока:
RвхT1~ ==.
Определяем амплитуду входного напряжения каждого плеча(VT1,VT2):
UвхТ1=UбmТ1+UkmT1=0.186+3,25=3,436B, заметим, что UkmT1=UвхТ3=3,25 В.
Так как RвхT1~ < 1 кОм, значит RвхУМ < 1 кОм (RвхУМ = RвхT1~ | | R1).
{Находим делитель R1-VD1-VD2-R2 по Iд = 7.5·I0бT1=0,375мА, по
Uд ≈ U0bT1 =0,34 В. Определяем диод по этим параметрам: выбираем КД514А.
Определяем R1(R2):
R1=R2==. Выбираем сопротивление из стандартного ряда (±5%): R1=R2=33 кОм.
Найдем входное сопротивление усилителя мощности:
RвхУМ=.}
2.3 Расчет теплоотвода для транзисторов выходного каскада
Подводимая к усилителю электрическая мощность рассеивается в основном помимо нагрузки, на транзисторах оконечного каскада. Вследствие этого температура внутренних областей и корпуса прибора превышает температуру окружающей среды. Температура p – n – переходов является важнейшим фактором, от которого зависят не только величины основных параметров, но и общая работоспособность приборов.
С целью удержать температуру на допустимом уровне используют теплоотводящие радиаторы.
Определим требуемую площадь радиатора, изготовленного из алюминия с коэффициентом теплопроводности К=0,0013 Вт/см2*градус.
Примем температуру окружающей среды равной
=50 .
=125 - максимальная температура переходов для транзисторов VT3 и VT4 с радиатором (взята из справочника).
=4.73 Вт - суммарная мощность рассеивания на переходах транзисторов VT3 и VT4,
Тепловое сопротивление между полупроводником и корпусом:
TK определяется по графику (Рис. ): TK=380 К=107 0C
Необходимая поверхность охлаждения приближенно равна:
2.4 Расчет коэффициента нелинейных искажений и параметров цепи обратной связи.
Для учета неполной идентичности плеч двухтактного каскада считают, что их коэффициенты передачи, а значит, и амплитуды всех гармоник выходных токов отличаются от средних в 1+v/2 раз, причем в разных плечах в разные стороны.(v=0,1….0,2) В результате амплитуды нечетных гармоник токов транзисторов в выходном колебании каскада оказываются удвоенными, а у четных гармоник ввиду их вычитания остается нескомпенсированная часть, равная v.
Для расчета нелинейных искажений используем метод пяти ординат заполняем таблицу и строим косинусоиду:
| 1 | 2 | 3 | 4 |
Ik (мА) | 800 | 1800 | 2900 | 3800 |
Iб (мА) | 20 | 46 | 118 | 200 |
Uбэ (В) | 0,78 | 0,86 | 0,98 | 1,2 |
Ec (В) | 0,917 | 1,175 | 1,787 | 2,568 |
Ec=Uвх+iвхRс
Ec=Uбэ+iбRс
Rс=rэт1==
Ec1=0,78+0,002·6,84=0,917 В
Ec2=0,86+0,046·6,84=1,175 В
Ec3=0,98+0,118·6,84=1,787 В
Ec4=1,2+0,2·6,84=2,568 В
Рис.3
I1=800 мА
I2=2150 мА
I3=3200 мА
I4=3800 мА
a=сos(3/8)=0.383
b=cos(/4)=0.707
c=cos(/8)=0.924
IA=(I1-2I2+I3+I4/2)/2b=(800-2·2150+3200+1900)/2·0.707=1131,54 мА
IB=I4/2-I1=3800/2 – 800=1100 мА
IM=[a(I4+I3/b)-2I2]/c=[0.383· (3800 + 3200/0.707) – 2·2150]/0.924= – 1202мА
IN=I4-I3/b=3800 – 3200/0.707= – 726,17мА
Считаем гармоники:
Im1=(I4+I3/b)/2=(3800 + 3200/0.707)/2=4163 мА
Im2=v(IB+ IA)/4=0.1· (1100 + 1131,54)/4=55,79 мА
Im3=( IN+ IM)/4=(-726,17 - 1202)/4= – 482 мА
Im4=v(I1-I3+I4/2)/4=0.1· (800 – 3200 + 1900)/4= – 125 мА
Im5=( IN- IM)/4=(–726,17 + 1202)/4=118,96 мА
Im6=v(IB-IA)/4=0.1· (1100 – 1131,54)/4=-0,79 мА
Считаем коэффициент нелинейных искажений:
KГ==
KГос=
K*=KУМ·KОУ
KУМ=
ОУ выбирается по следующим параметрам: Ek=6.3B, UвхУМ=3,45B,
R вхУМ=1.485 кОм, IбmT1=0.09 мА. Выбираем 140УД1.
KОУ=1350
K=0.82·1350=1107
Находим коэффициент усиления:
=
Найдем сопротивления R1 и R2 ОУ:
=
Примем R1 = 5 кОм
тогда
Сопротивления R1 и R2 удовлетворяют условию: <<
Найдем коэффициент передачи ОУ и УМ:
, значит нужен расчет каскада предварительного усиления.
2.5 Выбор и расчет каскадов предварительного усиления
Найдем коэффициент передачи по напряжению всей схемы:
K0==
Найдем коэффициент передачи по напряжению каскада предварительного училения:
Примем R3=0.5 кОм, тогда
Сопротивления R3 и R4 удовлетворяют условию: <<
Заключение
Итак, согласно заданию к курсовой работе, я спроектировал и рассчитал усилитель низкой частоты, удовлетворяющий всем заданным условиям.
Для охлаждения транзисторов в усилителе используется алюминиевый радиатор площадью 31,6 см2.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Зайцев А.А. Полупроводниковые приборы. Транзисторы малой мощности: Справочник. 2-е изд.. Под ред. А.В. Голомедова. М.: Радио и связь, КУБК-а, 1995.-384с.
2. Зайцев А.А. Полупроводниковые приборы. Транзисторы средней и большой мощности: Справочник. 2-е изд.. Под ред. А.В. Голомедова. М.: Радио и связь, КУБК-а, 1995.-640с.