Реферат Углеродистые и лигированные стали
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Виды стали
Сталь по химическому составу делится на две группы: углеродистую и легированную, по качеству - на сталь обыкновенного качества, качественную, повышенного качества, высококачественную и особовысококачественную.
Углеродистой сталью называется сплав железа с углеродом (содержание углерода до 2%) с примесями кремния, серы и фосфора, причем главной составляющей, определяющей свойства, является углерод.
Процентное содержание элементов в стали примерно следующее: Fe - до 99,0; С - 0,05-2,0; Si - 0,15-0,35; Mn - 0,3-0,8; S - до 0,06; P - до 0,07.
К недостаткам углеродистой стали относятся:
- отсутствия сочетания прочности и твердости с пластичностью;
- потеря твердости и режущей способности при нагревании до 200°C и потери прочности при высокой температуре;
- низкая коррозионная устойчивость в среде электролита, в агрессивных средах, в атмосфере и при высоких температурах;
- низкие электротехнические свойства;
- высокий коэффициент теплового расширения;
- увеличение веса изделий, удорожание их стоимости, усложнение проектирования вследствие невысокой прочности этой стали.
Легированной называется сталь, в которой наряду с обычными примесями имеются легированные элементы, резко улучшающие ее свойства: хром, вольфрам, никель, ванадий, молибден и др., а также кремний и марганец в большом количестве. Примеси вводятся в процессе плавки.
По химическому составу (ГОСТ 5200) легированная сталь делится на три группы:
- низколегированная сталь - не более 2,5% примесей;
- среднелегированная - 2,5-10%;
- высоколегированная - свыше 10%.
Легированная сталь обладает ценнейшими свойствами, которых нет у углеродистой стали, и не имеет ее недостатков. Применение легированной стали повышает долговечность изделий, экономит металл, увеличивает производительность, упрощает проектирование и потому в прогрессивной технике приобретает решающее значение.
Классификация конструкционных сталей
Стали классифицируют по химическому составу, качеству, степени раскисления, структуре, прочности и назначению.
По химическому составу стали классифицируют на углеродистые и легированные. В зависимости от концентрации углерода те и другие подразделяют на низко углеродистые (< 0,3 % С), среднеуглеродистые низкоуглеродистые (<0,3 % С), среднеуглеродистые
(0,3-0,7 % С) и высокоуглеродистые (> 0,7 %С).
По назначению стали классифицируют на конструкционные и инструментальные. Конструкционные стали, представляют наиболее обширную группу, предназначенную для изготовления строительных сооружений, деталей машин и приборов. К этим сталям относят цементуемые, улучшаемые, высокопрочные и рессорно-пружинные. Инструментальные стали, подразделяют на стали для режущего, измерительного инструмента, штампов холодного и
горячего (до 200 єС) деформирования.
По качеству стали, классифицируют на обыкновенного качества, качественные, высококачественные. Под качеством стали понимается совокупность свойств, определяемых металлургическим процессом ее производства. Однородность химического состава, строения и свойства стали, а также её технологичность во многом зависят от содержания газов (водорода, кислорода) и вредных примесей – серы и фосфора. Стали обыкновенного качества бывают только углеродистыми (до 0,5 % С), качественные и высококачественные – углеродистыми и легированными.
По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие.
Раскисление – процесс удаления из жидкого металла кислорода, проводимый с целью предотвращения хрупкого разрушения стали при горячей деформации.
Спокойные стали раскисляют марганцем, кремнием и алюминием. Они содержат мало кислорода и затвердевают спокойно без газовыделения. Кипящие стали раскисляют только марганцем. Перед разливкой в них содержится повышенное количество кислорода, который при затвердевании, частично взаимодействуя с углеродом, удаляется в виде СО. Выделение пузырей СО создает впечатление кипения стали, с чем и связано ее название. Полуспокойные стали по степени раскисления занимают промежуточное положение между спокойными и кипящими.
По назначению конструкционные стали подразделяют на машиностроительные, предназначенные для изготовления деталей машин и механизмов, и строительные, используемые для металлоконструкций и сооружений.
Углеродистые стали
На долю углеродистых сталей приходится 80 % от общего объема. Это объясняется тем, что углеродистые стали дешевы и сочетают удовлетворительные механические свойства с хорошей обрабатываемостью резанием и давлением. При одинаковом содержании углерода по обрабатываемости резанием и давлением они значительно превосходят легированные стали. Однако углеродистые стали менее технологичны при термической обработке. Из-за высокой критической скорости закалки углеродистые стали охлаждают в воде, что вызывает значительные деформации и коробление деталей. Кроме того, для получения одинаковой прочности с легированными сталями их следует подвергать отпуску при более низкой температуре, поэтому они сохраняют более высокие закалочные напряжения, снижающие конструкционную прочность.
По статистической прочности стали относятся преимущественно к сталям нормальной прочности. Углеродистые конструкционные стали выпускают двух видов: обыкновенного качества и качественные.
Стали обыкновенного качества выпускают в виде проката (прутки, балки,
листы, уголки, трубы, швеллеры и т.п.) в нормализованном состоянии. В углеродистых сталях обыкновенного качества допускается содержание вредных примесей, а также газонасыщенность и загрязнённость неметаллическими включениями. И в зависимости от назначения и комплекса свойств подразделяют на группы: А, Б, В.
Стали маркируются сочетанием букв Ст и цифрой (от 0 до 6), показывающей номер марки, а не среднее содержание углерода в ней, хотя с повышением номера содержание углерода в стали увеличивается. Стали групп Б и В имеют перед маркой буквы Б и В, указывающие на их принадлежность к этим группам. Группа А в обозначении марки стали не указывается. Степень раскисления обозначается добавлением индексов: в спокойных сталях – «сп», полуспокойных – «пс», кипящих – «кп», а категория нормируемых свойств (кроме категории 1) указывается последующей цифрой.
Стали группы А используют в состоянии поставки для изделий, изготовление которых не сопровождается горячей обработкой. В этом случае они сохраняют структуру нормализации и механические свойства, гарантируемые стандартом.
Сталь марки Ст3 используется в состоянии поставки без обработки давлением и сваркой. Ее широко применяют в строительстве для изготовления металлоконструкций, в сельском хозяйственном машиностроении (валики, оси, рычаги, изготовляемые холодной штамповкой, а также цементируемые детали: шестерёнки, порневые пальцы).
Стали группы Б применяют для изделий, изготавливаемых с применением горячей обработки (ковка, сварка и в отдельных случаях термическая обработка), при которой исходная структура и механические свойства не сохраняются. Для таких деталей важны сведения о химическом составе, необходимые для определения режима горячей обработки.
Стали группы В дороже, чем стали групп А и Б, их применяют для ответственных деталей (для производства сварных конструкций).
Углеродистые стали обыкновенного качества (всех трех групп) предназначены для изготовления различных металлоконструкций, а также слабонагруженных деталей машин и приборов. Эти стали, используются, когда работоспособность деталей и конструкций обеспечивается жесткостью. Углеродистые стали обыкновенного качества широко используются в строительстве при изготовлении железобетонных конструкций. Способностью к свариванию и к холодной обработке давлением отвечают стали групп Б и В номеров 1-4, поэтому из них изготавливают сварные фермы, различные рамы и строительные металлоконструкции, кроме того, крепежные изделия, часть из которых подвергается цементации.
Низкоуглеродистые стали отличаются малой прочностью и высокой пластичностью в холодном состоянии. Эти стали в основном производят в виде тонкого листа и используют после отжига или нормализации для холодной штамповки с глубокой вытяжкой. Они легко штампуются из-за малого содержания углерода и незначительного количества кремния, что и делает их очень мягкими. Их можно использовать в автомобилестроении для изготовления деталей сложной формы. Глубокая вытяжка из листа этих сталей применяется при изготовлении консервных банок, эмалированной посуды и других промышленных изделий.
Среднеуглеродистые стали номеров 3 и 4, обладающие большой прочности предназначаются для рельсов, железнодорожных колес, а также валов, шкивов, шестерен и других деталей грузоподъемных и сельскохозяйственных машин. Применяют для изготовления небольших валов, шатунов, зубчатых колес и деталей, испытывающих циклические нагрузки. В крупногабаритных деталях больших сечений из-за плохой прокаливаемости механические свойства значительно снижаются.
Высокоуглеродистые стали 5 и 6, а также с повышенным содержанием марганца в основном используют для изготовления пружин, рессор, высокопрочной проволоки и других изделий с высокой упругостью и износостойкостью. Их подвергают закалке и среднему отпуску на структуру троостит в сочетании удовлетворительной вязкостью и хорошим пределом выносливости.
Углеродистые качественные стали.
Эти стали характеризуются более низким, чем у сталей обыкновенного качества, содержанием вредных примесей и неметаллических включений. Их поставляют в виде проката, поковок и других полуфабрикатов с гарантированным химическим составом и механическими свойствами.
Маркируют их двухзначными числами: 08, 10, 15, 20, 60, обозначающими среднее содержание углерода в сотых долях процента (ГОСТ 1050—88). Например, сталь 10 содержит в среднем 0,10 % С, сталь 45 — 0,45 % С и т.д.
Спокойные стали маркируют без индекса, полуспокойные и кипящие с индексами соответственно «пс» и «кп». Кипящими производят стали О8кп, 10кп, I5кп, I8кп, 2Окп; полуспокойными — О8пс, I0пс, I5пс, 2Опс. В отличие от спокойных кипящие стали практически не содержат кремния (не более 0.03 %‚:. в полуспокойных его количество ограничено 0.05 — 0.17 %.
Содержание марганца повышается по мере увеличения концентрации углерода от 0,25 До 0,80 %. Содержание азота для сталей, перерабатываемых в тонкий лист, ограничено 0,006 %; для остальных сталей — 0,008 %.
Механические свойства зависят от толщины проката.
Качественные стали находят многостороннее применение в технике, так как в зависимости от содержания углерода и термической обработки обладают разнообразными механическими и технологическими свойствами.
Низкоуглеродистые стали по назначению подразделяют на две подгруппы.
1. Малопрочные и высокопластичные стали 08, 10. Из-за способности к глубокой вытяжке их применяют для холодной штамповки различных изделий. Без термической обработки в горячекатаном состоянии эти стали используют для шайб, прокладок, кожухов и других деталей, изготавливаемых холодной деформацией и сваркой.
2. Цементуемые — стали 15, 20, 25. Предназначены они для деталей небольшого размера (кулачки, толкатели, малонагруженные шестерни и т.п.), от которых требуется твердая, износостойкая поверхность и вязкая сердцевина. Они пластичны, хорошо штампуются и свариваются; используются для изготовления деталей машин и приборов невысокой прочности (крепежные детали, втулки, штуцеры и т.п.), а также деталей котлотурбостроения (трубы перегревателей, змеевики), работающих под давлением при температуре от — 40 до 425єС.
Среднеуглеродистые стали 30, 35, 40, 45, 50, 55 отличаются большей прочностью, но меньшей пластичностью, чем низкоуглеродистые. В улучшенном состоянии стали применяют для изготовления деталей небольшого размера, работоспособность которых определяется сопротивлением усталости (шатуны, коленчатые валы малооборотных двигателей, зубчатые колеса, маховики, оси и т.п.). При этом возможный размер деталей зависит от условий их работы и требований к прокаливаемости. Для деталей, работающих на растяжение — сжатие (например, шатуны), необходима однородность свойств металла по всему сечению и, как следствие, сквозная прокаливаемость. Размер поперечного сечения таких нагруженных деталей ограничивается 12 мм. для деталей (валы, оси и т.п.), испытывающих главным образом напряжения изгиба и кручения, которые максимальны на поверхности, толщина упрочненного при закалке слоя должна быть не менее половины радиуса детали. Возможный размер поперечного сечения таких деталей — 30 мм.
для изготовления более крупных деталей, работающих при невысоких циклических и контактных нагрузках, используют стали 40, 45, 50.
Их применяют после нормализации и поверхностной индукционной закалки с нагревом ТВЧ тех мест, которые должны иметь высокую твердость поверхности (40 — 58 NRC) и сопротивление износу (шейки коленчатых валов, кулачки распределительных валиков, зубья шестерён)
Индукционной закалкой с нагревом ТВЧ упрочняют также поверхность длинных валов, ходовых винтов станков и других деталей, для которых важно ограничить деформации при термической обработке.
В машиностроении углеродистые качественные стали, используются для изготовления деталей разного, чаще всего неответственного назначения и являются достаточно дешевым материалом. В промышленность эти стали поставляются в виде проката, поковок, профилей различного назначения с гарантированным химическим составом и механическим свойствами.
Качественные стали широко применяются в машиностроении и приборостроении, так как за счет разного содержания углерода в них, а
соответственно и термической обработки можно получить широкий диапазон механических и технологических свойств.
Вывод
Конструкционные углеродистые стали и сплавы – это материалы с целой гаммой свойств, и в зависимости от количества примесей обладают теми или иными качествами, как например, прочность, износостойкость, твёрдость, хрупкость. К тому же они сравнительно недороги.
Благодаря этим достоинствам стали — основной металлический материал промышленности.
Углеродистая сталь
Свойства углеродистых сталей определяются содержанием углерода и применяемой обработкой. Горячекатаные, нормализованные и отожженные стали имеют феррито-перлитную структуру.
Увеличение содержания углерода (перлита) приводит к росту прочности и падению пластичности и вязкости стали, при этом порог хладноломкости существенно повышается. Структура закаленной стали зависит от содержания углерода и температуры нагрева под закалку.
Углеродистые инструментальные стали являются наиболее дешевыми. Как правило, их применяют для изготовления малоответственного режущего инструмента, работающего при малых скоростях резания и не подвергаемого разогреву во время эксплуатации. Углеродистые стали относятся к сталям неглубокой прокаливаемости, не теплостойким. Малая устойчивость переохлажденного аустенита углеродистых сталей обуславливает их низкую прокаливаемость. Низкая устойчивость аустенита определяет основные достоинства и недостатки таких сталей.
Достоинствами углеродистых сталей является то, что в малых сечениях после закалки достигается высокая твердость в поверхностном слое и мягкая, вязкая сердцевина инструмента. Такие свойства благоприятны для такого инструмента, как ручные метчики, напильники, пилы, стамески, долота, зубила и т. д. В отожженом состоянии углеродистые стали имеют низкую твердость, в них легко при отжиге получается структура зернистого цемента, что обуславливает их хорошую обрабатываемость при изготовлении инструмента.
Недостатками углеродистых сталей является малая прокаливаемость. Она не позволяет применять эти стали для инструмента сечением более 20-25 мм. Стали нетеплостойки, высокая твердость их сохраняется лишь до температур 250-200 ° С. Углеродистые стали имеют высокую чувствительность к перегреву вследствие растворения избыточных карбидов в аустените
Свойства и классификация углеродистых сталей
Углеродистые стали — это сплавы в основном железа с углеродом, содержащие до 2% углерода. Кроме углерода, эти стали содержат до 0,8% марганца и до 0,4% кремния, остающихся после раскисления, а также вредные примеси — до 0,055% серы и до 0,045% фосфора.
Углеродистая сталь является основным материалом для изготовления деталей машин и аппаратов. Для котельных агрегатов, турбин, вспомогательного оборудования широко применяют низкруглеродистые стали, содержащие до 0,25% углерода. Они очень пластичны и поэтому хорошо поддаются обработке давлением, гибке и правке в горячем и холодном состоянии, хорошо свариваются. Эти стали можно использовать также в виде стального фасонного литья. Кроме того, они обладают вполне удовлетворительными механическими свойствами: достаточно прочны при температурах до 450° С, хорошо воспринимают динамические нагрузки.
Низкоуглеродистые стали удовлетворительно сопротивляются коррозии в условиях работы ряда деталей тепломеханического оборудования электростанций. Эти стали самые дешевые и наименее дефицитные.
Особенности производства стали и стальных полуфабрикатов оказывают существенное влияние на механические свойства и качество готовых изделий.
Большинство деталей котлов и турбин изготавливают из углеродистой стали, выплавленной в основных мартеновских печах.
Продувкой в бессемеровском конвертере получают углеродистую сталь с содержанием углерода до 0,5%. Эту сталь применяют для производства сварных труб неответственного назначения, болтов, профилей, тонкой жести.
При одинаковом содержании углерода бессемеровская сталь имеет более высокую прочность и твердость, чем мартеновская. Эта разница в свойствах объясняется тем, что в бессемеровской стали содержится повышенное количество растворенных азота и фосфора — элементов, упрочняющих сталь, но делающих ее одновременно и более хрупкой. Применение кислородного дутья в конвертерах значительно ослабляет этот недостаток конвертерной стали.
Сталь, полученная в конвертерах с кислородным дутьем и основной футеровкой, приближается по свойствам к мартеновской.
Кроме способа выплавки, на свойства стали и готовых изделий большое влияние оказывает способ раскисления, по которому стали делятся на спокойные (сп), полуспокойные (пс) и кипящие (кп).
По назначению углеродистые стали делят на конструкционные и инструментальные. Конструкционные стали в свою очередь разделяют на строительные и машиностроительные.
В строительных сталях содержание углерода обычно не превышает 0,25%, т. е. эти стали относятся к категории малоуглеродистых. Они хорошо свариваются, хорошо деформируются в горячем и холодном состоянии, но прочность их относительно невысока.
Машиностроительные малоуглеродистые стали часто применяют в качестве цементуемых, т. е. для деталей, подвергаемых поверхностному науглероживанию и закалке для повышения износостойкости, а также для изготовления крепежных деталей. Среднеуглеродистые машиностроительные стали (0,3—0,7% углерода) прочнее строительных и могут подвергаться закалке с высоким отпуском. В результате такой термической обработки улучшаются их механические свойства. Однако эти стали хуже свариваются и плохо поддаются деформации в холодном состоянии, v Инструментальные стали содержат от 0,7 до 1,4% углерода.
Углеродистые стали классифицируют также по качеству, которое определяется содержанием серы и фосфора, способом производства и постоянством механических свойств и химического состава. Чем меньше содержание вредных примесей, колебание механических свойств и химического состава, тем выше качество стали.
Углеродистые стали бывают обыкновенного качества, качественные и высококачественные.
Углерод — элемент, в основном определяющий свойства углеродистых сталей. Влияние углерода на прочность и пластичность углеродистой стали после прокатки показано на рис. 66. С увеличением содержания углерода возрастают предел прочности и твердость стали, снижаются показатели пластичности (относительное удлинение и относительное сужение), а также ударная вязкость. При 0,8% углерода прочность стали достигает максимального значения, после чего она начинает снижаться.
Изменение прочности стали в зависимости от содержания углерода легко объяснить характером изменения микроструктуры. Незакаленная углеродистая сталь при содержании углерода менее 0,8% состоит из кристаллитов свободного феррита и перлита, при 0,8% — только из перлита и при содержании углерода более 0,8% — из перлита и свободного цементита.
Феррит (твердый раствор углерода в а-железе) — очень пластичен и вязок, но непрочен. Перлит, механическая смесь тонкодисперсных пластинок феррита и цементита, придает прочность. Цементит очень тверд, хрупок и статически прочен. При повышении в стали содержания углерода (в пределах до 0,8%) увеличивается содержание перлита и повышается прочность стали. Однако вместе с этим снижаются ее пластичность и ударная вязкость. При содержании 0,8% С (100% перлита) прочность стали достигает максимума. При дальнейшем увеличении содержания углерода избыточный свободный цементит образует оторочку вокруг перлитных зерен, что приводит к хрупкому разрушению и неко-торому снижению прочности стали.
Марганец вводят в любую сталь для раскисления (т. е. для устранения вредных включений закиси железа). Марганец растворяется в феррите и цементите, поэтому его обнаружение металлографическими методами невозможно. Он повышает прочность стали и сильно увеличивает прокаливаемость. Содержание марганца в углеродистой стали отдельных марок может достигать 0,8%.
Кремний, подобно марганцу, является раскислителем, но действует более эффективно. В кипящей стали содержание кремния не должно превышать 0,07%. Если кремния будет больше, то раскисление кремнием произойдет настолько полно, что не получится «кипения» жидкого металла за счет раскисления углеродом. В спокойной углеродистой стали содержится от 0,12 до 0,37% кремния. Весь кремний растворяется в феррите. Он сильно повышает прочность и твердость стали.
Сера — вредная примесь. В процессе выплавки стали содержание серы снижают, но полностью ее удалить не удается. В мартеновской стали обыкновенного качества содержание серы допускается до 0,055%.
Присутствие серы в большом количестве приводит к образованию трещин при ковке, штамповке и прокатке в горячем состоянии, ото явление называется красноломкостью. В углеродистой стали сера взаимодействует с железом, в результате чего получается сернистое железо FeS. Сернистое железо образует с железом относительно легкоплавкую эвтектику, которая располагается по границам зерен. При температурах ковки, штамповки, прокатки в горячем состоянии эвтектика FeS—Fe находится в жидком состоянии. В процессе горячей пластической деформации по границам зерен, где располагается жидкая эвтектика, образуются горячие трещины.
Если в сталь ввести достаточное количество марганца, то вредное влияние серы будет устранено, так как она будет связана в тугоплавкий сульфид марганца MnS. Включения MnS располагаются в середине зерен, а не по их границам. При горячей обработке давлением включения MnS легко деформируются без обра-зования трещин.
Фосфор, подобно сере, является вредной примесью. Растворяясь в феррите, фосфор резко снижает его пластичность, повышает температуру перехода в хрупкое состояние, или иначе — вызывает хладноломкость стали. Это явление наблюдается при содержании фосфора свыше 0,1 %. Однако допустить содержание даже 0,05% Р для стали ответственного назначения уже рискованно, так как фосфор очень склонен к ликвации. Области слитка с повышенным содержанием фосфора становятся хладноломкими. В мартеновской стали обыкновенного качества допускается не более 0,045% Р.
Сера и фосфор, вызывая ломкость стали и одновременно понижая механические свойства, улучшают обрабатываемость резанием: повышается чистота обрабатываемой поверхности, увеличивается время между переточками резцов, фрез и т. д. Поэтому для ряда неответственных деталей, подвергаемых механической обработке, применяют так называемые автоматные стали с повы-шенным содержанием серы (до 0,30%) и фосфора (до 0,15%).
Кислород — вредная примесь. Закись железа, подобно сере, вызывает красноломкость стали. Очень твердые окислы алюминия, кремния и марганца резко ухудшают обрабатываемость стали резанием, быстро затупляя режущий инструмент.
В процессе выплавки углеродистой стали из металлического лома в нее могут попасть никель, хром, медь и другие элементы. Эти примеси ухудшают технологические свойства углеродистой стали (в частности, свариваемость), поэтому их содержание стараются свести к минимуму.
6. Стандарты |
СОДЕРЖАНИЕ 1. Общая характеристика сталей 2. Маркировка, расшифровка, свойства, термическая обработка и область применения 2.1 Углеродистых конструкционных сталей 2.2 Автоматных сталей 2.3 Конструкционных низколегированных сталей 2.4 Конструкционных цементуемых сталей 2.5 Конструкционных улучшаемых сталей 2.6 Рессорно-пружинных сталей 2.7 Шарикоподшипниковых сталей 2.8 Износостойких сталей 2.9 Корозионностойких сталей 2.10 Жаропрочных сталей и сплавов
1. Общая характеристика сталей Ж/у сплавы с содержанием углерода до 2,14% называются сталями. Кроме железа и углерода в сталях содержатся полезные и вредные примеси. Сталь – основной металлический материал, широко применяемый для изготовления деталей машин, летательных аппаратов, приборов, различных инструментов и строительных конструкций. Широкое использование сталей обусловлено комплексом механических, физико-химических и технологических свойств. Методы широкого производства стали были открыты в середине ХIX в. В это же время были уже проведены и первые металлографические исследования железа и его сплавов. Стали сочетают высокую жесткость с достаточной стати-ческой и циклической прочностью. Эти параметры можно менять в широком диапазоне за счет изменения концентрации углерода, легирующих элементов и технологий термической и химико-термической обработки. Изменив химический состав, можно получить, стали с различными свойствами, и использовать их во многих отраслях техники и народного хозяйства. Углеродистые стали, классифицируют по содержанию углерода, назначению, качеству, степени раскисления и структуре в равновесном состоянии. По содержанию углерода стали, подразделяются на низкоугле-родистые (< 0,3 % С), среднеуглеродистые (0,3-0,7 % С) и высокоугле-родистые (> 0,7 % С). По назначению стали классифицируют на конструкционные и инструментальные. Конструкционные стали, представляют наиболее обширную группу, предназначенную для изготовления строительных сооружений, деталей машин и приборов. К этим сталям относят цементуемые, улучшаемые, высокопрочные и рессорно-пружинные. Инструментальные стали, подразделяют на стали для режущего, измерительного инструмента, штампов холодного и горячего (до 200 0С) деформирования. По качеству стали, классифицируют на обыкновенного качества, качественные, высококачественные. Под качеством стали понимается совокупность свойств, определяемых металлургическим процессом ее производства. Стали обыкновенного качества бывают только углеродистыми (до 0,5 % С), качественные и высококачественные – углеродистыми и легированными. По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие. Раскисление – процесс удаления из жидкого металла кислорода, проводимый с целью предотвращения хрупкого разрушения стали при горячей деформации. Полуспокойные стали по степени раскисления занимают промежуточное положение между спокойными и кипящими. По структуре в равновесном состоянии стали, делятся на: 1) доэвтектоидные,
имеющие в структуре феррит и перлит; 2) эвтектоидные, структура которых состоит из перлита; 3) заэвтектоидные, имеющие в структуре перлит и цементит вторичный. 2. Маркировка, расшифровка, свойства, термическая обработка и область применения. 2.1 Углеродистые конструкционные стали Стали обыкновенного качества выпускают в виде проката (прутки, балки, листы, уголки, трубы, швеллеры и т.п.) в нормализованном состоянии и в зависимости от назначения и комплекса свойств подразделяют на группы: А, Б, В. Стали маркируются сочетанием букв Ст и цифрой (от 0 до 6), показывающей номер марки, а не среднее содержание углерода в ней, хотя с повышением номера содержание углерода в стали увеличивается. Стали групп Б и В имеют перед маркой буквы Б и В, указывающие на их принадлежность к этим группам. Группа А в обозначении марки стали не указывается. Степень раскисления обозначается добавлением индексов: в спокойных сталях – «сп», полуспокойных – «пс», кипящих – «кп», а категория нормируемых свойств (кроме категории 1) указывается последующей цифрой. Спокойными и полуспокойными производят стали Ст1 – Ст6, кипящими – Ст1 – Ст4 всех трех групп. Сталь Ст0 по степени раскисления не разделяют. Стали группы А используют в состоянии поставки для изделий, изготовление которых не сопровождается горячей обработкой. В этом случае они сохраняют структуру нормализации и механические свойства, гарантируемые стандартом. Сталь марки Ст3 используется в состоянии поставки без обработки давлением и сваркой. Ее широко применяют в строительстве для изготовления металлоконструкций. Стали группы Б применяют для изделий, изготавливаемых с применением горячей обработки (ковка, сварка и в отдельных случаях термическая обработка), при которой исходная структура и механические свойства не сохраняются. Для таких деталей важны сведения о химическом составе, необходимые для определения режима горячей обработки. Стали группы В дороже, чем стали групп А и Б, их применяют для ответственных деталей (для производства сварных конструкций). Углеродистые стали обыкновенного качества (всех трех групп) предназначены для изготовления различных металлоконструкций, а также слабонагруженных деталей машин и приборов. Эти стали, используются, когда работоспособность деталей и конструкций обеспечивается жесткостью. Углеродистые стали обыкновенного качества широко используются в строительстве при изготовлении железобетонных конструкций. Способностью к свариванию и к холодной обработке давлением отвечают стали групп Б и В номеров 1-4, поэтому из них изготавливают сварные фермы, различные рамы и строительные металлоконструкции, кроме того, крепежные изделия, часть из которых подвергается цементации. Среднеуглеродистые стали номеров 5 и 6, обладающие большой прочностью, предназначаются для рельсов, железнодорожных колес, а также валов, шкивов, шестерен и других деталей грузоподъемных и сельскохозяйственных машин. Некоторые детали из этих сталей групп Б и В подвергаются термической обработке – закалке с последующимвысоким отпуском. В машиностроении углеродистые качественные стали, используются для изготовления деталей разного, чаще всего неответственного назначения и являются достаточно дешевым материалом. В промышленность эти стали поставляются в виде проката, поковок, профилей различного назначения с гарантированным химическим составом и механическим свойствами. В машиностроении применяют углеродистые качественные стали, поставляемые по ГОСТ 1050-74. Маркируются эти стали двузначными цифрами 05, 08, 10, 15, 20, …, 75, 80, 85, обозначающими среднее содержание углерода в сотых долях процента. К углеродистым сталям относят также стали с повышенным содержанием марганца (0,7-1,0 %) марок 15Г, 20Г, 25Г, …, 70Г, имеющих повышенную прокаливаемость. Спокойные стали маркируют без индекса, полуспокойные и кипящие – с индексом соответственно «пс» и «кп». Кипящие стали производят марок 05кп, 08кп, 10кп, 15кп, 20кп, полуспокойные – 08пс, 10пс, 15пс, 20пс. Качественные стали широко применяются в машиностроении и приборостроении, так как за счет разного содержания углерода в них, а соответственно и термической обработки можно получить широкий диапазон механических и технологических свойств. Низкоуглеродистые стали 05кп, 08кп, 10кп, 15кп, 20кп отличаются малой прочностью и высокой пластичностью в холодном состоянии. Эти стали в основном производят в виде тонкого листа и используют после отжига или нормализации для холодной штамповки с глубокой вытяжкой. Они легко штампуются из-за малого содержания углерода и незначительного количества кремния, что и делает их очень мягкими. Их можно использовать в автомобилестроении для изготовления деталей сложной формы. Глубокая вытяжка из листа этих сталей применяется при изготовлении консервных банок, эмалированной посуды и других промышленных изделий. Спокойные стали 08, 10 применяют в отожженном состоянии для конструкций невысокой прочности – емкости, трубы и т. д. Стали 10, 15, 20 и 25 также относятся к низкоуглеродистым сталям, они пластичны, хорошо свариваются и штампуются. В нормализованном состоянии в основном их используют для крепежных деталей – валики, оси и т. д. Для увеличения поверхностной прочности этих сталей их цементуют (насыщают поверхность углеродом) и применяют для деталей небольшого размера, например слабонагруженных зубчатых колес, кулачков и т. д. Среднеуглеродистые стали 30, 35, 40, 45, 50 и аналогичные стали с повышенным содержанием марганца 30Г, 40Г и 50Г в нормализованном состоянии отличаются повышенной прочностью, но соответственно меньшей вязкостью и пластичностью. В зависимости от условий работы деталей из этих сталей к ним применяют различные виды термообработки: нормализацию, улучшение, закалку с низким отпуском, закалку ТВЧ и др. Среднеуглеродистые стали применяют для изготовления небольших валов, шатунов, зубчатых колес и деталей, испытывающих циклические нагрузки. В крупногабаритных деталях больших сечений из-за плохой прокаливаемости механические свойства значительно снижаются. Высокоуглеродистыстали 60, 65, 70, 75, 80 и 85, а также с повышенным содержанием марганца 60Г, 65Г и 70Г в основном используют для изготовления пружин, рессор, высокопрочной проволоки и других изделий с высокой упругостью и износостойкостью. Их подвергают закалке и среднему отпуску на структуру троостит в сочетании с удовлетворительной вязкостью и хорошим пределом выносливости. 2.2 Автоматные стали Эти стали маркируют буквой А (автоматная) и цифрами, показывающими среднее содержание углерода в сотых долях процента. Если автоматная сталь легирована свинцом, то обозначение марки начинается с сочетания букв «АС». Чтобы не проявлялась красноломкость, в сталях увеличено количество марганца. Добавление в автоматные стали свинца, селена и теллура позволяет в 2-3 раза сократить расход режущего инструмента. Улучшение обрабатываемости достигается модифицированием кальцием (вводится в жидкую сталь в виде силикокальция), который глобулизирует сульфидные включения, что положительно влияет на обрабатываемость, но не так активно, как сера и фосфор. Сера образует большое количество сульфидов марганца, вытянутых в направлении прокатки. Сульфиды оказывают смазывающее действие, нарушая при этом сплошность металла. Фосфор повышает хрупкость феррита, облегчая отделение стружки металла во время процесса резания. Оба эти элемента способствуют уменьшению налипания на режущий инструмент и получению гладкой блестящей обрабатываемой поверхности. Однако необходимо помнить, что повышение содержания серы и фосфора снижает качество стали. Стали, содержащую серу, имеют ярко выраженную анизотропию механических свойств и пониженную коррозионную стойкость. Стали А11, А12, А20 используют для крепежных деталей и изделий сложной формы, не испытывающих больших нагрузок, но к ним предъявляются высокие требования по точности размеров и чистоты поверхности. Стали А30 и А40Г предназначены для деталей, испытывающих более высокие напряжения. Свинец содержащие стали широко применяют для изготовления деталей двигателя. В автоматных селено содержащих сталях повышается обрабатываемость за счет образования селенидов, сульфоселенидов, которые обволакивают твердые оксидные включения и тем самым устраняют их истирающее действие. Кроме того, селениды сохраняют глобулярную форму после обработки давлением, поэтому практически не вызывают анизотропии свойств и не ухудшают коррозионную стойкость стали, как сера. Применение этих сталей снижает расход инструмента в два раза и до 30 % повышает производительность. 2.3 Конструкционные низколегированные стали Низколегированные стали, содержат до 2,5 % легирующих элементов. Обозначение марки включает в себя цифры и буквы, указывающие на примерный состав стали. В начале марки приводятся двузначные цифры, указывающие среднее содержание углерода в сотых долях процента. Буквы справа от цифры обозначают легирующие элементы: А – азот, Б – ниобий, В – вольфрам, Г – марганец, Д – медь, Е – селен, К – кобальт, Н – никель, М – молибден, П – фосфор, Р – бор, С – кремний, Т – титан, Ф –
ванадий, Х – хром, Ц – цирконий, Ч – редкоземельные элементы, Ю – алюминий. Следующие после буквы цифры указывают примерное содержание (в целых процентах) соответствующего легирующего элемента (при содержании 1-1,5 % и менее цифра отсутствует). К данной группе относят, стали с содержанием углерода 0,1-0,3 %, обеспечивающие после химико-термической обработки, закалки и низкого отпуска высокую поверхностную твердость при вязкой, но достаточно прочной сердцевине. Эти стали, используют для изготовления деталей машин и приборов (кулачков, зубчатых колес и др.), испытывающих переменные и ударные нагрузки и одновременно подверженных износу. 2.4 Конструкционные цементуемые стали Карбидо- и нитридообразующие элементы (такие, как Cr, Mn, Mo и др.) способствуют повышению прокаливаемости, поверхностной твердости, износостойкости и контактной выносливости. Никель повышает вязкость сердцевины и диффузионного слоя и снижает порог хладноломкости. Цементуемые (нитроцементуемые) легированные стали по механическим свойствам подразделяют на две группы: стали средней прочности с пределом текучести менее 700 МПа (15Х, 15ХФ) и повышенное прочности с пределом текучести 700-1100 МПа (12Х2Н4А, 18Х2Н4МА и др.). Хромистые (15Х, 20Х) и хромованадиевые (15ХФ) стали цементуются на глубину до 1,5 мм. После закалки (880 0С, вода, масло) и последующего отпуска (180 0С, воздух, масло) стали имеют следующие свойства: σв = 690-800 МПа, δ = 11-12 % , KCU = 0,62 МДж/м2. Хромомарганцевые стали (18ХГТ, 25ХГТ), широко применяемые в автомобилестроении, содержат по 1 % хрома и марганца (дешевого заменителя никеля в стали), а также 0,06 % титана. Их недостатком является склонность к внутреннему окислению при газовой цементации, что приводит к снижению твердости слоя и предела выносливости. Этот недостаток устраняется легированием стали молибденом (25 ХГМ). Для работы в условиях изнашивания используют сталь 20ХГР, легированную бором. Бор повышает прокаливаемость, и прочность стали, но снижает ее вязкость и пластичность. Хромоникельмолибденовая (вольфрамовая) сталь 18Х2Н4МА (18Х2Н4ВА) относится к мартенситному классу и закаливается на воздухе, что способствует уменьшению коробления. Легирование хромоникелевых сталей W или Mo дополнительно повышает их прокаливаемость. Причем Мо существенно повышает прокаливаемость цементованного слоя, в то время как хром и марганец увеличивают прежде всего прокаливаемость сердцевины. В цементованном состоянии данную сталь применяют для изготовления зубчатых колес авиационных двигателей, судовых редукторов и других крупных деталей ответственного назначения. Эту сталь используют также как улучшаемую при изготовлении деталей, подверженных большим статическим и ударным нагрузкам. 2.5 Конструкционные улучшаемые стали Улучшаемыми называют такие стали, которые используются после закалки с высоким отпуском (улучшения). Эти стали (40Х, 40ХФА, 30ХГСА, 38ХН3МФА и др.) содержат 0,3-0,5 % углерода и 1-6 %Стали для пружин и рессор содержат 0,5-0,75 % С; их также дополнительно легируют кремнием (до 2,8 %), марганцем (до 1,2 %), хромом (до 1,2 %), ванадием (до 0,25 %), вольфрамом (до 1,2 %) и никелем (до 1,7 %). При этом происходит измельчение зерна, способствующее возрастанию сопротивления стали малым пластическим деформациям, а следовательно, ее релаксационной стойкости. Широкое применение на транспорте нашли кремнистые стали 55С2, 60С2А, 70С3А. Однако они могут подвергаться обезуглероживанию, графитизации, резко снижающим характеристики упругости и выносливости материала. Устранение указанных дефектов, а также повышение прокаливаемости и торможение роста зерна при нагреве достигается дополнительным введением в кремнистые стали хрома, ванадия, вольфрама и никеля. Лучшими технологическими свойствами, чем кремнистые стали, обладает сталь 50ХФА, широко используемая для изготовления автомобильных рессор. Клапанные пружины делают из стали 50ХФА, не склонной к обезуглероживанию и перегреву, но имеющей малую прокаливаемость. Термическая обработка легированных пружинных сталей (закалка 850-880 0С, отпуск 380-550 0С) обеспечивают получение высоких пределов прочности и текучести. Применяется также изотермическая закалка. Максимальный предел выносливости получают при термической обработке на твердость HRC 42-48. Для изготовления пружин также используют холоднотянутую проволоку (или ленту) из высокоуглеродистых сталей 65, 65Г, 70, У8, У10 и др. Пружины и другие элементы специального назначения изготавливают из высокохромистых мартенситных (30Х13), мартенситно-стареющих (03Х12Н10Д2Т), аустенитных нержавеющих (12Х18Н10Т), аустенитно-мартенситных (09Х15Н8Ю) и других сталей и сплавов. 2.7 Шарикоподшипниковые стали Для обеспечения работоспособности изделий шарикоподшипниковая сталь должна обладать высокой твердостью, прочностью и контактной выносливостью. Это достигается повышением качества металла: его очисткой от
неметаллических включений и уменьшением пористости посредством использования электрошлакового или вакуумно-дугового переплава. При изготовлении деталей подшипника широко используют шарикоподшипниковые (Ш) хромистые (Х) стали ШХ15СГ (последующая цифра 15 указывает содержание хрома в десятых долях процента – 1,5 %). ШХ15СГ дополнительно легирована кремнием и марганцем для повышения прокаливаемости. Отжиг стали на твердость порядка 190 НВ обеспечивает обрабатываемость полуфабрикатов резанием и штампуемость деталей в холодном состоянии. Закалка деталей подшипника (шариков, роликов и колец) осуществляется в масле с температур 840-860 0С. Перед отпуском детали охлаждают до 20-25 0С для обеспечения стабильности их работы (за счет уменьшения количества остаточного аустенита). Отпуск стали проводят при 150-170 0С в течение 1-2 ч. Детали подшипников качения, испытывающие большие динамические нагрузки, изготавливают из сталей 20Х2Н4А и 18ХГТ с последующей их цементацией и термической обработкой. Для деталей подшипников, работающих в азотной кислоте и других агрессивных средах, используется сталь 95Х18, содержащая 0,95 % С и 18 % Cr. 2.8 Износостойкие стали Износостойкость деталей обычно в первую очередь обеспечивается повышенной твердостью поверхности. Однако высокомарганцевая аустенитная сталь 110Г13Л (1,25 % С, 13 % Mn, 1 % Cr, 1 % Ni) при низкой начальной твердости (180-220 НВ) успешно работает на износ в условиях абразивного трения, сопровождаемого воздействием высокого давления и больших динамических (ударных) нагрузок (такие условия работы характерны для траков гусеничных машин, щек дробилок и др.). Это объясняется повышенной способностью стали упрочняться в процессе холодной пластической деформации, равной 70 %, твердость стали возрастает с 210 НВ до 530 НВ. Высокая износостойкость стали достигается не только деформационным упрочнением аустенита, но и образованием мартенсита с гексагональной или ромбоэдрической решеткой. При содержании фосфора более 0,025 % сталь становится хладноломкой. Структура литой стали представляет собой аустенит с выделившимся по границам зерен избыточными карбидами марганца, снижающими прочность и вязкость материала. Для получения одно-фазной аустенитной структуры отливки закаливают в воде с температуры 1050-1100 0С. В таком состоянии сталь имеет высокую пластичность, низкую твердость и невысокую прочность. Изделия, работающие в условиях кавитационного износа, изготавливают из сталей 30Х10Г10, 0Х14Г12М. 2.9 Корозионностойкие стали Стали, устойчивые против электрохимической коррозии, называются коррозионно-стойкими (нержавеющими). Устойчивость стали против коррозии достигается введением в нее элементов, образующих на поверхности плотные, прочно связанные с основой защитные пленки, препятствующие непосредственному контакту стали с агрессивной средой, а также повышающие ее электрохимический потенциал в данной среде. Нержавеющие стали, разделяют на две основные группы: хромистые и хромоникелевые.