Реферат

Реферат Однофакторный дисперсионный анализ 2

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 15.3.2025





Однофакторный дисперсионный анализ
Однофакторная дисперсионная модель имеет вид:
xij = μ + Fj + εij,                                                    (1)
где  хij – значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);

Fi – эффект, обусловленный влиянием i-го уровня фактора;

εij – случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.
Основные предпосылки дисперсионного анализа:

-    математическое ожидание возмущения εij равно нулю для любых i,  т.е.

M(εij) = 0;                                                     (2)

-     возмущения εij взаимно независимы;

- дисперсия переменной xij (или возмущения εij) постоянна для
любых
i, j, т.е.

                                                Dij) = σ2;                                                (3)

- переменная xij (или возмущение εij) имеет нормальный закон
распределения
N(0;σ2).

Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли сущест­венные различия между партиями изделий по некоторому показа­телю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным парти­ям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие – фиксированные.

Пусть имеется m партий изделий. Из каждой партии отобрано соответственно  n1, n2, …, nm  изделий  (для простоты полагается, что n1=n2=...=nm=n). Значения показателя качества этих изделий представлены в матрице наблюдений:

x11          x12       x1n

x21          x22      x2n         

…………………              = (xij), (i = 1,2, …, m; j = 1,2, …, n).

 xm1  xm2      xmn
Необходимо проверить существенность влияния партий из­делий на их качество.

Если полагать, что элементы строк матрицы наблюдений – это численные значения случайных величин Х12,...,Хm, выражающих качество изделий и имеющих нор­мальный закон распределения с математическими ожиданиями соответственно a12,...,аm и одинаковыми дисперсиями σ2, то данная задача сводится к проверке нулевой гипотезы Н0: a1=a2 =...= аm, осуществляемой в дисперсионном анализе.

Усреднение по какому-либо индексу обозначено звездочкой (или точкой) вместо индекса, тогда средний показатель качества изделий i-й партии, или групповая средняя для i-го уровня факто­ра, примет вид:
                                                     ,                                                 (4)
где  i* – среднее значение по столбцам;

ij – элемент матрицы наблюдений;  

 n   – объем выборки.
А общая средняя:

                                          .                                             (5)
Сумма квадратов отклонений наблюдений   хij от общей средней ** выглядит так:
2=2+2+

+22.                                         (6)
или

Q = Q1 + Q2 + Q3.
Последнее слагаемое равно нулю

               =0.               (7)

так как сумма отклонений значений переменной от ее средней равна нулю, т.е.
2=0.
Первое слагаемое можно записать в виде:

В результате получается тождество:
                                                        Q = Q1 + Q2,                                                (8)

где - общая, или полная, сумма квадратов отклонений;

- сумма квадратов отклонений групповых средних от общей средней, или межгрупповая (факторная) сумма квадратов отклонений;

- сумма квадратов отклонений наблюдений от групповых средних, или  внутригрупповая (остаточная) сумма квадратов отклонений.

В разложении (8) заключена основная идея дисперсионного анализа. Применительно к рассмат­риваемой задаче равенство (8) показывает, что общая вариа­ция показателя качества, измеренная суммой Q, складывается из двух компонент – Q1 и Q2, характеризующих изменчивость этого показателя между партиями (Q1) и изменчивость внутри партий (Q2), характеризующих одинаковую для всех партий вариацию под воздействием неучтенных факторов.

В дисперсионном  анализе  анализируются  не  сами   суммы квадратов отклонений, а так называемые  средние   квад­раты, являющиеся  несмещенными оценками соответствую­щих дисперсий, которые получаются делением сумм квадратов отклонений на соответствующее число степеней свободы.

Число степеней свободы определяется как общее число наблюдений минус число связывающих их уравне­ний. Поэтому для среднего квадрата  s12, являющегося несме­щенной оценкой межгрупповой дисперсии, число степеней свободы k1=m-1, так как при его расчете используются m групповых средних, связанных между собой одним уравнением (5). А для среднего квадрата s22, являющегося несмещенной оценкой внутригрупповой дисперсии, число степеней свободы k2=mn-m, т.к. при ее расчете используются все mn наблюдений, связанных между собой m уравнениями (4).

Таким образом:
= Q1/(m-1),

= Q2/(mn-m).
Если найти математические ожидания средних квадратов   и , подставить в их формулы выражение xij (1)  через парамет­ры модели, то получится:






                                                                                         (9)
т.к. с учетом свойств математического ожидания
 а


                        (10)
Для модели I с фиксированными уровнями фак­тора Fi(i=1,2,...,m) – величины неслучайные, поэтому
M(S) =2 /(m-1) +σ2.
Гипотеза H0 примет вид Fi = F*(i = 1,2,...,m), т.е. влияние всех уровней фактора одно и то же. В случае справедливости этой гипотезы
M(S)= M(S)= σ2.
Для случайной модели II слагаемое Fi в выражении (1) – величина случайная. Обозначая ее дисперсией




получим из (9)
                                                                                   (11)
и, как и в модели I

M(S)= σ2.
В таблице 1.1 представлен общий вид вычисления значений, с помощью дисперсионного анализа.
Таблица 1.1 – Базовая таблица дисперсионного анализа

Компоненты дисперсии

Сумма квадратов

Число степеней свободы

Средний     квадрат

Математическое ожидание среднего квадрата

Межгрупповая



m-1

= Q1/(m-1)



Внутригрупповая



mn-m

= Q2/(mn-m)



M(S)= σ2

Общая



mn-1







Гипотеза H0 примет вид σF2 =0. В случае справедливости этой гипотезы
M(S)= M(S)= σ2.
В случае однофакторного комплекса как для модели I, так и модели II средние квадраты S2 и S2, являются несмещенными и независимыми оценками одной и той же дисперсии σ2.

Следовательно, проверка нулевой гипотезы H0 свелась к проверке  существенности  различия несмещенных выборочных оценок S и S дисперсии σ2.

Гипотеза H0 отвергается, если фактически вычисленное зна­чение статистики F = S/S больше критического Fα:K1:K2, опреде­ленного на уровне значимости α при числе степеней свободы k1=m-1 и k2=mn-m, и принимается, если F < Fα:K1:K2 .

F- распределение Фишера (для x > 0) имеет следующую функцию плотности (для  = 1, 2, ...; = 1, 2, ...):

где  - степени свободы;

Г   - гамма-функция. 
Применительно к данной задаче опровержение гипотезы H0 означает наличие существенных различий в качестве изделий различных партий на рассматриваемом уровне значимости.

Для вычисления сумм квадратов Q1, Q2, Q часто бывает удобно использовать следующие формулы:
                                                               (12)
                                                                              (13)
                                                                                (14)

т.е. сами средние, вообще говоря, находить не обязательно.

  Таким образом, процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к  исследованию значимости различия средних в группах данных /1/.



1. Реферат Прони, Гаспар де
2. Реферат Клас Ссавці 2
3. Контрольная работа Столкновение ценностей модернизации и традиционализма в русской истории в конце XIX начале XX
4. Реферат Конфликтные ситуации, методы подготовки управленческих решений
5. Реферат Анализ себестоимости продукции на предприятии 2
6. Лекция на тему Ангидриды карбоновых кислот Кетены Нитрилы
7. Реферат на тему Beowulf Ideals Essay Research Paper Ideals are
8. Реферат В переулках Мясницкой
9. Диплом на тему Предмет доказывания в гражданском судопроизводстве
10. Курсовая на тему Оптимизация налоговой системы как института социального управления