Реферат

Реферат Механическое движение. Относительность движения. Система отсчёта. Материальная точка. Траектор

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024



Билет 1.

Вопрос 1.  Механическое движение. Относительность движения. Система отсчёта. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение.

Механическим движением называют изменение положения тела (или его частей) относительно других тел. Например, человек едущий на эскалаторе в метро, находится в покое относительно самого эскалатора и перемещается относительно стен туннеля; Гора Эльбрус находится в покое относительно Земли и движется вместе с Землёй относительно Солнца. Из этих примеров видно, что всегда надо указать тело, относительно которого рассматривается движение, его называют телом отсчёта. Система координат, тело отсчёта с которым она связана, и выбранный способ измерения времени образуют систему отсчёта. Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля на стыковке со станцией, без учёта её размеров не обойтись. Таким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой. Линию, вдоль которой движется материальная точка, называют траекторией. Длину части траектории между начальным и конечным положением точки называют путем (l). Единица пути – метр.

Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением. Направленный отрезок прямой, проведённый из начального положения движущейся точки в её конечное положение, называется перемещением (S). Это величина векторная. Единица перемещения – метр.

Скорость – векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток времени считается достаточно малым если скорость в течение этого промежутка не менялась. Определяющая формула скорости имеет вид Единица измерения скорости – м/с. На практике – км/ч. Измеряют скорость спидометром.

Ускорение – векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле Единица измерения ускорения м/с2.

Характеристики механического движения связаны между собой основными кинематическими уравнениями:

.

Предположим, что тело движется без ускорения (самолёт на маршруте), его скорость в течение продолжительного времени не меняется, а=0. Тогда кинематические уравнения будут иметь вид: V=const, S=Vt.

Движение, при котором скорость тела не меняется, т.е. тело за любые равные промежутки времени перемещается на одну и ту же величину, называют равномерным прямолинейным движением.

Во время старта скорость ракеты быстро возрастает, т.е. ускорение а>0, а=const.

В этом случае кинематические уравнения выглядят так:



При таком движении скорость и ускорение имеют одинаковые направления, причём скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называют равноускоренным.

При торможении автомобиля скорость уменьшается одинаково за любые равные промежутки времени, ускорение меньше нуля; т.к. скорость уменьшается, то уравнение принимает вид:



Такое движение называется равнозамедленным.

Все физические величины, характеризующие движение тела (скорость, ускорение, перемещение), а также вид траектории, могут изменяться при переходе из одной системы к другой, т.е. характер движения зависит от выбора системы отсчёта, в этом и проявляется относительность движения. Например, в воздухе происходит дозаправка самолёта топливом. В системе отсчёта, связанной с самолётом, другой самолёт находится в покое, а в системе отсчёта, связанной с Землёй, оба самолёта находятся в движении. При движении велосипедиста точка колеса в системе отсчёта, связанной с осью, имеет траекторию:
В системе отсчёта, связанной с Землёй вид траектории будет таким:



Билет 2.

Взаимодействие тел. Сила. Второй закон Ньютона.

Простые наблюдения и опыты, например с тележками, приводят к следующим качественным заключениям: а) тело, на которое другие тела не действуют сохраняет свою скорость неизменной, б) Ускорение тела возникает под действием других тел, но зависит и от самого тела; в) действие других тел друг на друга всегда носят характер взаимодействия. Эти выводы подтверждаются при наблюдении явлений в природе, технике, космическом пространстве только в инерциальных системах отсчёта.

Взаимодействия отличаются друг от друга и количественно, и качественно. Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие её витков. Или чем ближе два одноимённых заряда, тем сильнее они будут притягиваться. В простейших случаях взаимодействия количественной характеристикой является сила. Сила – причина ускорения тел по отношению к инерциальной системе отсчёта или их деформации. Сила – это векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимодействии. Сила характеризуется: а) модулем; б) точкой приложения; в) направлением.

Единица силы – ньютон. Один ньютон – это сила, которая телу массой 1 кг сообщает ускорение 1 м/с2 в направлении действия этой силы, если другие тела на него не действуют. Равнодействующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу
R=F1+F2+…+Fn.
Качественно по своим свойствам взаимодействия также различны. Например, электрическое и магнитное взаимодействия связаны с наличием зарядов у частиц либо с движением заряжённых частиц. Наиболее просто рассчитать силы в электродинамике: сила Ампера – F=IlBsina, Сила Лоренца – F=qvBsina, Кулоновская сила – и гравитационные силы: закон всемирного тяготения - Такие механические силы, как сила упругости и сила трения, возникают в результате электромагнитного взаимодействия. Для их расчёта необходимо использовать формулы: закон Гука – Fупр=-kx, сила трения – Fтр=-mN.

На основании опытных данных были сформулированы законы Ньютона. Второй закон Ньютона. Ускорение, с которым движется тело, прямо пропорционально равнодействующей всех сил, действующих на тело, обратно пропорционально его массе и направлено также, как и равнодействующая сила: Для решения задач закон часто записывают в виде F=ma.

Билет 3.

Импульс тела. Закон сохранения импульса. Закон сохранения энергии.

Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зависит от выбора системы отсчёта; по второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только при действии силы, т.е. в результате взаимодействия с другими телами. Однако существуют величины, которые могут сохраняться при взаимодействии тел. Это энергия и импульс. Импульсом тела называют векторную физическую величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается p. Единица измерения импульса – кг м/с. Импульс тела равен произведению массы тела на его скорость: p=mv. Направление вектора импульса p совпадает с направлением вектора скорости тела v. Рис.
Для импульса тел выполняется закон сохранения, который справедлив только для замкнутых физических систем. В общем случае замкнутой называют систему, которая не обменивается энергией и массой с телами и полями, не входящими в неё. В механике замкнутой называют систему, на которую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае p1=p2, где p1начальный импульс системы, а p2 – конечный. В случае двух тел, входящих в систему, это выражение имеет вид m1v1+m2v2=m1v1’+m2v2, где m1 и m2массы тел, v1 и v2скорости до взаимодействия, v1и v2 – скорости после взаимодействия. Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых взаимодействиях, происходящих внутри этой системы; т.е. в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия. В случае не замкнутой системы импульс тел системы не сохраняется. Однако если в системе существует направление, по которому внешние силы не взаимодействуют или их действия скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимодействия мало (выстрел, взрыв, удар), то за это время даже в случае не замкнутой системы внешние силы не значительно изменяют импульсы взаимодействующих тел. Поэтому для практических расчётов в этом случае тоже можно применять закон сохранения импульса.

Экспериментальные исследования взаимодействий различных тел - от планет и звёзд до атомов и элементарных частиц – показали, что в любой системе взаимодействующих тел при отсутствии действия со стороны других тел, не входящих в систему, или равенстве нулю суммы действующих сил геометрическая сумма импульсов тел действительно остаётся неизменной.

В механике закон сохранения импульса и законы Ньютона связаны между собой. Если на тело массой m в течение времени t действует сила и скорость его движения изменяется от v0 до v, то ускорение движения a тела равно На основании второго закона Ньютона для силы F можно записать F=ma=m, отсюда следует Ft=mv-mv0.

Ft – векторная физическая величина, характеризующая действие на тело силы за некоторый промежуток времени и равная произведению силы на время t её действия, называют импульсом силы. Единица импульса в СИ – 1 Н с.
Билет 4.

Основные положения молекулярно-кинетической теории (МКТ) и их опытное обоснование. Масса и размеры молекул. Постоянная Авогадро.

МКТ – это раздел физики, изучающий свойства различных состояний вещества, основывающийся на представлениях о существовании молекул и атомов как мельчайших частиц вещества. В основе МКТ лежат три основных положения:

1.        Все вещества состоят из мельчайших частиц: молекул, атомов или ионов.

2.        Эти частицы находятся в непрерывном хаотическом состоянии, скорость которого определяет температуру вещества.

3.        Между частицами существуют силы притяжения и отталкивания, характер которых зависит от расстояния между ними.

Основные положения МКТ подтверждаются многими опытными фактами. Существование молекул, атомов ионов доказано экспериментально, молекулы достаточно изучены и даже сфотографированы с помощью электронных микроскопов. Способность газов неограниченно расширяться и занимать весь предоставленный им объём объясняется непрерывным хаотическим движением молекул. Упругость газов, твёрдых и жидких тел, способность жидкостей смачивать некоторые твёрдые тела, процессы окрашивания, склеивания, сохранения формы твёрдыми телами и многое другое говорят о существовании сил притяжения и отталкивания между молекулами. Явление диффузии – способность молекул одного вещества проникать в промежутки между молекулами другого – тоже подтверждает основные положения МКТ. Явлением диффузии объясняется, например, распространение запахов, смешивание разнородных жидкостей, процесс растворения твёрдых тел в жидкостях, сварка металлов путём их расплавления или путём давления. Подтверждением непрерывного хаотического движения молекул является также и броуновское движение – непрерывное хаотическое движение микроскопических частиц, не растворимых в жидкости.

Движение броуновских частиц объясняется хаотическим движением частиц жидкости, которые сталкиваются с микроскопическими частицами и приводят их в движение. Опытным путём было доказано, что скорость броуновских частиц зависит от температуры жидкости. Теорию броуновского движения разработал А. Эйнштейн. Законы движения частиц носят статистический, вероятностный характер. Известен только один способ уменьшения интенсивности броуновского движения – уменьшение температуры. Существование броуновского движения убедительно подтверждает движение молекул.

Любое вещество состоит из частиц, поэтому количество вещества v принято считать пропорциональным числу частиц, т.е. структурных элементов, содержащихся в теле.

Единицей количества вещества является моль. Моль – это количество вещества, содержащее столько же структурных элементов любого вещества, сколько содержится атомов в 12 г углерода С12. Отношение числа молекул вещества к количеству вещества называют постоянной Авогадро:

NA=N/v. NA=6,02 × 1023 моль-1.

Постоянная Авогадро показывает, сколько атомов и молекул содержится в одном моле вещества. Молярной массой называют величину, равную отношению массы вещества к количеству вещества: М=M/v.

Молярная масса выражается в кг/моль. Зная молярную массу, можно вычислить массу одной молекулы:

m0=m/N=m/vNA=M/NA.

Средняя масса молекул обычно определяется химическими методами, постоянная Авогадро с высокой точностью определена несколькими физическими методами. Массы молекул и атомов со значительной степенью точности определяются с помощью масс-спектрографа.

Массы молекул очень малы. Например, масса молекулы воды: m=29,9×1027кг.

Молярная масса связана с относительной молекулярной массой Mr. Относительная молярная масса – это величина, равная отношению массы молекулы данного вещества к 1/12 массы атома углерода С12. Если известна химическая формула вещества, то с помощью таблицы Менделеева может быть определена его относительная масса, которая, будучи выражена в килограммах, показывает величину молярной массы этого вещества.

Диаметром молекулы принято считать минимальное расстояние, на котором им позволяют сблизиться силы отталкивания. Однако понятие размера молекулы является условным. Средний размер молекулы порядка 10-10м.
Билет 5.

Идеальный газ. Основное уравнение МКТ идеального газа (без вывода). Температура и её измерение. Температурные шкалы Цельсия и Кельвина.

Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа. Идеальным принято считать газ, если: а) между молекулами отсутствуют силы притяжения, т.е. молекулы ведут себя как абсолютно упругие тела; б) газ очень разряжен, т.е. расстояние между молекулами намного больше размеров самих молекул; в) тепловое равновесие по всему объёму достигается мгновенно. Условия, необходимые для того, чтобы реальный газ обрёл свойства идеального, осуществляются при соответствующем разряжении реального газа. Некоторые газы даже при комнатной температуре и атмосферном давлении слабо отличаются от идеальных. Основными параметрами идеального газа являются давление, объём и температура.

Одним из первых и важных успехов МКТ было качественное и количественное объяснение давления газа на стенки сосуда. Качественное объяснение заключается в том, что молекулы газа при столкновениях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела и передают свои импульсы стенкам сосуда.

На основании использования основных положений МКТ было получено основное уравнение МКТ идеального газа, которое выглядит так: p=1/3m0nv2, где p – давление идеального газа, m0масса молекулы, n – концентрация молекул, v2средний квадрат скорости молекул.

Обозначив среднее значение кинетической энергии поступательного движения молекул идеального газа Ek, получим основное уравнение МКТ идеального газа в виде: p=2/3nEk.

Однако, измерив только давление газа, невозможно узнать ни среднее значение кинетической энергии молекул  отдельности, ни их концентрацию. Следовательно, для нахождения микроскопических параметров газа нужно измерение ещё какой-то физической величины, связанной со средней кинетической энергией молекул. Такой величиной в физике является температура. Температура – скалярная физическая величина, описывающая состояние термодинамического равновесия (состояния, при котором не происходит изменения микроскопических параметров). Как термодинамическая величина температура характеризует тепловое состояние системы и измеряется степенью его отклонения от принятого на нулевое, как молекулярно-кинетическая величина – характеризует интенсивность хаотического движения молекул и измеряется их средней кинетической энергией: Ek=3/2kT, где k=1,38×10-23 Дж/К и называется постоянной Больцмана.

Температура всех частей изолированной системы, находящейся в равновесии, одинакова. Измеряется температура термометрами в градусах различных температурных шкал. Существует абсолютная термодинамическая шкала (шкала Кельвина) и различные эмпирические шкалы, которые отличаются начальными точками. До введения абсолютной шкалы температур в практике широкое распространение получила шкала Цельсия (за 00С принята точка замерзания воды, за 1000С принята точка кипения воды при нормальном атмосферном давлении).

Единица температуры по абсолютной шкале называется кельвином и выбрана равной одному градусу по шкале Цельсия  1 К=10С. В шкале Кельвина за нуль принят абсолютный нуль температур, т.е. температура, при которой давление идеального газа при постоянном объёме равно –нулю. Вычисления дают результат, что абсолютный нуль температуры равен -2730С. Таким образом, между абсолютной шкалой температур и шкалой Цельсия существует связь T=t0C+273. Абсолютный нуль температур недостижим, так как любое охлаждение основано на испарении молекул с поверхности, а при приближении к абсолютному нулю скорость поступательного движения молекул настолько замедляется, что испарение практически прекращается. Теоретически при абсолютном нуле скорость поступательного движения молекул равна нулю, т.е. прекращается тепловое движение молекул.
Билет 6.

Вопрос 1. Уравнение состояния идеального газа (уравнение Менделеева-Клайперона). Изотермический, изобарный и изохорный процессы, их графики.

Состояние данной массы полностью определено, если известны давление, температура и объём газа. Эти величины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.

Для произвольной массы газа единичное состояние газа описывается уравнением Менделеева-Клайперона: pV=mRt/M, где p – давление, V – объём, R – универсальная газовая постоянная. Физический смысл универсальной газовой постоянной в том, что она показывает, какую работу совершает один моль идеального газа при изобарном расширении при нагревании на 1 К (R=8,31 Дж/моль×К).

Уравнение Менделеева-Клайперона показывает, что возможно одновременное изменение пяти параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближённо как процессы, в которых изменяются лишь два параметра из пяти. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.

Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре – температуре, давлении или объёме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.

Изотермическим называют процесс, протекающий при постоянной температуре T=const. Он описывается закон Бойля-Мариотта. pV=const.

Изохорным называют процесс, протекающий пи постоянном объёме. Для него справедлив закон Шарля. V=const, p/T=const.

Изобарным называют процесс, протекающий при постоянном давлении. Уравнение этого процесса имеет вид V/T=const при p=const и называется законом Гей-Люссака. Все процессы можно изобразить графически (рис.).

Реальные газы удовлетворяют уравнению состояния идеального газа при не слишком высоких давлениях (пока собственный объём молекул пренебрежительно мал по сравнению с объёмом сосуда, в котором находится газ) и при не слишком низких температурах (пока потенциальной энергией межмолекулярного взаимодействия можно пренебречь по сравнению с кинетической энергией теплового движения молекул), т.е. для реального газа это уравнение и его следствия являются хорошим приближением.
Билет 7.

Вопрос 1.  Испарение и конденсация. Насыщенный и ненасыщенный пары. Парциональное давление водяного пара. Влажность воздуха. Измерение влажности воздуха (психрометр).

Испарение – парообразование, происходящее при любой температуре со свободной поверхности жидкости. Неравномерное распределение кинетической энергии теплового движения молекул приводит к тому, что при любой температуре кинетическая энергия некоторых молекул жидкости или твёрдого тела может превышать потенциальную энергию их связи с другими молекулами. Большей кинетической энергией обладают молекулы, имеющие большую скорость, а температура тела зависит от скорости движения его молекул, следовательно, испарение сопровождается охлаждением жидкости. Скорость испарения зависит: от площади открытой поверхности, температуры, концентрации молекул вблизи жидкости. Конденсация – процесс перехода вещества из газообразного состояния в жидкое.

Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала испарения концентрация вещества в газообразном состоянии достигнет такого значения, при котором число молекул возвращающихся в жидкость, становится равным числу молекул, покидающих жидкость за то же время. Устанавливается динамическое равновесие между процессами испарения и конденсации вещества. Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называют насыщенным паром. (Паром называют совокупность молекул, покинувших жидкость в процессе испарения.) Пар, находящийся при давлении ниже насыщенного, называют ненасыщенным.

Вследствие постоянного испарения воды с поверхностей водоёмов, почвы и растительного покрова, а также дыхания человека и животных в атмосфере всегда содержится водяной пар. Поэтому атмосферное давление представляет собой сумму давления сухого воздуха и находящегося в нем водяного пара. Давление водяного пара будет максимальным при насыщении воздуха паром. Насыщенный пар в отличие от ненасыщенного не подчиняется законам идеального газа. Так, давление насыщенного пара не зависит от объёма, но зависит от температуры. Эта зависимость не может быть выражена простой формулой, поэтому на основе экспериментального изучения зависимости давления насыщенного пара от температуры составлены таблицы, по которым можно определить его давление при различных температурах.

Давление водяного пара, находящегося в воздухе при данной температуре, называют абсолютной влажностью, или упругостью водяного пара. Поскольку давление пара пропорционально концентрации молекул, можно определить абсолютную влажность как плотность водяного пара, находящегося в воздухе при данной температуре, выраженную в килограммах на метр кубический (r).

Большинство явлений, наблюдаемых в природе, например быстрота испарения, высыхание различных веществ, увядание растений, зависит не от количества водяного пара в воздухе, а от –того, насколько это количество близко к насыщению, т.е. от относительной влажности, которая характеризует степень насыщения воздуха водяным паром.

При низкой температуре и высокой влажности повышается теплопередача и человек подвергается переохлаждению. При высоких температурах и влажности теплопередача, наоборот, резко сокращается, что ведёт к перегреванию организма. Наиболее благоприятной для человека в средних климатических широтах является относительная влажность 40-60%. Относительной влажностью называют отношение плотности водяного пара (или давления), находящегося в воздухе при данной температуре, к плотности (или давлению) водяного пара при той же температуре, выраженное в процентах, т.е. j=r/r0×100%.

Относительная влажность колеблется в широких пределах. Причём суточный ход относительной влажности обратен суточному ходу температуры. Днём, с возрастанием температуры и, следовательно, с ростом давления насыщения, относительная влажность убывает, а ночью возрастает. Одно и то же количество водяного пара может либо насыщать, либо не насыщать воздух. Понижая температуру воздуха, можно довести находящийся в нём пар до насыщения. Точкой росы называют температуру, при которой пар, находящийся в воздухе, становится насыщенным. При достижении точки росы в воздухе или на предметах, с которыми он соприкасается, начинается конденсация водяного пара. Для определения влажности воздуха используются приборы, которые называются гигрометрами и психрометрами.
Билет 8.

Вопрос 1. Кристаллические и аморфные тела. Упругие и пластические деформации твёрдых тел.

Каждый может разделить тела на твёрдые и жидкие. Однако это деление будет только по внешним признакам. Для того чтобы выяснить, какими же свойствами обладают твёрдые тела, будем их нагревать. Одни тела начнут гореть (дерево, уголь) – это органические вещества. Другие будут размягчаться (смола) даже при невысоких температурах – это аморфные. Третьи будут изменять своё состояние при нагревании так, как показано на графике (рис.). Это и есть кристаллические тела. Такое поведение кристаллических тел при нагревании объясняется их внутренним строением. Кристаллические тела – это такие тела, атомы и молекулы которых расположены в определённом порядке, и этот порядок сохраняется на достаточно большом расстоянии. Пространственное периодическое расположение атомов или ионов в кристалле называют кристаллической решёткой. Точки кристаллической решётки, в которых расположены атомы или ионы, называют узлами кристаллической решётки.

Кристаллические тела бывают монокристаллами и поликристаллами. Монокристалл обладает единой кристаллической решёткой во всём объёме.

Анизотропия монокристаллов заключается в зависимости их физических свойств он направления. Поликристалл представляет собой соединение мелких, различным образом ориентированных монокристаллов (зерен) и не обладает анизотропией свойств. Большинство твёрдых тел имеют поликристаллическое строение (минералы, сплавы, керамика).

Основными свойствами кристаллических тел являются: определённость температуры плавления, упругость, прочность, зависимость свойств от порядка расположения атомов, т.е. от типа кристаллической решётки.

Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объёму этого вещества. В отличие от кристаллических веществ аморфные вещества изотропны. Это значит, что свойства одинаковы по всем направлениям. Переход из аморфного состояния в жидкое происходит постепенно, отсутствует определённая температура плавления. Аморфные тела не обладают упругостью, они пластичны. В аморфном состоянии находятся различные вещества: стёкла, смолы, пластмассы и т.п.

Упругость – свойство тел восстанавливать свою форму и объём после прекращения действия внешних сил или других причин, вызвавших деформацию тел. Для упругих деформаций справедлив закон Гука, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям s=E|e|, где s - механическое напряжение, e - относительное удлинение, Е – модуль Юнга (модуль упругости). Упругость обусловлена взаимодействием и тепловым движением частиц, из которых состоит вещество.

Пластичность – свойство твёрдых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные деформации после того, как действие этих сил прекратится.
Билет 9.

Вопрос 1. Работа в термодинамике. Внутренняя энергия и способы её измерения. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Адиабатный процесс.

Каждое тело имеет вполне определённую структуру, оно состоит из частиц, которые хаотически движутся и взаимодействуют друг с другом, поэтому любое тело обладает внутренней энергией. Внутренняя энергия – это величина, характеризующая собственное состояние тела, т.е. энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т.д.) и энергия взаимодействия этих частиц. Внутренняя энергия одноатомного идеального газа определяется по формуле U=3/2×m/M×RT.

Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существует два способа изменения внутренней энергии: теплопередача и совершение механической работы (например, нагревание при трении или при сжатии, охлаждение при расширении).

Теплопередача – это изменение внутренней энергии без совершения работы: энергия передаётся от более нагретых тел к менее нагретым. Теплопередача бывает трёх видов: теплопроводность (непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излучение (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче является количество теплоты (Q).

Эти способы количественно объединены в закон сохранения энергии, который читается так. Изменение внутренней энергии замкнутой системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой. DU=Q+A, где DU – изменение внутренней энергии, Q – количество теплоты, переданное системе, А – работа внешних сил. Если система сама совершает работу, то её условно обозначают А. Тогда закон сохранения энергии для тепловых процессов, который называется первым законом термодинамики, можно записать так: Q=A’+DU, т.е. количество теплоты, переданное системе, идёт на совершение системой работы и изменение её внутренней энергии.

При изобарном нагревании газ совершает работу над внешними силами A’=p(V2-V1)=pDV, где V1 и V2начальный и конечный объёмы газа.

Если процесс не является изобарным, величина работы может быть определена площадью фигуры, заключённой между линией, выражающей зависимость p(V) и начальным и конечным объёмами газа (рис.)

Рассмотрим применение первого закона термодинамики к изопроцессам, происходящим с идеальным газом.

В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение первого закона термодинамики примет вид: Q=A’, т.е. количество теплоты, переданное системе, идёт на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.

В изобарном процессе газ расширяется и количество теплоты, переданное газу, идёт на увеличение его внутренней энергии и на совершение им работы: Q=DU+A’.

При изохорном процессе газ не меняет своего объёма, следовательно, работа им не совершается, т.е. А=0, и уравнение первого закона имеет вид Q=DU, т.е. переданное количество теплоты идёт на увеличение внутренней энергии газа.

Адиабатным называют процесс, протекающий без теплообмена с окружающей средой. Q=0, следовательно, газ при расширении совершает работу за счёт уменьшения его внутренней энергии, следовательно, газ охлаждается, A’=DU. Кривая, изображающая адиабатный процесс, называется адиабатной.
Билет 10.

Вопрос 1. Взаимодействие заряжённых тел. Закон Кулона. Закон сохранения электрического заряда.

Законы взаимодействия атомов и молекул удаётся понять и объяснить на основе знаний о строении атома, используя планетарную модель его строения. В центре атома находится положительно заряжённое ядро, вокруг которого вращаются по определённым орбитам отрицательно заряжённые частицы. Взаимодействие между заряжёнными частицами называется электромагнитным. Интенсивность электромагнитного взаимодействия определяется физической величиной – электрическим зарядом, который обозначается q. Единица электрического заряда – кулон (Кл). 1 кулон – это такой электрический заряд, который, проходя через поперечное сечение проводника за 1с, создаёт в нём ток силой 1 А. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух видов зарядов. Один вид заряда назвали положительным, носителем элементарного положительного заряда является протон. Другой вид заряда назвали отрицательным, его носителем является электрон. Элементарный заряд равен e=1,6×10-19Кл.

Заряд тела всегда представляется числом, кратным величине элементарного заряда:

q=e(Np-Ne),

где Neколичество электронов, Npколичество протонов.

Полный заряд замкнутой системы (в которую не входят заряды извне), т.е. алгебраическая сумма зарядов всех тел, остаётся постоянной: q1+q2+…+qn=const. Электрический заряд не создаётся и не исчезает, а только переходит от одного тела к другому. Этот экспериментально установленный факт называется законом сохранения электрического заряда. Никогда и нигде в природе не возникает и не исчезает электрический заряд одного знака. Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряжённых частиц – электронов – от одних тел к другим.

Электризация – это сообщение телу электрического заряда. Электризация может происходить, например, при соприкосновении (трении) разнородных веществ и при облучении. При электризации в теле возникает избыток или недостаток электронов.

В случае избытка электронов тело приобретает отрицательный заряд, в случае недостатка – положительный.

Законы взаимодействия неподвижных электрических зарядов изучает электростатистика.

Основной закон электростатистики был экспериментально установлен французским физиком Шарлем Кулоном и читается так: модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению величин этих зарядов и обратно пропорционален квадрату расстояния между ними. F=k
×
|q1|
×
|q2|/r2
, где q1 и q2модули зарядов, r – расстояние между ними, k – коэффициент пропорциональности, зависящий от выбора системы единиц, в СИ k=9×109 Н×м2/Кл2.

Величина, показывающая, во сколько раз сила взаимодействия зарядов в вакууме больше, чем в среде, называется диэлектрической проницаемостью среды e . Для среды с диэлектрической проницаемостью e закон Кулона записывается следующим образом:

F=k
×
|q1|
×
|q2|/(
e
×
r2).


Вместо коэффициента k часто используется коэффициент, называемый электрической постоянной e0. Электрическая постоянная связана с коэффициентом k следующим образом: k=1/4pe0 и численно равна e0=8,85×10-12 Кл/Н×м2.

С использованием электрической постоянной закон Кулона имеет вид:

F=1/(4pe0)×|q1|
×
|q2|/r2.



Взаимодействие неподвижных электрических зарядов называют электростатистическим, или кулоновским, взаимодействием. Кулоновские силы можно изобразить графически (2 рисунка).

Кулоновская сила направлена вдоль прямой, соединяющей заряжённые тела. Она является силой притяжения при разных знаках зарядов и силой отталкивания при одинаковых знаках.
Билет 11.

Вопрос 1. Конденсаторы. Электроёмкость конденсатора. Энергия заряжённого конденсатора. Применение конденсаторов.

Для накопления значительных количеств разноимённых электрических зарядов применяются конденсаторы. Конденсатор – это система двух проводников (обкладок), разделённых слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенных параллельно и разделённые диэлектриком, образуют плоский конденсатор. Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряжённость между пластинами будет в два раза больше, чем напряжённость одной пластины. Вне пластин напряжённость равна нулю.

Обозначаются конденсаторы на схемах так:

-          конденсатор постоянной ёмкости;

-          конденсатор переменной ёмкости.

Электроёмкостью конденсатора называют величину, равную отношению заряда одной из пластин к напряжению между ними. Электроёмкость обозначается С.

По определению С=q/U. Единицей электроёмкости является фарад (Ф). 1 фарад – это электроёмкость такого конденсатора, напряжение между обкладками которого равно 1 вольту при сообщении обкладкам разноимённых зарядов по 1 кулону.

Электроёмкость плоского конденсатора находится по формуле:

C=ee0S/d,

где e0 – электрическая постоянная, e - диэлектрическая постоянная среды, S – площадь обкладки конденсатора, d – расстояние между обкладками (или толщина диэлектрика).

Если конденсаторы соединяются в батарею, то при параллельном соединении C0=C1+C2 (рис.) При последовательном соединении 1/C0=1/C1+1/C2 (рис.2)

В зависимости от типа диэлектрика конденсаторы бывают воздушные, бумажные, слюдяные.

Конденсаторы применяются для накопления электроэнергии и использования её при быстром разряде (фотовспышка), для разделения цепей постоянного и переменного тока, в выпрямителях, колебательных контурах и других радиоэлектронных устройствах.
Билет 12.

Вопрос 1. Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи.

В электрическом поле из формулы определения напряжения (U=A/q) легко получить выражение для расчёта работы переноса электрического заряда А=Uq, так как для тока заряд q=It, то работа тока: A=UIt, или A=I2Rt=U2/R×t.

Мощность по определению N=A/t, следовательно, N=UI=I2R=U2/R.

Русский учёный Х. Ленц и английский учёный Джоуль опытным путём в середине прошлого века установили независимо друг от друга закон, который называется законом Джоуля-Ленца и читается так. При прохождении тока по проводнику количество теплоты, выделившейся в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока. Q=I2Rt.

Полная замкнутая цепь представляет собой электрическую цепь, в состав которой входят внешние сопротивления и источник тока (рис.) Как один из участков цепи, источник тока обладает сопротивлением, которое называется внутренним, r.

Для того чтобы ток проходил по замкнутой цепи, необходимо, чтобы в источнике тока зарядам сообщалась дополнительная энергия, она берётся за счёт работы по перемещению зарядов, которую производят силы неэлектрического поля. Источник тока характеризуется энергетической характеристикой, которая называется ЭЛС – электродвижущая сила источника. ЭДС – характеристика энергии неэлектрической природы в электрической цепи, необходимого для поддержания в ней электрического тока. ЭДС измеряется отношением работы сторонних сил по перемещению вдоль замкнутой цепи положительного заряда к этому заряду xст/q.

Пусть за время t через поперечное сечение проводника пройдёт электрический заряд q. Тогда работу сторонних сил при перемещении заряда можно записать так: Аст=xq. Согласно определению силы тока q=It, поэтому Aст=xIt. При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых R и r, выделяется некоторое количество теплоты. По закону Джоуля-Ленца оно равно: Q=I2Rt+I2rt. Согласно закону сохранения энергии А=Q. Следовательно, x=IR+Ir. Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так: I=x/(R+r). Эту зависимость опытным путём получил Георг Ом, называется она законом Ома для полной цепи и читается так: сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи. При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.
Билет 13.

Вопрос 1. Магнитное поле, условие его существования. Действие на электрический заряд; опыты, иллюстрирующие это действие. Магнитная индукция.

В 1920 году датский физик Эрстед обнаружил, что магнитная стрелка поворачивается при пропускании электрического тока через проводник, находящийся около неё (рис.). В том же году французский физик Ампер установил, что два проводника, расположенные параллельно друг другу, испытывают взаимное притяжение, если ток течёт по ним в одну сторону, и отталкивание, если токи текут в разные стороны (рис. 2). Явление взаимодействия токов Ампер назвал электродинамическим взаимодействием. Магнитное взаимодействие движущихся электрических зарядов, согласно представлениям теории близкодействия, объясняется следующим образом: всякий движущийся электрический заряд создаёт в окружающем пространстве магнитное поле. Магнитное поле – особый вид материи, который возникает в пространстве вокруг любого переменного электрического поля.

С современной точки зрения в природе существует совокупность двух полей – электрического и магнитного – это электромагнитное поле, оно представляет собой особый вид материи, т.е. существует объективно, независимо от нашего сознания. Магнитное поле всегда порождается переменным электрическим, и наоборот, переменное электрическое поле всегда порождает переменное магнитное поле. Электрическое поле, вообще говоря, можно рассматривать отдельно от –магнитного, так как носителями его являются частицы – электроны и протоны. Магнитное поле без электрического не существует, так как носителей магнитного поля нет. Вокруг проводника с током существует магнитное поле, и оно порождается переменным электрическим полем движущихся заряжённых частиц в проводнике.

Магнитное поле является силовым полем. Силовой характеристикой магнитного поля называют магнитную индукцию (В). Магнитная индукция – это векторная физическая величина, равная максимальной силе, действующей со стороны магнитного поля на единичный элемент тока. B=F/Il. Единичный элемент тока – это проводник длиной 1 м и силой тока в нём 1 А. Единицей измерения магнитной индукции является тесла. 1 Н/А×м.

Магнитная индукция всегда порождается в плоскости под углом 900 к электрическому полю. Вокруг проводника с током магнитное поле также существует в перпендикулярной проводнику плоскости.

Магнитное поле является вихревым полем. Для графического изображения магнитных полей вводятся силовые линии, или линии индукции, - это такие линии, в каждой точке которых вектор магнитной индукции направлен по касательной. Направление силовых линий находится по правилу буравчика. Если буравчик ввинчивать по направлению тока, то направление вращения рукоятки совпадает с направлением силовых линий. Линии магнитной индукции прямого провода с током представляют собой концентрические окружности, расположенные в плоскости, перпендикулярной проводнику (рис. 3).

Как установил Ампер, на проводнике с током, помещённый в магнитное поле, действует сила. Сила, действующая со стороны магнитного поля на проводник с током, прямо пропорциональна силе тока, длине проводника в магнитном поле и перпендикулярной составляющей вектора магнитной индукции. Это и есть формулировка закона Ампера, который записывается так: FA=IlBsina.

Направление силы Ампера определяют по правилу левой руки. Если левую руку расположить так, чтобы четыре пальца показывали направление тока, перпендикулярная составляющая вектора магнитной индукции входила в ладонь, то отогнутый на 900 большой палец покажет направление силы Ампера (рис. 4). B=Bsina.
Билет 14.

Вопрос 1. Полупроводники. Собственная проводимость и примесная проводимость полупроводников. Полупроводниковые приборы и примеры их практического использования.

Полупроводники – это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещённости. По этим свойствам они разительно отличаются от металлов. Обычно к полупроводникам относятся кристаллы, в которых для освобождения электрона требуется энергия не более 1,5-2 эВ. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. Природа этой связи позволяет объяснить указанные выше характерные свойства. При нагревании полупроводников их атомы ионизируются. Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая ток проводимости. Удаление электрона с внешней оболочки одного из атомов в кристаллической решетке приводит к образованию положительного иона. Этот ион может нейтрализоваться, захватив электрон. Далее, в результате переходов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс хаотического перемещения воспринимается как перемещение положительного заряда, называемого “дыркой”. При помещении кристалла в электрическое поле возникает упорядоченное движение “дырок” – ток дырочной проводимости.

В идеальном кристалле ток создаётся равным количеством электронов и “дырок”. Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температура (или освещённости) собственная проводимость проводников увеличивается.

На проводимость полупроводников большое влияние оказывают примеси. Примеси бывают донорные и акцепторные. Донорная примесь – это примесь с большей валентностью. При добавлении донорной примеси в полупроводнике образуются лишние электроны. Проводимость станет электронной, а полупроводник называют полупроводником n-типа. Например, для кремния с валентностью n=4 донорной примесью является мышьяк с валентность n=5. Каждый атом примеси мышьяка приведёт к образованию одного электрона проводимости.

Акцепторная примесь – это примесь с меньшей валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество “дырок”. Проводимость будет “дырочной”, а полупроводник называют полупроводником p-типа. Например, для кремния акцепторной примесью является индий с валентностью n=3. Каждый атом индия приведёт к образованию лишней “дырки”.

Принцип действия большинства полупроводниковых приборов основан на свойствах p-n-перехода. При приведении в контакт двух полупроводниковых приборов p-типа и n-типа в месте контакта начинается диффузия электронов из n-области в p-область, а “дырок” – наоборот, из p- в n-область. Этот процесс будет не бесконечным во времени, так как образуется запирающий слой, который будет препятствовать дальнейшей диффузии электронов и “дырок”.

p-n-Контакт полупроводников, подобно вакуумному диоду, обладает односторонней проводимостью: если к p-области подключить “+” источника тока, а к n-области “-” источника тока, то запирающий слой разрушится и p-n-контакт будет проводить ток, электроны из n-области пойдут в p-область, а “дырки” из p-области в n-область (рис.). В первом случае ток не равен нулю, во втором – ток равен нулю. Это означает, что если к p-области подключить “-” источника, а к n-области “+” источника тока, то запирающий слой расширится и тока не будет.

Полупроводниковый диод состоит из контакта двух полупроводников p- и n- типа          . Полупроводниковые диоды имеют: небольшие размеры и массу, длительный срок службы, высокую механическую прочность, высокий коэффициент полезного действия, их недостатком является зависимость сопротивления от температуры.

В радиоэлектронике применяется также ещё один полупроводниковый прибор: транзистор, который был изобретён в 1948 г. В основе триода лежит не один, а два p-n-перехода. Основное применение транзистора – это использование его в качестве усилителя слабых сигналов по току и напряжению, а полупроводниковый диод применяется в качестве усилителя слабых сигналов по току и напряжению, а полупроводниковый диод применяется в качестве выпрямителя тока. После открытия транзистора наступил качественно новый этап развития электроники – микроэлектроники, поднявший на качественно иную ступень развитие электронной  техники, систем связи, автоматики. Микроэлектроника занимается разработкой интегральных микросхем и принципов их применения. Интегральной микросхемой называют совокупность большого числа взаимосвязанных компонентов – транзисторов, диодов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе. В результате этого процесса на одном кристалле одновременно создаётся несколько тысяч транзисторов, конденсаторов, резисторов и диодов, до 3500. Размеры отдельных элементов микросхемы могут быть 1-5 мкм. Микропроцессор современной ЭВМ, размещённый на кристалле кремния размером 6х6 мм, содержит несколько десятков или даже сотен тысяч транзисторов.

Однако в технике применяются также полупроводниковые приборы без p-n-перехода. Например, терморезисторы (для измерения температуры), фоторезисторы (в фотореле, аварийных выключателях, в дистанционных управлениях телевизорами и видеомагнитофонами).
Билет 15.

Вопрос 1.  Электромагнитная индукция, примеры этого явления. Магнитный поток. Закон электромагнитной индукции. Правило Ленца.

Явление электромагнитной индукции было открыто Майклом Фарадеем в 1831 году. Он опытным путём установил, что при изменении магнитного поля внутри замкнутого контура в нём возникает электрический ток, который называют индукционным током. Опыты Фарадея можно воспроизвести следующим образом: при внесении или вынесении магнита в катушку, замкнутую на гальванометр, в катушке возникает индукционный ток (рис.). Если рядом расположить две катушки (например, на общем сердечнике или одну катушку внутри другой) и одну катушку через ключ соединить с источником тока, то при замыкании или размыкании ключа в цепи первой катушки во второй катушке появится индукционный ток (рис.2) Объяснение этого явления было дано Максвеллом. Любое переменное магнитное поле всегда порождает переменное электрическое поле.

Для количественной характеристики процесса изменения магнитного поля через замкнутый контур вводится физическая величина под названием магнитный поток. Магнитным потоком через замкнутый контур площадью S называют физическую величину, равную произведению модуля вектора магнитной индукции В на площадь контура S и на косинус угла a между направлением вектора магнитной индукции и нормалью к площади контура. Ф=BScosa (рис.3).

Опытным путём был установлен основной закон электромагнитной индукции: ЭДС индукции в замкнутом контуре равна по величине скорости изменения магнитного потока через контур. x
=
D
Ф/
t
.


Единица магнитного потока Ф – вебер (Вб): 1 Вб=1 В×с.

Из основного закона DФ=xt следует смысл размерности: 1 вебер – это величина такого магнитного потока, который, уменьшаясь до нуля за одну секунду, через замкнутый контур наводит в нём ЭДС индукции 1 В.

Классической демонстрацией основного закона электромагнитной индукции является первый р=опыт Фарадея: чем быстрее перемещать магнит через витки катушки, тем больше возникает индукционный ток в ней, а значит, и ЭДС индукции.

Зависимость направления индукционного тока от характера изменения магнитного поля через замкнутый контур в 1833 году опытным путём установил русский учёный Ленц. Он сформулировал правило, носящее его имя. Индукционный ток имеет такое направление, при котором его магнитное поле стремится скомпенсировать изменение внешнего магнитного потока через контур. Ленцем был сконструирован прибор, представляющий собой два алюминиевых кольца, сплошное и разрезанное, укреплённые на алюминиевой перекладине и имеющие возможность вращаться вокруг оси как коромысло (рис. 4). При внесении магнита в сплошное кольцо оно начинало “убегать” от магнита, поворачивая соответственно коромысло. При вынесении магнита из кольца кольцо стремилось “догнать” магнит. При движении магнита внутри разрезанного кольца никакого эффекта не происходило. Ленц объяснял опыт тем, что магнитное поле индукционного тока стремилось компенсировать изменение внешнего магнитного потока.
Билет 16.

Вопрос 1. Явление самоиндукции. Индуктивность. Электромагнитное поле.

Явление самоиндукции заключается в появлении ЭДС индукции в самом проводнике при изменении тока в нем. Примером явления самоиндукции является опыт с двумя лампочками, подключенными параллельно через ключ к источнику тока, одна из которых подключается через катушку (рис.). При замыкании ключа лампочка 2, включенная через катушку, загорается позже лампочки 1. Это происходит потому, что после замыкания ключа ток достигает максимального значения не сразу, магнитное поле нарастающего тока породит в катушке индукционную ЭДС, которая в соответствии с правилом Ленца будет мешать нарастанию тока.

Для самоиндукции выполняется установленный опытным путём закон: ЭДС самоиндукции прямо пропорциональна скорости изменения тока в проводнике. x
=
L
D
I/t.


Коэффициент пропорциональности L называют индуктивность. Индуктивность – это величина, равная ЭЛС самоиндукции при скорости изменения тока в проводнике 1 А/с. Единица индуктивности – генри (Гн). 1 Гн=1Вс/А. 1 генри – это индуктивность такого проводника, в котором возникает ЭДС самоиндукции 1 вольт при скорости изменения тока 1 А/с. Индуктивность характеризует магнитные свойства электрической цепи (проводника), зависит от магнитной проницаемости среды сердечника, размеров и формы катушки и числа витков в ней.

При отключении катушки индуктивности от источника тока лампа, включенная параллельно катушке, даёт кратковременную вспышку (рис. 2). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки. Энергия магнитного поля находится по формуле WМ=LI2/2.

Энергия магнитного поля зависит от индуктивности проводника и силы тока в нём. Эта энергия может переходить в энергию электрического поля. Вихревое электрическое поле порождается переменным магнитным полем, а переменное электрическое поле порождает переменное магнитное поле, т.е. переменные электрические и магнитное поля не могут существовать друг без друга. Их взаимосвязь позволяет сделать вывод о существовании единого электромагнитного поля. Электромагнитное поле – одно из основных физических полей, посредством которого осуществляется взаимодействие электрически заряжённых частиц или частиц, обладающих магнитным моментом. Электромагнитное поле характеризуется напряжённостью электрического поля и магнитной индукцией. Связь между этими величинами и распределением в пространстве электрических зарядов и токов была установлена в 60-х годах прошлого столетия Дж. Максвеллом. Эта связь носит название основных уравнений электродинамики, которые описывают электромагнитные явления в различных средах и в вакууме. Получены эти уравнения как обобщение установленных на опыте законов электрических и магнитных явлений.
Билет 17.

Вопрос 1.  Свободные и вынужденные электромагнитные колебания. Колебательный контур и превращения энергии при электромагнитных колебаниях. Частота и период колебаний.

Электромагнитные колебания – это колебания электрических и магнитных полей, которые сопровождаются периодическим изменением заряда, тока и напряжения. Простейшей системой, где могут возникнуть и существовать электромагнитные колебания, является колебательный контур. Колебательный контур – это система, состоящая из катушки индуктивности и конденсатора (рис. А). Если конденсатор зарядить и замкнуть на катушку, то по катушке потечёт ток (рис. Б). Когда конденсатор разрядится, ток в цепи не прекратится из-за самоиндукции в катушке. Индукционный ток, в соответствии с правилом Ленца, будет течь в ту же сторону и перезарядит конденсатор (рис. В). Ток в данном направлении прекратится, и процесс повторится в обратном направлении (рис. Г). Таким образом, в колебательном контуре будут происходить электромагнитные колебания из-за превращения энергии электрического поля конденсатора (Wэ=CU2/2) в энергию магнитного поля катушки с током (WМ=LI2/2), и наоборот.

Период электромагнитных колебаний в идеальном колебательном контуре (т.е. в таком контуре, где нет потерь энергии) зависит от индуктивности катушки и ёмкости конденсатора и находится по формуле Томпсона T=2pÖLC. Частота с периодом связана обратно пропорциональной зависимостью v=1/T.

В реальном колебательном контуре свободные электромагнитные колебания будут затухающими из-за потерь энергии на нагревание проводов. Для практического применения важно получить незатухающие электромагнитные колебания, а для этого необходимо колебательный контур пополнять электроэнергией, чтобы скомпенсировать потери энергии. Для получения незатухающих электромагнитных колебаний применяют генератор незатухающих колебаний, который является примером автоколебательной системы.
Билет 18.

Вопрос 1.  Электромагнитные волны и их свойства. Принципы радиосвязи и примеры их практического использования.

Английский учёный Джеймс Максвелл на основании изучения экспериментальных работ Фарадея по электричеству высказал гипотезу о существовании в природе особых волн, способных распространяться в вакууме. Эти волны Максвелл назвал электромагнитными волнами. По представлениям Максвелла: при любом изменении электрического поля возникает вихревое магнитное поле и, наоборот, при любом изменении магнитного поля возникает вихревое электрическое поле. Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен непрерывно продолжаться и захватывать все новые и новые области в окружающем пространстве (рис.). Процесс взаимопорождения электрических и магнитных полей происходит во взаимно перпендикулярных плоскостях. Переменное электрическое поле порождает вихревое магнитное поле, переменное магнитное поле порождает вихревое электрическое поле.

Электрические и магнитные поля могут существовать не только в веществе, но и в вакууме. Поэтому должно быть возможным распространение электромагнитных волн в вакууме.

Условием возникновения электромагнитных волн является ускоренное движение электрических зарядов. Так, изменение магнитного поля происходит при изменении тока в проводнике, а изменение магнитного поля происходит при изменении скорости зарядов, т.е. при движении их с ускорением. Скорость распространения электромагнитных волн в вакууме, по расчётам Максвелла, должна быть приблизительно равна 300000 км/с.

Впервые опытным путём получил электромагнитные волны физик Генрих Герц, использовав при этом высокочастотный искровой разрядник (вибратор Герца). Герц опытным путём определил также скорость электромагнитных волн. Она совпала с теоретическим определением скорости волн Максвеллом. Простейшие электромагнитные волны – это волны, в которых электрическое и магнитное поля совершают синхронные гармонические колебания.

Конечно, электромагнитные волны обладают всеми основными свойствами волн.

Они подчиняются закону отражения волн: угол падения равен углу отражения. При переходе из одной среды в другую преломляются и подчиняются закону преломления волн: отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равная отношению скорости электромагнитных волн в первой среде к скорости электромагнитных волн во второй среде и называется показателем преломления второй среды относительно первой.

Явление дифракции электромагнитных волн, т.е. отклонение направления их распространения от прямолинейного, наблюдается у края преграды или при прохождении через отверстие. Электромагнитные волны способны к интерференции. Интерференция – это способность когерентных волн к наложению, в результате чего волны в одних местах друг от друга усиливают, а в –других местах – гасят. (Когерентные волны – это волны, одинаковые по частоте и фазе колебания.) Электромагнитные волны обладают дисперсией, т.е. когда показатель преломления среды для электромагнитных волн зависит от их частоты. Опыты с пропусканием электромагнитных волн через систему из двух решеток показывают, что эти волны являются поперечными.

При распространении электромагнитной волны вектора напряжённости Е и магнитной индукции В перпендикулярны направлению распространения волны и взаимно перпендикулярны между собой (рис.2).

Возможность практического применения электромагнитных волн для установления связи без проводов продемонстрировал 7 мая 1895 года русский физик А. Попов. Этот день считается днём рождения радио. Для осуществления радиосвязи необходимо обеспечить возможность излучения электромагнитных волн. Если электромагнитные волны возникают в контуре из катушки и конденсатора, то переменное магнитное поле оказывается связанным с катушкой, а переменное электрическое поле – сосредоточенным между пластинами конденсатора. Такой контур называется
закрытым (рис.3 а). Закрытый колебательный контур практически не излучает электромагнитные волны в окружающее пространство. Если контур состоит из катушки и двух пластин плоского конденсатора, то под чем большим углом развёрнуты эти пластины, тем более свободно выходит электромагнитное пространство (рис. 3 б). Предельным случаем раскрытого колебательного контура является удаление пластин на противоположные концы катушки. Такая система называется открытым колебательным контуром (рис.3 в). В действительности контур состоит из катушки и длинного провода – антенны.

Энергия излучаемых (при помощи генератора незатухающих колебаний) электромагнитных колебаний при одинаковой амплитуде колебаний силы тока в антенне пропорциональна четвёртой степени частоты колебаний. На частотах в десятки, сотни и даже тысячи герц интенсивность электромагнитных колебаний ничтожна мала. Поэтому для осуществления радио и телевизионной связи используются электромагнитные волны с частотой от нескольких сотен тысяч герц до сотен мегагерц.

При передаче по радио речи, музыки и других звуковых сигналов применяют различные виды модуляции высокочастотных (несущих) колебаний. Суть модуляции заключается в том, что высокочастотные колебания, вырабатываемые генератором, изменяют по закону низкой частоты. В этом и заключается один из принципов радиопередачи. Другим принципом является обратный процесс – детектирование. При радиоприёме из принятого антенной приёмника модулированного сигнала нужно отфильтровать звуковые высокочастотные колебания.

С помощью радиоволн осуществляется передача на расстояние не только звуковых сигналов, но и изображения предметов. Большую роль в современном морском флоте, авиации и космонавтике играет радиолокация. В основе радиолокации лежит свойство отражения волн от проводящих тел. (От поверхности диэлектрика электромагнитные волны отражаются слабо, а от поверхности металлов почти полностью.)
Билет 19.

Вопрос 1. Волновые свойства света (интерференция, дифракция, поляризация). Электромагнитная теория света.

Свет – это электромагнитные волны в интервале частот 63×1014¸+8×1014Гц, воспринимаемых человеческим глазом, т.е. длин волн в интервале 380¸770 нм.

Свету присущи все свойства электромагнитных волн: отражение, преломление, интерференция, дифракция, поляризация. Свет может оказывать давление на вещество, поглощаться средой, вызывать явление фотоэффекта. Имеет конечную скорость распространения в вакууме 300000 км/с, а в среде скорость убывает.

Наиболее наглядно волновые свойства света обнаруживаются в явлениях интерференции и дифракции. Интерференцией света называют пространственное перераспределение светового потока при наложении двух (или нескольких) когерентных световых волн, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности (интерференционная картина). Интерференцией света объясняется окраска мыльных пузырей и тонких масляных плёнок на воде, хотя мыльный раствор и масло бесцветны. Световые волны частично отражаются от поверхности тонкой плёнки, частично проходят её. На второй границе плёнки вновь происходит частичное отражение волны (рис. 1). Световые волны, отражённые двумя поверхностями тонкой плёнки, распространяются в одном направлении, но проходят разные пути. При разности хода l, кратной целому числу длин волн, l=2kl/2.

При разности хода, кратной нечётному числу полуволн, l=(2k+1)l/2, наблюдается интерференционный минимум. Когда выполняется условие максимума для одной длины световой волны, то оно не выполняется для других волн. Поэтому освещённая белым светом тонкая цветная прозрачная плёнка кажется окрашенной. Явление интерференции в тонких плёнках применяется для контроля качества обработки поверхностей просветления оптики.

При прохождении света через малое круглое отверстие на экране вокруг центрального светлого пятна наблюдается чередующиеся тёмные и светлые кольца; если свет проходит через узкую щель, то получается картина из чередующихся светлых и тёмных полос.

Явление отклонения света от прямолинейного направления распространения при прохождении у края преграды называют дифракцией света. Дифракция объясняется тем, что световые волны, приходящие в результате отклонения из разных точек отверстия в одну точку на экране, интерферируют между собой. Дифракция света используется в спектральных приборах, основным элементом которых является дифракционная решётка. Дифракционная решётка представляет собой прозрачную пластинку с нанесённой на ней системой параллельных непрозрачных полос, расположенных на одинаковых расстояниях друг от друга.

Пусть на решётку (рис. 2) падает монохроматический (определённой длины волны) свет. В результате дифракции на каждой щели свет распространяется не только в первоначальном направлении, но и по всем другим направлениям. Если за решёткой поставить собирающую линзу, то на экране в фокальной плоскости все лучи будут собираться в одну полоску.

Параллельные лучи, идущие от краёв соседних щелей, имеют разность хода l=dsinj, где d – постоянная решётки – расстояние между соответствующими краями соседних щелей, называемое периодом решётки, j - угол отклонения световых лучей от перпендикуляра к плоскости решётки. При разности хода, равной целому числу длин волн dsinj=kl, наблюдается интерференционный максимум для данной длины волны. Условие интерференционного максимума выполняется для каждой длины волны при своём значении дифракционного угла j. В результате при прохождении через дифракционную решётку пучок белого света разлагается в спектр. Угол дифракции имеет наибольшее значение для красного света, так как длина волны красного света больше всех остальных в области видимого света. Наименьшее значении угла дифракции для фиолетового света.

Опыт показывает, что интенсивность светового пучка, проходящего через некоторые кристаллы, например исландского шпата, зависит от взаимной ориентации двух кристаллов. При одинаковой ориентации кристаллов свет проходит через второй кристалл без ослабления.

Если же второй кристалл повернут на 900, то свет через него не проходит. Происходит явление поляризации, т.е. кристалл пропускает только такие волны, в которых колебания вектора напряжённости электрического поля совершаются в одной плоскости – плоскости поляризации. Явление поляризации доказывает волновую природу света и поперечность световых волн.

Узкий параллельный пучок белого света при прохождении через стеклянную призму разлагается на пучки света разного цвета. Объясняется разложение белого света тем, что белый свет состоит из электромагнитных волн с разной длиной волны, а показатель преломления света зависит от длины его волны. Показатель преломления связан со скоростью света в среде, следовательно, скорость света в среде зависит от длины волны. Это явление и называют дисперсией света.

На основании совпадения экспериментально измеренного значения скорости электромагнитных волн Максвелл высказал предположение, что свет – это электромагнитная волна. Эта гипотеза подтверждена свойствами, которыми обладает свет.
Билет 20.

Опыты Резерфорда по рассеиванию a-частиц. Ядерная модель атома.

Слово “атом” в переводе с греческого означает “неделимый”. Под атомом долгое время, вплоть до начала XX века, подразумевали мельчайшие неделимые частицы вещества. К началу XX веку в науке накопилось много фактов, говоривших о сложном строении атомов.

Большие успехи в исследовании строения атомов были достигнуты в опытах английского учёного Эрнеста Резерфорда по рассеянию a-частиц при прохождении через тонкие слои вещества. В этих опытах узкий пучок a-частиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За фольгой помещался экран, способный светиться под ударами быстрых частиц. Было обнаружено, что большинство a-частиц отклоняется от прямолинейного распространения после прохождения фольги, т.е. рассеивается, а некоторые a-частицы вообще отбрасываются назад. Рассеяние a-частиц Резерфорд объяснил тем, что положительный заряд не распределён равномерно в шаре радиусом 10-10 м, как предполагали ранее, а сосредоточен в центральной части атома – атомном ядре. При прохождении около ядра a-частица, имеющая положительный заряд, отталкивается от него, а при попадании в ядро – отбрасывается в противоположном направлении. Так ведут себя частицы, имеющие одинаковый заряд, следовательно, существует центральная положительно заряжённая часть атома, в которой сосредоточена значительная масса атома. Расчёты показали, что для объяснения опытов нужно принять радиус атомного ядра равным примерно 10-15 м.

Резерфорд предположил, что атом устроен подобно планетарной системе. Суть модели строения атома по Резерфорду заключается в следующем: в центре атома находится положительно заряжённое ядро, в котором сосредоточена вся масса, вокруг ядра по круговым орбитам на больших расстояниях вращаются электроны (как планеты вокруг Солнца). Заряд ядра совпадает с номером химического элемента в таблице Менделеева.

Планетарная модель строения атома по Резерфорду не смогла объяснить ряд известных фактов: электрон, имеющий заряд, должен за счёт кулоновских сил притяжения упасть на ядро, а атом – это устойчивая система; при движении по круговой орбите, приближаясь к ядру, электрон в атоме должен излучать электромагнитные волны всевозможных частот, т.е. излучаемый свет должен иметь непрерывный спектр, на практике же получается иное: электроны атомов излучают свет, имеющий линейчатый спектр. Разрешить противоречия планетарной ядерной модели строения атома первым попытался датский физик Нильс Бор.
Билет 21.

Квантовые постулаты Бора. Испускание и поглощение света атомами, объяснение этих процессов на основе квантовых представлений. Принцип спектрального анализа и примеры его практического применения.

В основу своей теории Бор положил два постулата. Первый постулат: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует своя энергия; в стационарном состоянии атом не излучает.

Это означает, что электрон (например, в атоме водорода) может находиться на нескольких вполне определённых орбитах. Каждой орбите электрона соответствует вполне определённая энергия.

Второй постулат: при переходе из одного стационарного состояния в другое испускается или поглощается квант электромагнитного излучения. Энергия фотона равна разности энергий атома в двух состояниях: hv=Em-En; h=6,62×10-34 Дж×с, где h – постоянная Планка.

При переходе электрона с ближней орбиты на более удалённую атомная система поглощает квант энергии. При переходе с более удалённой орбиты электрона на ближнюю орбиту по отношению к ядру атомная система излучает квант энергии.

Теория Бора позволила объяснить существование линейчатых спектров.

Спектр излучения (или поглощения) – это набор волн определённых частот, которые излучает (или поглощает) атом данного вещества.

Спектры бывают сплошные, линейчатые и полосатые.

Сплошные спектры излучают все вещества, находящиеся в твёрдом или жидком состоянии. Сплошной спектр содержит волны всех частот видимого света и поэтому выглядит как цветная полоса с плавным переходом от одного цвета к другому в таком порядке: красный, оранжевый, желтый, зелёный, синий и фиолетовый (каждый охотник желает знать, где сидит фазан).

Линейчатые спектры излучают все вещества в атомарном состоянии. Атомы всех веществ излучают свойственные только им наборы волн вполне определённых частот. Как у каждого человека свои личные отпечатки пальцев, так и у атома данного вещества свой, характерный только для него спектр. Линейчатые спектры излучения выглядят как цветные линии, разделённые промежутками. Природа линейчатых спектров объясняется тем, что у атомов конкретного вещества существуют только ему свойственные стационарные состояния со своей характерной энергией, а следовательно, и свой набор пар энергетических уровней, которые может менять атом, т.е. электрон в атоме может переходить только с одних определённых орбит на другие, вполне определённые орбиты для данного химического вещества.

Полосатые спектры излучаются молекулами. Выглядят полосатые спектры подобно линейчатым, только вместо отдельных линий наблюдается отдельные серии линий, воспринимаемые как отдельные полосы.

Характерным является то, что какой спектр излучается данными атомами, такой же и поглощается, т.е. спектры излучения по набору излучаемых частот совпадают со спектрами поглощения. Поскольку атомам разных веществ соответствуют свойственные только им спектры, то существует способ определения химического состава вещества методом изучения его спектров. Этот способ называется спектральным анализом. Спектральный анализ применяется для определения химического состава ископаемых руд при добыче полезных ископаемых, для определения химического состава звезд, атмосфер, планет; является основным методом контроля состава вещества в металлургии и машиностроении.
Билет 22.

Фотоэффект. Законы фотоэффекта и их объяснение. Уравнение Эйнштейна для фотоэффекта и постоянная Планка. Примеры практического применения фотоэффекта.

В 1900 году немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается отдельными порциями – квантами (или фотонами). Энергия каждого фотона определяется формулой E=hv, где h – постоянная Планка, равная 6,63×10-34 Дж×с, v – частота света. Гипотеза Планка объяснила многие явления: в частности, явление фотоэффекта, открытого в 1887 году немецким учёным Генрихом Герцем и изученного экспериментально русским учёным А.Г. Столетовым.

Фотоэффект – это явление испускания электронов веществом под действием света.

В результате исследований были установлены три закона фотоэффекта.

1.        Сила тока насыщения прямо пропорциональна интенсивности светового излучения, падающего на поверхность тела.

2.        Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и зависит от его интенсивности.

3.        Если частота света меньше некоторой определённой для данного вещества минимальной частоты, то фотоэффекта не происходит.

Зависимость фототока от напряжения показана на рисунке 1.

Теорию фотоэффекта создал немецкий учёный А. Эйнштейн в 1905 году. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергию hv. При вылете из металла энергия каждого электрона уменьшается на определённую величину, которую называют работой выхода вых). Работа выхода – это работа, которую необходимо затратить, чтобы удалить электрон из металла. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид: Это уравнение носит название уравнение Эйнштейна.

Если hv<Aвых, то фотоэффекта не происходит. Значит, красная граница фотоэффекта равна vmin=Aвых/h.

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлементы, в которых под действием света происходит изменение концентрации носителей тока. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых источников тока в часах, микрокалькуляторах, проходят испытания первые солнечные автомобили, используются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях.

С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.
Билет 23.

Состав атомного ядра. Изотопы. Энергия связи ядра атома. Цепная ядерная энергия, условия её осуществления. Термоядерные реакции.

В 1932 году английский физик Джеймс Чедвик открыл частицы с нулевым электрическим зарядом и единичной массой. Эти частицы назвали нейтронами. Обозначается нейтрон n. После открытия нейтрона физики Д.Д. Иваненко и Вернер Гейзенберг в 1932 году выдвинули протонно-нейтронную модель атомного ядра. Согласно этой модели ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов – нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. Например, ядро атома кислорода состоит из 8 протонов и 16-8=8 нейтронов. Ядро атома состоит из 92 протонов и 235-92=143 нейтронов.

Химические вещества, занимающие одно и то же место в таблице Менделеева, но имеющие разную атомную массу, называются изотопами. Ядро изотопов отличаются числом нейтронов. Например, водород имеет три изотопа: протий – ядро состоит из одного протона, дейтерий – ядро состоит из одного протона и одного нейтрона, тритий – ядро состоит из одного протона и двух нейтронов.

Если сравнить массы ядер с массами нуклонов, то окажется, что масса ядра тяжёлых элементов больше суммы масс протонов и нейтронов в ядре, а для лёгких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре. Следовательно, существует разность масс между массой ядра и суммой масс протонов и нейтронов, называемая дефектом массы.

Так как между массой и энергией существует связь то при делении тяжёлых ядер и при синтезе лёгких ядер должна выделяться энергия, существующая из-за дефекта масс, и эта энергия называется энергией связи атомного ядра.

Выделение этой энергии может происходить при ядерных реакциях.

Ядерная реакция – это процесс изменения заряда ядра и его массы, происходящий при взаимодействии ядра с другими ядрами или элементарными частицами. При протекании ядерных реакций выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции.

Цепная реакция деления – это ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Необходимым условием развития цепной реакции деления является требование где k – коэффициент размножения нейтронов, т.е. отношение числа нейтронов в данном поколении к их числу в предыдущем поколении. Способностью к цепной ядерной реакции обладает изотоп урана 235U. При наличии определённых критических параметров (критическая масса – 50 кг, шаровая форма радиусом 9 см) три нейтрона, выделившиеся при делении первого ядра, попадают в три соседних ядра и т.д. Процесс идёт в виде цепной реакции, которая протекает за доли секунды в виде ядерного взрыва. Неуправляемая ядерная реакция применяется в атомных бомбах. Впервые решил задачу об управлении цепной реакцией деления ядер физик Энрико Ферми. Им был изобретён ядерный реактор в 1942 году. У нас в стране реактор был запущен в 1946 году под руководством И.В. Курчатова.

Термоядерные реакции – это реакции синтеза лёгких ядер, происходящие при высокой температуре (примерно 107 К и выше). Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звезд. На Земле термоядерная реакция осуществлена только при экспериментальных взрывах, хотя ведутся международные исследования по управлению этой реакцией.
Билет 24.

Вопрос 1. Радиоактивность. Виды излучений и методы их регистрации. Биологическое действие ионизирующей излучений.

Радиоактивность –  это испускание ядрами некоторых элементов различных частиц, сопровождающиеся переходом ядра в другое состояние и изменением его параметров. Явление радиоактивности было открыто опытным путём французским учёным Анри Беккерелем в 1896 году для солей урана. Он заметил, что соли урана засвечивают завёрнутую во много слоёв фотобумагу невидимым проникающим излучением.

Английский физик Резерфорд исследовал радиоактивное излучение в электрических и магнитных полях и открыл три составляющие этого излучения, которые были названы a-, b-, g-излучением.

a-Распад представляет собой излучение a-частиц (ядер гелия) высоких энергий. При этом масса ядра уменьшается на 4 единицы, а заряд – на 2 единицы (рис.).

b-Распад – излучение электронов, заряд которых возрастает на единицу, массовое число не изменяется.

g-излучение представляет собой испускание возбуждённым ядром квантов света высокой частоты. Параметры ядра при этом излучении не меняются, ядро лишь переходит в состояние с меньшей энергией. Распавшееся ядро тоже радиоактивно, т.е. происходит цепочка последовательных радиоактивных превращений. Процесс распада всех радиоактивных элементов идёт до свинца. Свинец – конечный продукт распада.

Приборы, применяемые для регистрации ядерных излучений называются детекторами ядерных излучений. Наиболее широкое применение получили детекторы, обнаруживающие ядерные излучения по производимой ими ионизации и возбуждению атомов вещества: газоразрядный счётчик Гейгера, камера Вильсона, пузырьковая камера. Существует также метод фотоэмульсий, основанный на способности пролетающей частицы создавать в фотоэмульсии скрытое изображение. След пролетевшей частицы виден на фотографии после проявления.

Радиоактивные излучения оказывают сильное биологическое действие на ткани живого организма, заключающееся в ионизации атомов и молекул среды. Возбуждённые атомы и ионы обладают сильной химической активностью, поэтому в клетках организма появляются новые химические соединения, чуждые здоровому организму. Под действием ионизирующей радиации разрушаются сложные молекулы и элементы клеточных структур. В человеческом организме нарушается процесс кроветворения, приводящий к дисбалансу белых и красных кровяных телец. Человек заболевает белокровием, или так называемой лучевой болезнью. Большие дозы излучения приводят к смерти.

1. Реферат Типы, формы и методы организации производства
2. Статья Идеология образования и народная педагогическая культура
3. Реферат Поиск выхода из кризиса XIX-XX век
4. Реферат Финансирование текущей деятельности предприятия 2
5. Реферат История развития предпринимательства в России 2
6. Реферат на тему LifeAffirming Wisdom Within Wide Sargasso Sea Essay
7. Отчет_по_практике на тему Модернизация системы управления рекуперативных колодцев цеха Бл-2
8. Реферат Курская битва 7
9. Лабораторная_работа на тему Методика создания структуры базы данных на персональном компьютере
10. Реферат на тему Burmese Days