Реферат

Реферат Общие сведения о бетоне

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024





1. ОСНОВНЫЕ СВЕДЕНИЯ  О БЕТОНЕ

Бетоном называется искусственный камень, получаемый в результате твердения рационально подобранной смеси, состоящей из вяжущего вещества, воды и заполнителей (песка и щебня или гравия). Смесь этих материалов до затвердевания называется бетонной смесью.

Зерна песка и щебня составляют каменный остов в бетоне. Цементное тесто, образующееся после затворения бетонной смеси водой, обволакивает зерна песка и щебня, заполняет промежутки между ними и играет вначале роль смазки заполнителей, придающей подвижность (текучесть) бетонной смеси, а впоследствии, затвердевая, связывает зерна заполнителей, образуя искусственный камень — бетон. Бетон в сочетании со стальной арматурой называется железобетоном.

Классифицируют бетоны по следующим главнейшим признакам: объемному весу, виду вяжущего вещества, прочности, морозостойкости и назначению.

Основной считается классификация по объемному весу. Бетон делят на особотяжелый объемным весом более 2500 кг/м", тяжелый — объемным весом от 1800 до 2500 кг/м3 включительно, легкий — объемным весом от 500 до 1800 кг!к3 включительно,-особолегкий — объемным весом менее 500 кг/'м3.

В зависимости от наибольшей крупности применяемых заполнителей различают бетоны мелкозернистые с заполнителем размером до 10 мм и крупнозернистые с заполнителем наибольшей крупности 10—150 мм.

Важнейшими показателями качества бетона являются его прочность и долговечность. По показателям прочности при сжатии бетоны подразделяются на марки R в кГ/сль2. Тяжелые бетоны на цементах и обычных плотных заполнителях имеют марки 100—600, особотяжелые бетоны 100—200, легкие бетоны на пористых заполнителях 25—300, ячеистые бетоны 25—200, плотные силикатные бетоны 100—400 и жаростойкие бетоны 100—400.

Долговечность бетонов оценивается степенью морозостойкости. По этому показателю бетоны разделяют на марки морозостойкости Мрз: для тяжелых бетонов Мрз 50—300  и  для легких бетонов Мрз 10—200.

По виду вяжущего вещества различают бетоны:

цементные, изготовленные на гидравлических вяжущих веществах — портландцементах и его разновидностях; силикатные — на известковых вяжущих в сочетании с силикатными или алюминатными компонентами; гипсовые — с применением гипсоангидритовых вяжущих; бетоны на органических вяжущих материалах.

В настоящей главе рассматриваются бетоны на минеральных вяжущих веществах.

Тяжелый бетон изготовляют на цементе и обычных плотных заполнителях, а легкий — на цементе с применением естественных или искусственных пористых заполнителей. Разновидностью легкого бетона является ячеистый бетон, представляющий собой отвердевшую смесь вяжущего вещества, воды, тонкодисперсного кремнеземистого компонента и порообразователя. Он отличается высокой пористостью (до 80—90%) при равномерно распределенных мелких порах. Силикатные бетоны получают из смеси извести и кварцевого песка с последующим твердением сформованных изделий в автоклаве при давлении 9—16 атм (изб.) и температуре 174,5—200° С.

По назначению бетон бывает следующих видов:

обычный — для бетонных и железобетонных несущих конструкций зданий и сооружений (колонны, балки, плиты);

гидротехнический — для плотин, шлюзов, облицовки каналов и др.;для зданий и легких перекрытий; для полов и дорожных покрытий и оснований;

специального назначения: кислотоупорный, жароупорный, особотяжелый для биологической защиты. Последние изготовляют на цементе со специальными видами заполнителей высокого объемного веса.
Строительным раствором называют искусственный каменный материал, получаемый в результате затвердения рационально подобранной смеси, состоящей из вяжущего вещества, воды и мелкого заполнителя — песка. Таким образом, раствор отличается от бетона тем, что в нем отсутствует крупный заполнитель (щебень или гравий). По своему составу строительный раствор является мелкозернистым бетоном, и ему свойственны закономерности, которые присущи бетонам.
По виду вяжущего   вещества   различают   строительные   растворы:

цементные, приготовленные на портландцементе или его разновидностях;

известковые, вяжущим в которых является воздушная или гидравлическая известь;

гипсовые, получаемые на основе гипсовых вяжущих веществ-— строительного гипса, ангидритовых вяжущих. Важнейшими свойствами строительных растворов являются прочность, а растворных смесей — подвижность и водоудерживающая способность,

Прочность затвердевшего раствора, так же как и бетона, зависит от двух основных факторов: активности вяжущего вещества и величины цементоводного отношения.

Эта формула верна для растворов, уложенных на плотное основание; при пористом основании, которое отсасывает из раствора воду и уплотняет этим раствор, прочность увеличивается примерно в 1,5 раза.
Железобетон представляет собой строительный материал, в котором выгодно сочетается совместная работа бетона и стали. Идея сочетания в железобетоне этих двух крайне отличающихся механическими свойствами материалов базируются на следующем. Бетон, как и всякий каменный материал, хорошо сопротивляется сжимающим нагрузкам, но слабо противодействует растягивающим напряжениям: прочность бетона при растяжении примерно в 10—15 раз меньше прочности при сжатии. В результате этого бетон невыгодно использовать для изготовления конструкций, в которых возникают растягивающие напряжения. Сталь же, обладая очень высоким пределом прочности при растяжении, способна воспринимать растягивающие напряжения, возникающие в железобетонном элементе. Наиболее выгодно применять железобетон для строительных элементов, подверженных изгибу. При работе таких элементов возникают два противоположных напряжения—-растягивающие и сжимающие. При этом сталь воспринимает перЕые, а бетон — вторые напряжения и железобетонный элемент в целом успешно противостоит изгибающим нагрузкам. Таким образом, сочетается работа бетона и стали в одном материале — железобетоне.

В зависимости от способа армирования и состояния арматуры- различают железобетонные изделия с обычным армированием и с предварительно напряженной арматурой. В основу классификации сборных железобетонных изделий положены следующие отличительные признаки: вид армирования, объемный вес и вид бетона, внутреннее строение и назначение.

По виду армирования железобетонные изделия подразделяются на предварительно напряженные и с обычным армированием, т. е. без предварительного напряжения.

По объемному весу применяемых бетонов различают изделия, изготовленные: из особотяжелых бетонов объемным весом более 2500 кг/м3; из тяжелых бетонов объемным весом от 1800 до 2500 кг/м3; из легких бетонов объемным весом от 500 до 1800 кг/м3; из особолегких (теплоизоляционных) бетонов объемным весом менее 500 кг/м3.

По виду бетонов и применяемых в бетоне вяжущих получают изделия: из цементных бетонов — тяжелых на обычных плотных заполни-тйлях, из особотяжелых бетонов и легких бетонов на пористых заполнителях; из силикатных бетонов — плотных (тяжелых) или легких на пористых заполнителях на основе извести или смешанном вяжущем; из ячеистых бетонов — на цементе, извести или смешанном вяжущем; из специальных бетонов—жаростойких, химически стойких, декоративных, гидратных.

По внутреннему строению изделия могут быть сплошными и пустотелыми, изготовленными из бетона одного вида — однослойные или двухслойные и многослойные, изготовленными из бетона разных видов или с применением различных материалов, например теплоизоляционных.
В эту группу входят искусственные каменные необожженные изделия, которые получают из растворных или бетонных смесей на основе минеральных вяжущих веществ в процессе их формования и последующего затвердевания. В качестве заполнителей применяют кварцевый песок, пемзу, шлак, золу, древесные опилки. Для повышения прочности изделий на изгиб их армируют, используя для этой цели волокнистые материалы — асбест, древесину (в виде шерсти, дробленых отходов), бумажную макулатуру, листовую бумагу и др.

Искусственные каменные изделия можно разделить на следующие четыре группы по виду минерального вяжущего:

1)         гипсовые и гипсобетонные;

2)         силикатные, получаемые на основе извести с кремнеземистыми заполнителями;

3)         на основе магнезиальных вяжущих;

4)         асбестоцементные, изготовляемые на   основе   портландцемента с добавкой асбеста.
Изделия на основе гипса можно получать как из гипсового теста, т. е. из смеси гипса и воды, так и из смеси гипса, воды и заполнителей. В первом случае изделия называют гипсовыми, а во втором — гипсобетоннымн.

Вяжущими для изготовления гипсовых и гипсобетонных изделий в зависимости от их назначения служат строительный или высокопрочный гипс, водостойкие гипсо-цементно-пуццолановые смеси, а также ангидритовые цементы. В качестве заполнителей в гипсобетоне применяют кварцевый песок, пемзу, туф, топливные и металлургические шлаки, а также легкие пористые заполнители промышленного изготовления (шлаковая пемза, керамзитовый гравий, агломерат и др.). Органическими заполнителями (их называют еще наполнителями) являются древесные опилки, стружка или Шерсть, бумажная макулатура, стебли или волокно камыша, льняная костра и др.

Для получения высокопористых теплоизоляционных гипсовых изделий (газогипса) в состав гипсовой массы вводят газообразующие добавки— разбавленную серную кислоту, углекислый кальций, едкий натр и перекись водорода, при взаимодействии которых с гипсом выделяется газ, вспучивающий гипсовую массу

Основное назначение наполнителей — сократить расход вяжущих материалов при изготовлении изделий, т. е. снизить их себестоимость. Наполнители вводят также для снижения или увеличения веса изделий, улучшения гвоздимости, уменьшения хрупкости, повышения тепло- и звукоизоляционных свойств. На основные виды заполнителей установлены государственные стандарты и технические условия, в которых приведены нормы требований и важнейшие качественные показатели материалов.
Известь. В производстве силикатобетонных автоклавных изделий применяют известь в виде молотой кипелки, пушонки, а также частично загашенного материала. Известь должна характеризоваться средней скоростью гидратации, умеренным экзотермическим эффектом, быть раЕномерно обожженной и отличаться постоянством своих свойств, не содержать более 5% MgO, а время ее гашения не должно превышать 20 мин. По другим показателям известь должна удовлетворять требованиям технических условий. Недожог извести влечет повышенный ее расход, однако частичное присутствие известняка не только не ухудшает качества изделий, но далее повышает их прочность. Пережог замедляет скорость гидратации извести и вызывает появление в изделиях трещин, вспучиваний и других дефектов, поэтому для производства автоклавных силикатных изделий его содержание недопустимо.

Кварцевый песок в производстве силикатных изделий применяют немолотый, в виде смеси немолотого и тонкомолотого, а также грубомоло-тый. Песок для силикатных автоклавных изделий должен содержать кремнезема SiO2 не менее 70%; наличие примесей отрицательно влияет на качество изделий: слюда понижает прочность изделий, ее содержание в песке не должно превышать 0,5%; органические примеси вызывают вспучивание и также понижают прочность; ограничивается содержание в песке и сернистых примесей — не более 1% в пересчете на.БОз. Равномерно распределенные глинистые примеси допускаются в количестве не более 10% — они не только не понижают качество силикатных изделий, но и повышают удобоукладываемость сырьевой смеси; крупные включения глины снижают качество изделий. Зерновой состав, форма и характер поверхности зерен также оказывают большое влияние на качество изделий: лучшее сцепление обеспечивают зерна с шероховатой поверхностью и предпочтительными являются горные пески. Прочность изделий зависит от их плотности, т. е. от количества пустот в песке. Максимальная плотность достигается при смешивании зерен песка различных размеров.

Вода должна быть чистой, не содержать вредных примесей.

Для производства автоклавных изделий используют различные шлаки, золы от сжигания сланцев и углей, горелые породы. При твердении автоклавных изделий ряд шлаков и зол может частично и даже полностью заменить известь (шлакопесчаные и золопесчаные автоклавные изделия). Разнообразные шлаки и золы могут быть заполнителями в автоклавных изделиях, что практикуется обычно в производстве ячеистых материалов (газосиликат и др.). Для получения газошлакозолобетонных изделий используют шлаки и золы частично в виде вяжущих, частично — в виде заполнителей. Шлаки и золы не должны содержать посторонних примесей (мусора, отходов древесины и т. д.), они должны противостоять железистому распаду.
. ФИБРОЛИТ МАГНЕЗИАЛЬНЫЙ

Материалы и изделия на основе магнезиальных вяжущих получают путем формования и последующего высушивания смеси каустического магнезита или доломита и органического заполнителя, затворенного раствором хлористого магния. В качестве органических заполнителей применяют древесные опилки, получая ксилолит, или древесные шерсть и стружку, получая фибролит. Возможность использования органических заполнителей в смеси с магнезиальными вяжущими определяется полной сохранностью   их   в   результате   минерализации   оксихлоридом магния, образующимся при твердении вяжущих. Наряду с этим органические заполнители, отличаясь небольшим объемным весом, придают фибролиту и ксилолиту высокие тепло- и звукоизоляционные свойства, а также легкость обработки: материал пилится, режется, имеет  хорошую гвоздимость.

Технология фибролитовых плит следующая. Каустический магнезит затворяют раствором хлористого или сернокислого магния и тщательно смешивают с дозированной частью древесной шерсти. Приготовленную фибролитовую массу загружают в металлические или деревянные формы, прессуют под давлением 0,4—0,5 кГ]см2 и направляют в камеры сушки.

В зависимости от объемного веса различают фибролит теплоизоляционный, конструктивный и фибролитовую фанеру. Применяют теплоизоляционный фибролит для утепления стен, полов и перекрытий, конструктивный — для заполнения стен, перегородок и перекрытий каркасных зданий, а фибролитовую фанеру используют в качестве штукатурки.

2. КСИЛОЛИТ

Ксилолит представляет собой затвердевшую смесь древесных опилок и магнезиального вяжущего, затворенного раствором хлористого магния. В ксилолит можно вводить также добавки асбеста, трепела, кварцевого песка и красители. Ксилолитовую массу получают тщательным перемешиванием сухих каустического магнезита, заполнителей и красителей с последующим затворением раствором хлористого магния. Если ксилолитовая масса предназначается для полов, то смесь должна иметь пластичную консистенцию. Уложенную на основание ксилолитовую массу выравнивают и   уплотняют  вибрацией   или  трамбованием.

При изготовлении ксилолитовых плиток на заводе приготовляют массу жесткой консистенции, которую прессуют в горячем состоянии под давлением 300 кГ/см2. Состав массы для производства ксилолитовых плиток 1:4 (1 объемная часть вяжущего и 4 объемных части опилок). Ксилолитовые плитки выпускают квадратной или шестиугольной формы размером 20X20 или 15x15 см и толщиной 12—15 мм.

На основе магнезиальных вяжущих приготавливают также пено-и газомагнезиты — высокоэффективные теплоизоляционные материалы. Их получают путем смешивания каустического магнезита, затворенного раствором хлористого магния, с устойчивой пеной или с газообразователем.

Теплоизоляционный магнезиальный материал получают также из смеси каустического магнезита или каустического доломита и асбеста, затворенных раствором хлористого магния. Количество асбеста составляет 15%. Из массы на каустическом магнезите вырабатывают теплоизоляционные асбестомагнезиальные материалы, а на каустическом доломите — совелит
Химический состав клинкера определяется содержанием оксидов (% по массе), причем главных из них: СаО 63- 66, SiQ2 21-24,  А1203 4-8,  Fe203 2-4; их суммарное количество составляет 95-97%. В  небольших количествах в виде различных соединений могут входить MgO, S03, Na2О и К2О, а также ТiO2, Сг203, Р2О5. В процессе обжига, доводимого до спекания, главные оксиды образуют силикаты, алюминаты, алюмоферрит кальция в виде минералов кристаллической структуры, а некоторые из них входят в стекловидную фазу.

Минеральный состав клинкера. Основные минералы клинекера: алит, белит, трехкальциевый алюминат и алюмоферрит кальция.

Алит 3CaO-Si02 (или C3S*) - самый важный минерал клинкера, определяющий быстроту твердения, прочность и другие свойства портландцемента; содержится в клинкере в количестве 45-60 °С. Алит представляет собой твердый раствор трехкальциевого силиката и небольшого количества (2-4 %) MgO, А1203, Р205, Сг203 и других примесей, которые могут существенно влиять на структуру и свойства.

Белит 2CaO-Si02 (или C2S) - второй по важности и содержанию (20-30%) силикатный минерал клинкера. Он медленно твердеет, но достигает высокой прочности при длительном твердении портландцемента. В интервале между нормальной температурой и 1500 °С существу ет пять кристаллических форм двухкальциевого силиката. Белит в клинкере представляет собой твердый раствор В-двухкальциевого силиката (В-C2S) и небольшого количества (1-3%) А1203, Fe203, MgO, Сг203.

Обжиг смеси производится во вращающихся печах, представляющих собой металлические цилиндры, обложенные внутри огнеупорной футеровкой. Печь укладывают на специальные катки с небольшим уклоном к поверхности земли, за счет чего по мере вращения сырьевая смесь продвигается по печи от приподнятого конца к опущенному. Длина печи достигает 180 м, а иногда доходит до 250 м, диаметр - до 6 м. По мере продвижения смесь подсушивается, скатывается в шарики и под действием высокой температуры (1450 ... 1500 °С) спекается в гранулы размером 5 ... 20 мм и более. Затем гранулы охлаждаются сначала в печи, в зоне охлаждения, впоследствии - в специальных устройствах - холодильниках.

Существует и достаточно прогрессивный способ обжига клинкера. В печи силикатный расплав заменен расплавом на основе хлористого кальция. Существенно снижается температура обжига (1100 ... 1150 °С), в 3 .. .4 раза облегчается помол, но в цементе появляется минерал - алинит, содержащий алюмохлоридсиликат кальция. Этот цемент быстрее твердеет в начальные сроки.

Остывший клинкер подвергают размолу чаще всего в шаровых мельницах, представляющих собой металлические цилиндры диаметром до 3,5 и длиной до 15 ... 20 м, которые выложены изнутри бронированными плитами. Мельницы имеют 2 ... 3 камеры, отделенные друг от друга металлическими перегородками с отверстиями для прохождения размалываемого материала.

Размол клинкера и постепенное продвижение размалываемого материала обеспечиваются при вращении за счет наклона мельницы. По выходе из шаровой мельницы портландцемент подают на склад в силосы, где он остывает и выдерживается некоторое время, достаточное для стабилизации.
. ГИПСОВЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА

Гипсовые вяжущие вещества делятся на две группы — низкообжиговые и высокообжиговые. Низкбобжиговые вяжущие вещества получают при нагреве двуводного гипса CaSO4-2H2O до температуры 150— 160° С; при этом происходит частичная дегидратация двуводного гипса с переходом его в полуводный гипс CaSO4 • 0,5 Н2О.

Высокообжиговые (ангидритовые) вяжущие получают обжигом двуводного гипса при более высокой температуре — до 700—900° С — с полной потерей химически связанной воды и образованием безводного сульфата кальция — ангидрита CaSO4. К низкообжиговым относится строительный и высокопрочный гипс, а к высокообжиговым — ангидритовый цемент и высокообжиговый гипс (эстрих-гипс).

Сырьем для производства гипсовых вяжущих являются природный гипсовый камень CaSC>4-2H2O и природный ангидрит CaSO4, а также отходы химической промышленности, содержащие двуводный или безводный сернокислый кальций, например фосфогипс.

Строительный гипс

Строительным гипсом называется воздушное вяжущее вещество, состоящее преимущественно из полуводного гипса и получаемое путем термической обработки гипсового камня при температуре 150—160° С. При этом CaSOi >2Н2О, содержащийся в гипсовом камне, дегидратируется по реакции:

CaSO4 • 2Н2О -»- CaSOi • 0,5Н2О + 1,5Н2О — q.

Производство строительного гипса складывается из дробления, помола и тепловой обработки (дегидратации) гипсового камня
2. АНГИДРИТОВЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА

Ангидритовый цемент получают обжигом природного двуводного гипса при температуре 600—700° С с последующим измельчением совместно с добавками — катализаторами твердения (известью, смесью сульфата натрия с медным или железным купоросом, обожженным доломитом, основным доменным гранулированным шлаком, золами горючих сланцев, золами ТЭЦ и др.).)

Ангидритовое вяжущее было предложено П. П. Будниковым, по данным которого оптимальные дозировки катализаторов были: известь 2—5%; смесь бисульфата или сульфата натрия с железным или медным купоросом по 0,5—1 % каждого; доломит, обожженный при 800— 900° С 3—8%; основной гранулированный доменный шлак 10—15%. Железный и медный купорос уплотняют поверхность затвердевшего ангидритового цемента, вследствие чего катализаторы не выделяются и не образуют выцветы на поверхности изделия. Действие катализаторов объясняется   тем,   что   ангидрит   обладает   способностью   образовывать комплексные соединения с различными солями в виде неустойчивого сложного гидрата mCaSO4 • яН2О, который в дальнейшем распадается, образуя CaSO4 • 2Н2О.

Ангидритовый цемент можно получить также путем помола природного ангидрита с указанными добавками,-^Ангидритовый цемент — медленно схватывающееся вяжущее: начало не ранее 30 мин, конец — не позднее 24 ч. По прочности на сжатие, различают марки 50, 100, 150 и 200.

Применяют ангидритовые цементы для приготовления кладочных и штукатурных растворов, бетонов, производства теплоизоляционных материалов, искусственного мрамора и других декоративных изделий.
3. МАГНЕЗИАЛЬНЫЕ ВЯЖУЩИЕ ВЕЩЕСТВА

Разновидностями магнезиальных вяжущих веществ являются каустический магнезит и каустический доломит.

Каустический магнезит получают при обжиге горной породы магнезита MgCO3 в шахтных или вращающихся печах при 700—800° В результате магнезит разлагается по реакции MgCOe—^MgO + CO акция разложения MgCO3 обратимая, поэтому при обжиге магнезита необходимо интенсивно удалять из печи СО2 при помощи естественной или искусственной тяги. Оставшееся твердое вещество — окись магния — измельчают в тонкий порошок и упаковывают в металлические барабаны. Обожженный магнезит целесообразно размалывать в шаровой мельнице с сепаратором.

Каустический магнезит твердеет сравнительно быстро: схватывание его должно наступать не ранее 20 мин, а конец — не позднее 6 ч от момента затворения. Марки каустического магнезита по СНиП 1-В.2г62 по показаниям прочности при сжатии образцов-кубов из жесткого трамбованного раствора состава 1 : 3 по весу через 28 суток воздушного твердения установлены 400, 500 и 600.

Каустический доломит MgO • СаСО3 получают путем обжига при 650—750° С природного доломита MgCO3 • СаСО3 с последующим тонким измельчением продукта. При температуре обжига СаСО3 не разлагается и остается в инертном виде как балласт, что делает вяжущую активность каустического доломита ниже, чем каустического   магнезита.

Каустический доломит содержит значительное количество углекислого кальция: в нем должно быть не менее 15% окиси магния и не более 2,5% окиси кальция, поэтому качество его ниже, чем каустического магнезита и марки его только 100—300.

Магнезиальные вяжущие затворяют не водой, а водными растворами солей сернокислого или хлористого магния. Наиболее распространенным затворителем является раствор хлористого магния MgCb, так как он обеспечивает большую прочность. Магнезиальные вяжущие слабо сопротивляются действию воды, и их можно использовать только при твердении на воздухе с относительной влажностью не более 60%. Каустический магнезит легко поглощает влагу и углекислоту из воздуха, в результате чего образуются гидрат окиси магния и углекислый магний. Поэтому хранить его надо в плотной герметической таре.

На основе магнезиальных вяжущих изготовляют ксилолит (смесь вяжущего с опилками), используемый для устройства полов, фибролит и другие теплоизоляционные материалы. Применяют магнезиальные вяжущие и при производстве изделий для внутренней облицовки помещений, изготовления пенобетона, оснований под чистые полы, скульптурных изделий.
4. КИСЛОТОУПОРНЫЕ ЦЕМЕНТЫ

Кислотоупорные цементы применяют для футеровки химической аппаратуры, возведения башен, резервуаров и других сооружений химической промышленности. Эти цементы состоят из смеси водного раствора силиката натрия (растворимого стекла), кислотоупорного наполнителя и добавки — ускорителя твердения. В качестве микронаполнителя используют кварц, кварциты, андезит, диабаз и другие кислотоупорные материалы, ускорителя твердения — кремнефтористый натрий. Вяжущим материалом в кислотоупорном цементе язляется растворимое стекло— водный раствор силиката натрия Na2O-nSiO2 или силиката калия КгО • nSiOz (величина п указывает отношение числа молекул кремнезема и щелочного окисла и называется модулем стекла; он колеблется в пределах от 2,5 до 3,5).

Растворимое стекло получают при сплавлении в стекловаренных печах при 1300—1400° С измельченного и тщательно смешанного кварцевого песка с кальцинированной содой, сульфатом натрия или с поташом К2СО3. Варка продолжается 7—10 ч, и полученная стекломасса поступает из печи в вагонетки, где быстро охлаждается и распадается на куски. Застывшие куски называют «силикат-глыба». Это стекло при обычных условиях практически нерастворимо в воде, поэтому его растворяют действием пара высокого давления (5—6 атм) при температуре около 150°С, оно сравнительно легко переходит в жидкое состояние, приобретая вяжущие свойства.
5. СТРОИТЕЛЬНАЯ ВОЗДУШНАЯ ИЗВЕСТЬ

Воздушной известью называется продукт, получаемый путем обжига до возможно более полного выделения углекислоты кальциево-магниевых карбонатных пород, содержащих не более 6% глины.

В зависимости от последующей обработки обожженного продукта различают следующие виды воздушной извести:

негашеную комовую известь-кипелку, состоящую главным образом из СаО;

негашеную молотую известь того же состава;

гидратную известь-пушонку в виде тонкого порошка, полученного гашением комовой извести определенным количеством воды и состоящего в основном из Са(ОН)2;

известковое тесто, полученное гашением комовой извести избыточным количеством воды и состоящим из Са(ОН)2 и механически примешанной воды.

На свойства извести большое влияние оказывает содержание в известняках примесей глины, углекислого магния, кварца и др.: чем больше глинистых и песчаных примесей, тем более тощей получается известь. Известь, свободная от примесей, быстро гасится, выделяя при этом много тепла, и дает высокопластичное тесто.

В зависимости от содержания окиси магния различают воздушную известь маломагнезиальную (MgO не более 5%), магнезиальную (MgO 5—20%) и доломитовую (MgO 20—40%). С увеличением содержания MgO известь гасится медленнее, так как Mg(OH)2 менее растворим в воде, чем Са(ОН)2.

В зависимости от температуры, развивающейся при гашении, различают низкоэкзотермическую (с температурой гашения ниже 70° С) и высокоэкзотермическую (с температурой гашения выше 70° С) известь. .По скорости гашения известь бывает быстрогасящейся (со скоростью гашения до 20 мин) и медленногасящейся (со скоростью гашения свыше 20 мин). В зависимости от содержания в извести СаО и MgO известь делится ка два сорта: в извести I сорта СаО и MgO должно быть не менее 85, а в извести II сорта — не   менее  70%   (от  веса   извести).
3. ПОРТЛАНДЦЕМЕНТ

Портландцемент является основным материалом в современном промышленном, гражданском, жилищном, сельскохозяйственном, гидротехническом и дорожном строительстве.

Портландцементом называется гидравлическое йяжуЩёе вещество, твердеющее в воде и на воздухе, получаемое тонким измельчением обожженной до спекания сырьевой смеси известняка и глины, обеспечивающей преобладание в клинкере силикатов кальция. Спекшаяся сырьевая смесь в виде зерен размером до 40 мм называется клинкером; .от качества его зависят важнейшие свойства цемента: прочность и скорость ее нарастания, долговечность, стойкость в различных эксплуатационных условиях

Для регулирования сроков схватывания цемента к клинкеру при помоле добавляют гипс в количестве не менее 1,5 и не более 3,5% веса цемента в пересчете на ангидрид серной кислоты SO3. Портландцемент можно выпускать без добавок или с.активными минеральными добавками в количестве до 15% от веса цемента.
активные минеральные (иначе гидравлические) добавки могут быть природными и искусственными. К природным активным минеральным добавкам относят некоторые осадочные горные породы (диатомит, трепел, опоку, глиежи — естественно обожженные глинистые породы), а также породы вулканического происхождения (вулканический пепел, туф, пемзу, трасс). В качестве искусственных активных минеральных добавок используют побочные продукты и отходы промышленности: быстроохлажденные (гранулированные) доменные и электротермофосфориые шлаки, топливные золы и шлаки, нефелиновый шлам (побочный продукт производства глинозема, состоящий на 80 % из двухкальциевого силиката), обожженные при температуре до 800 °С глины (глиниты, цемянка) и др.

В составе минеральных добавок в значительном количестве содержатся химически активные составляющие: аморфный водный диоксид кремния (диатомиты, трепелы и другие осадочные породы); аморфный диоксид кремния и алюмосиликаты (вулканические и искусственные добавки); метакаолинит и активный глинозем (в добавках, содержащих обожженное глинистое вещество — глиниты, глиежи, зола-унос и топливные шлаки). Если такие добавки тонко измельчить, то в присутствии влаги, даже при обычной температуре, они способны взаимодействовать с гидроксидом кальция, находящимся в извести или выделившимся при твердении портландцемента, образуя практически нерастворимые продукты реакции.

В результате воздушная известь приобретает гидравлические свойства, а портландцемент — специальные свойства и более низкую себестоимость.

В зависимости от вида активной минеральной добавки и ее количества портландцемента с минеральными добавками разделены на три вида: портландцемент с минеральными добавками (ПЦД), пуццолановый портландцемент   (ППЦ)   и шлакопортландцемент   (ШПЦ).

Портландцемент с минеральными добавками (ПЦД) получают измельчением клинкера, минеральных добавок и гипса. Предельно допустимое содержание минеральных добавок в цементе (ГОСТ 10178 — 85) не должно превышать 20%. При этом практически сохраняются все свойства портландцемента, кроме морозостойкости  (она несколько ниже), а некоторые свойства улучшаются (больше водостойкость, меньше тепловыделение, более высокая сопротивляемость коррозии первого вида). При его получении экономится портландцементный клинкер, что способствует снижению себестоимости цемента. Марки такого цемента те же, что и у портландцемента: 400, 500, 550 и 600. По специальному разрешению допускается на отдельных заводах выпускать ПЦД МЗОО. ПЦД успешно применяют в строительстве вместо портландцемента, за исключением случаев, когда требуется высокая морозостойкость.

 Портландцемент с минеральными добавками имеет разновидности: быстротвердеющий портландцемент ПЦД-Б (ГОСТ 10178—85) и сульфатостойкий портландцемент с минеральными добавками — СПЦД (ГОСТ 22266—76). Для получения указанных цементов используют клинкер, состав которого аналогичен клинкеру соответственно быстротвердеющего и сульфатостойкого портландцемента (см. с. 157), и минеральные добавки — гранулированный шлак (не более 10...20%) или трепел, опоку, диатомит (не более 5... 10 %). Такие цементы выпускают М400 и 500 и применяют практически наравне с быстротвердеющим и сульфатостойким портландцементом.

 Пуццолановый портландцемент изготовляют путем совместного тонкого помола клинкера, содержащего не более 8 % С3А, необходимого количества гипса и активной минеральной добавки 20...40 %, или тщательным смешиванием тех же материалов, измельченных раздельно. Содержание активных минеральных добавок устанавливают с учетом активности минеральной добавки и минерального состава клинкера. В соответствии с ГОСТ 22266—76 он отнесен к группе сульфатостойких цементов и выпускается МЗОО и 400.

 Шлакопортландцемент (ШПЦ) изготовляют так же, как и пуццолановый портландцемент, но в качестве активной минеральной добавки используют доменные гранулированные шлаки, содержание которых должно быть не менее 21 % и не более 80% от массы цемента.

Доменные шлаки представляют собой продукт сплавления веществ, находящихся в пустой породе руды и топлива в основном в виде глины с флюсами (плавнями), которыми обычно являются известняк и доломит. При выплавке 1 т чугуна в среднем получается 0,6...0,75 т шлака.

По химическому составу доменные шлаки в основном состоят из CaO, SiO2, A12O3 и отчасти MgO, суммарное содержание которых достигает 90...95%. При высокой температуре в доменной печи диоксид кремния и оксид алюминия глинистых минералов взаимодействуют с оксидом кальция. При этом образуются малоосновные силикаты и алюминаты кальция. Структура и состав соединений в шлаках зависят не только от его химического состава, но и от условий охлаждения. Медленно охлажденный шлаковый расплав успевает закристаллизоваться, и образующийся шлак представляет собой конгломерат различных устойчивых соединений в кристаллическом виде, сцементированных тем или иным количеством шлакового стекла. При быстром охлаждении расплав не успевает закристаллизовываться и шлак образуется в стекловидном состоянии. В этом случае он имеет большую химическую активность. Поэтому для изготовления вяжущих веществ используют шлаки, которые получают быстрым охлаждением расплава водой. Такие шлаки имеют вид зерен (гранул) размером до 10 мм, отсюда их название — гранулированные.

Если модуль основности равен или больше единицы, шлак называют основным, при модуле меньше единицы— кислым. Гидравлическая активность доменных шлаков в большинстве случаев с увеличеием Мо и особенно Ма возрастает. Если основные шлаки измельчить и смешать с водой, то они схватываются и затвердевают, т. е. обладают самостоятельными вяжущими свойствами, особенно в присутствии активизаторов (например, извести или гипса). Такие шлаки можно вводить в шлакопорт-ландцемент до 50...80 %. Кислые шлаки не обладают самостоятельными вяжущими свойствами, но при наличии гидроксида кальция, выделяющегося при твердении клинкерной части шлакопортландцемента, твердеют, образуя низкоосновные гидросиликаты и гидроалюминаты кальция. Во избежание значительного снижения морозостойкости и водонепронцаемости бетонов их дозировка должна быть умеренной — не более 40 %.

Шлакопортландцемент выпускают трех марок: 300, 400, 500. Он имеет две разновидности: быстротвердеющий шлакопортландцемент —ШПЦБ М400 и сульфато-стойкий шлакопортландцемент — СШПЦ М300 и 400.

 Быстротвердеющий шлакопортландцемент изготовляют из высококачественных клинкеров и активных гранулированных шлаков, размалывая их до 4000... 5000 см2/г. По ГОСТ 10178—85 ШПЦБ за 3 сут должен приобрести прочность при сжатии не менее 13,6 МПа, при изгибе — не менее 3,4 МПа.

 Сульфатостойкий шлакопортландцемент входит в группу сульфатостойких цементов (ГОСТ 22266—76). Повышенная сульфатостойкость этого цемента обеспечивается применением клинкера и гранулированного шлака, в которых А12Оз не более 8%. Другие минеральные добавки, кроме шлака, не допускаются. При таком составе вяжущего в затвердевшем камне преобладают низкоосновные гидросиликаты и гидроалюминаты кальция и практически отсутствует свободный гидроксид кальция, что и способствует повышению сульфатостойкости шлакопортландцемента по сравнению с портландцементом.

1. Реферат Бой на реке Сестра
2. Реферат Основные представления о специальной и общей теории относительности
3. Реферат Демографическая ситуация в Соединённых Штатах Мексики Участие страны в международной миграции
4. Реферат на тему Ethnicity Ethnic Groups Essay Research Paper
5. Курсовая Налоговая система 6
6. Реферат на тему Сочетание почечноклеточного рака и пузырно-влагалищного свища случай из практики
7. Реферат Media In Politics Essay Research Paper The
8. Сочинение Пространство, звезды и певец
9. Реферат на тему Romance Essay Research Paper Should the man
10. Реферат Охрана труда 9