Реферат

Реферат Контрольная по Математике

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024


Контрольная работа по дисциплине «Математика»

для студентов заочного отделения

1. Найти пределы функций:
а) =; =

= = =

= = = = 0;
б) = =

=

=

= = =.6290;
в) = =

= = = 0;

г) = = = =

= ln = = ln e* = 1*56/3 = 18.667;
д) ; = =

= = ;;
е) = = =

= = + =

= - = - =

= = 2.
2. Найти производные функций:
а) = =

= ;
б) = = = ;

в) = =

= =

= =

= ;
г) = =

= =

= = ;
д) = ;
е) ; ;

;
ж) ;; ;

; ;; ;;
з) . = =

= = ;
3. С помощью методов дифференциального исчисления построить график функции
.
1 Знаменатель положительный не для всех значений Х, область определения функции имеет точку разрыва. отсюда IхI=7 или точки разрыва х = -7 и х=7.

2. Функция нечетная, следовательно график симметричен относительно центра координат. У(-х) = -У(х). Периодической функция не является.

3. Поскольку область определения вся вещественная ось, вертикальных асимтот график не имеет.

4. Найдем асимптоты при в виде у = kх+b. Имеем:
k =

b =
Таким образом при асимптотой служит прямая ОХ оси координат.

Найдем левый и правый пределы в точках разрыва функции х=-7 и х=+7
=-1,19,
.
В точке (-7:-1,19) первый разрыв функции, К разрыву функции х=7 функции приближается бесконечно близко.

5. Найдем точки пересечения с осями координат:

Х

0

У

1,08

Точка (0:3,86) с осью ОУ.

6. Исследуем на возрастание и убывание:
=

.0;

Это говорит о том что функция возрастающая.

Строим график:

4. Найти интегралы при m=3, n=4:
а) =

= :
б)= = пусть t = arcsin4x,

получим = = .
в)=

= ;

==.
Решаем равенство и получим:
;
аналогично второе слагаемое
3- получим =
подставим все в последнее равенство
= + +9+-+С.
г).= = =

= ==

= ….избавившись
от знаменателя получим
B+C+A=0; 25B=332; -625A=625; 25=25(B-C);
Т.е.: A=1; B= 13.28; C=-12.28;

= = = = 2,527766.
5. Вычислить интегралы или установить их расходимость при m=3, n=4:
а) =
пусть t = arctg(x/4), тогда и подставим и получим
= ;
б)=

= 0,6880057.
6. Построить схематический чертеж и найти площадь фигуры, ограниченной линиями: , при m=3, n=4.


х = -1,5, у = -18,25.
точки пересечения с осью ОХ: А(-4,19:0) и В(1,19:0) с осью ОУ – С(0:-16), точка перегиба – D(-1,5:-18,25)

X

-4.19

1.19

0

Y

0

0

-16

или

Х

0

4

У

-4

0

Точки пересечения двух функций:
= и т.е.: и .
Площадь получиться из выражения
= = 49,679.
График выглядит:

7. Найти частные производные функций при m=3, n=4:
а) =,
,
,

б). ;
;



8. Найти дифференциал функции: при m=3, n=4.

9. Для функции в точке найти градиент и производную по направлению при m=3, n=4.
в точке А(-4,3)


grad(z) = (-0,1429:0,1875);
=grad(z)* ()*cos=…
cos
10. Найти наибольшее и наименьшее значения функции при m=3, n=4

в области, заданной неравенствами:
.

D=AC-B;
A=
B=
C=
D=AC-B=()() - ;







найдем
;
Получим четыре точки: 1) (2,236:7,18), (1,236:0,82), (-2,236:7,18), (-2,236:0,82).
A=8+7,18*7,18-8*7,18=2,11 > 0;
= -114,74 < 0 – нет экстремума функции,

= 45097,12 > 0 – min функции = 12,279;

= 1767.38 > 0 - min функции = 65,94;

= -160,296 < 0 – нет экстремума функции.
11. Изменить порядок интегрирования при m=3, n=4:
.
= , так как

подставляя x = 0 x = 4 в последние уравнения получим
.

12. Сделать чертеж и найти объем тела, ограниченного поверхностями , и плоскостью, проходящей через точки , и .
А)см. рис.

- получим уравнение плоскости, через которую проходят точки А, В и С.

7(х-4)+7*16*(z-0)-(y-16)*4+4(z-0)+49(y-16)+16(x-4)=
23x-812+116z-45y=0
Получим пределы интегрирования:

Для z – от 0 до z=7-0,198x+0,388y. Для у – от 0 до у=х^2. Для х – от 0 до х=76,81(объем фигуры разбиваем пополам).
= =

== =

=232,109 куб.ед.,
13. Вычислить при m=3, n=4 , где , , а контур образован линиями , , .

а) непосредственно;

б) по формулам Грина.
,
P(x,y) = 4y+2x, Q(x,y) = 3x+2y, и контур С образован линиями 16y = 9x^3, y = 9, x = 0.

= =

= =

= =

= =

= =

= =

= =32,4060912,
где пределы интегрирования были получены:
и у = 9, то откуда х = 2,52.
14. Даны поле и пирамида с вершинами , , ,. Найти при m=3, n=4:

O(0:0:0), A(3:0:0), B(0:4:0), C(0:0:7).
а) поток поля через грань пирамиды в направлении нормали, составляющей острый угол с осью ;

=

= =

==

==

==…
после подстановки и преобразования однородных членов получим:
… = 8423,43 - 3336,03*у - 293,9*z^2 +118,98*у^2 – 24y^3 + 42y*z^2, т.е.
поток поля
= 8423,43 - 3336,03*у - 293,9*z^2 +118,98*у^2 – 24y^3 + 42y*z^2.
б) поток поля через внешнюю поверхность пирамиды с помощью теоремы Остроградского – Гаусса;

в) циркуляцию поля вдоль замкнутого контура ;

с помощью теоремы Стока (обход контура происходит в положительном направлении относительно внешней нормали к поверхности пирамиды).
rot(F) = ,
в нашем случае


15. Найти первообразные и вычислить значение определенного интеграла:
= .

1. Реферат 100 філософських шкіл
2. Сочинение Масштабность любовных чувств и переживаний лирического героя Маяковского
3. Реферат на тему Тайны кубанских курганов
4. Реферат на тему The Modern Men
5. Реферат на тему Hamlet Play Essay Research Paper The Play
6. Реферат на тему Traffic Safety Essay Research Paper Highway SafetyOn
7. Реферат на тему Aging Essay Research Paper Aging The Different
8. Реферат на тему Who Essay Research Paper LITERATURE OF REVIEW
9. Контрольная работа на тему Основные проблемы философии
10. Курсовая Проект ковбасного цеху продуктивністю 68 тонн за зміну