Реферат

Реферат на тему Биология дрожжей

Работа добавлена на сайт bukvasha.net: 2015-01-14

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024


Министерство науки и образования РФ
Муниципальное общеобразовательное учреждение
«Средняя общеобразовательная школа №1»
 
 
 
 
 
 
 
Реферат
Биология дрожжей
 
 
Выполнила:
Дмитриева Екатерина,
ученица 11а класса
Руководитель:
Мелехина Елена Борисовна,
учитель биологии
Узловая, 2007

Содержание
Введение
1.         История дрожжей
2.         Распространение дрожжевых грибов в природе
3.         Жизненные формы дрожжей
4.         Дрожжевая клетка. Цитология
5.         Морфология дрожжей
6.         Половое размножение и жизненные циклы дрожжей
7.         Особенности метаболизма
8.         Дрожжи – возбудители заболеваний человека
9.         Промышленное использование дрожжей
Заключение
Список используемой литературы

Введение
Еще с древнейших времен человек научился использовать дрожжи в своих целях: печь хлеб, изготовлять вино и пиво. Люди «общались» с ними, не зная их природы и происхождения. Много веков человек использовал эти организмы в своих целях, даже не зная, что это - живые существа. И лишь несколько веков назад великий ученый Левенгук с помощью микроскопа увидел их. Началось изучение дрожжей, постоянно сообщалось о новых открытиях и исследованиях, которые продолжаются и по сей день.
Начиная писать этот реферат, я задала себе такой вопрос: «Что мне известно о дрожжах?» И, подумав, поняла, что практически ничего. В природе нашей планеты много загадок, и, конечно, жизнь на Земле сложна и разнообразна. И мне стало интересно, почему дрожжи, так часто встречающиеся в хозяйстве, заслужили внимание многих ученых. Что особенного в этих организмах?
Благодаря этому реферату я хочу подробно изучить дрожжи, рассмотреть их жизненные циклы, узнать, как их используют люди, познакомиться с историей развития знаний о этих организмах. Я считаю, что любое живое существо в этом мире по-своему интересно и каким-либо образом отличается от других организмов. Изучение биологии дрожжей поможет мне расширить свой кругозор, узнать что-то новое.

1. История дрожжей
Всю историю тесного общения человека со своими постоянными одноклеточными микроскопическими спутниками - дрожжами можно условно разделить на отдельные периоды.
Уже в ХХ веке до нашей эры человек сумел «приручить» дрожжи, даже не зная об их существовании. Дрожжи работали на человека, производя различные бодрящие напитки, содержащие этиловый спирт. Напиток, напоминающий современное пиво («буза»), был известен уже в Древнем Египте. Там же возник способ приготовления хлеба из кислого дрожжевого теста. Это стало ясно после того, как в раскопках храма и гробниц фараона Эхнатона и его супруги – легендарной Нефертити, живших во второй половине XIV века до нашей эры, археологи натолкнулись на скопление форм для выпечки хлеба и кувшинов для пивоварения. В Китае уже в Х веке до нашей эры умели отгонять спирт из дрожжевой бражки для получения крепких спиртных напитков. Европейцы пристрастились к спиртному несколько позже: производство виски началось в Ирландии в ХI веке, а в ХIII веке в Европе широко распространилось пивоварение. Венцом этого периода можно считать первое описание дрожжей, которые в 1680 г. увидел в капле бродящего пива под микроскопом голландец Антонии Ван Левенгук (см. приложение №1). Хотя он и не связал процесс образования пива с жизнью этих мельчайших «анималькулей», но его рисунки до сих пор поражают точностью изображения дрожжевой клетки(см. приложение №2). После этого ничего нового о дрожжах не появлялось целых 150 лет.
Второй период занимает весь ХIХ век, начиная с 30-х годов. Это период зарождения научных знаний о дрожжах, когда были сделаны первые научные описания дрожжей (Каньяр де Латур во Франции, Теодор Шванн и Фридрих Кютцинг в Германии), способов их размножения, спорообразования, жизненных циклов. Именно в этот период дрожжи были названы сахарными грибами - Saccharomyces. Важнейшим событием этого периода было исследование Луи Пастером в 1860-1876 гг. спиртового брожения и доказательство его биохимической природы. В 1881 г. Эмилем Хансеном в Дании были впервые получены чистые культуры дрожжей. Использование чистых культур преобразило виноделие и пивоварение, превратив их из вида искусства в крупную отрасль промышленности. Исследования братьев Бюхнер в Германии (1890-е гг.) по сбраживанию сахара бесклеточными экстрактами дрожжей положили начало развитию энзимологии и биохимии. В самом конце ХIХ в. Хансеном и Клекером в Дании была создана первая классификация дрожжей.
Третий период охватывает XX век. Он характеризуется дифференциацией научных направлений в области изучения дрожжей. В первой четверти прошлого века создается эволюционно-филогенетическое направление в систематике дрожжей (А. Гийермон во Франции, 1909-28 гг.), организуется первая коллекция дрожжевых культур. С 1931 г. началось издание серии определителей дрожжей в Дельфте (Голландия). В 1954 г. вышел первый отечественный определитель дрожжей В.И. Кудрявцева.
Открытие радиационного мутагенеза Г.А. Надсоном и С.Г. Филипповым в 1925 г. заложило основы радиобиологии и стимулировало исследования по генетике дрожжей. Они касались доказательств существования чередования поколений в жизненном цикле дрожжей с изменением плоидности. Было показано, что аскоспоры  Saccharomyces cerevisiae  гаплоидны, и конъюгация спор или их потомков приводит к восстановлению диплоидного состояния, характерного для вегетативной стадии сахаромицетов. О. Винге разработал метод тетрадного анализа с изоляцией 4 спор аска с помощью микроманипулятора. Впоследствии дрожжи Saccharomyces cerevisiae оказались прекрасным модельным объектом для генетических исследований, и со времени этих работ генетика дрожжей развивалась очень бурно. Были выполнены тысячи работ как теоретического, так и прикладного характера, касающиеся конструирования генетически измененных штаммов дрожжей для биотехнологической промышленности.
Вторая половина XX в. отличается еще большей дифференциацией разделов зимологии, выделением новых направлений. Возникают функциональная морфология и цитология дрожжей (В.И. Бирюзова в СССР, Матиль в Швейцарии, Е. Штрейблова в Чехословакии), молекулярная генетика и генетическая систематика (работы японских, американских, канадских ученых, в СССР – исследования Г. И. Наумова), морская зимология (А.Е. Крисс, М.И. Новожилова в СССР), экология и закономерности распределения дрожжей Появляются новые отрасли на стыке разных направлений, растут запросы и потребности биотехнологии, широко использующей дрожжевые организмы в самых разных производствах. Дрожжи все больше вовлекаются в работы по созданию векторных систем для получения ценных продуктов биологического синтеза.
Существенно изменились представления о разнообразии дрожжей и подходы к их классификации. Неуклонно растет число известных видов дрожжевых грибов, периодически издаются определители, среди которых мировую известность получила серия определителей голландской школы - крупных сводок с описанием всех известных видов дрожжей. Редакторами выходящих с интервалом10-15 лет изданий этого определителя были крупнейшие зимологи Дж. Лоддер, Н. Крегер Ван Рий, Дж. Фелл, Х. П. Куртцман. Начиная с 80-х гг. периодически переиздается еще один определитель, под редакцией Дж. Барнетта, составленный на более формальзованной основе, основанный на использовании компьютерных технологий идентификации. В нашей стране исследования в области систематики дрожжей связаны в основном с именами И.П. Бабьевой, В.И. Голубева, Г.И. Наумова.
Особенно сильное влияние на изучение дрожжей, также как и большинства других групп микроорганизмов, оказало бурное развитие в конце XX в. молекулярной биологии. В современной систематике дрожжей широко используются методы геносистематики, основанные на непосредственном сравнении геномов и секвенировании нуклеотидных последовательностей. Применение единых молекулярно-биологических методов позволило еще больше сблизить подходы к таксономии дрожжевых и мицелиальных грибов, установить связи между дрожжевыми анаморфами и мицелиальными телеоморфами, разработать новые критерии для создания единой филогенетической системы всего царства Mycota. В то же время, новые знания породили и новые научные проблемы, в частности, проблему соотношения новейших молекулярных методов с традиционными, основанными на морфологических и физиологических подходах к изучению дрожжей. Практически полностью расшифрован геном Saccharomyces cerevisiae, что открывает огромные перспективы геномики дрожжей, новые горизонты их биотехнологического использования. Таким образом, наука о дрожжах, проделав более чем полуторавековой путь, продолжает интенсивно развиваться и в XXI веке.
2. Распространение дрожжевых грибов в природе
Особенности распространения дрожжей в природе стали интересовать микробиологов начиная с самых первых исследований процессов традиционного виноделия. Первоначально изучение дрожжей ограничивалось теми видами и штаммами, которые вызывали брожение при приготовлении пива и вина. Однако уже в конце XIX в. М. Бейеринк высказывал мысль о том, что эти культурные виды представляют собой селекционированные формы «диких» дрожжей, широко распространенных в природе. Естественно, возник вопрос об источниках их попадания в бродящие субстраты. Первые исследования, выполненные основателями зимологии Э. Хансеном и А. Клекером, были посвящены именно этой теме: поиску природных источников винных дрожжей Saccharomyces cerevisiae. В нашей стране этому вопросу также уделяли внимание крупнейшие микробиологи, например Г.А. Надсон. Сахаромицеты были найдены на ягодах винограда, однако, как оказалось, преобладают здесь совсем иные виды дрожжей, не участвующие в последующем сбраживании виноградного сока. Еще реже встречались сахаромицеты в окружающих субстратах, в частности, в почве под виноградниками. Уже в ранних работах высказывалось предположение, что почва не является средой, в которой возможно активное развитие дрожжевых грибов, а служит для последних лишь своеобразной «ловушкой», где дрожжи могут сохраняться определенное время в жизнеспособном состоянии и служить источником спор для инфицирования винограда нового урожая. Таким образом возникло понятие «круговорота дрожжей» в природе. Под «дрожжами» в то время подразумевались одноклеточные аскомицетовые грибы,  родственные сахаромицетам и способные к активному брожению.  . Расширяющиеся микологические исследования приводили к обнаружению все новых видов дрожжевых грибов, в том числе и таких, которые существенно отличались от типичных сахаромицетов. Оказалось, что многие из одноклеточных грибов, выделяемых из природных источников, не образовывали аскоспор и вообще не были способны к сбраживанию сахаров. Для таких дрожжей была создана серия формальных родов (Torulopsis, Candida, Rhodotorula, Cryptococcus), виды которых часто обнаруживаются в самых различных природных субстратах, включая почву, растения, разнообразные растительные остатки и природные воды. Стало понятным, что дрожжи распространены довольно широко, и их развитие далеко не ограничивается субстратами традиционных бродильных процессов. Однако, при этом существенно изменилось и содержание самого понятия «дрожжи». Дрожжами стали называть любые одноклеточные грибы, не обязательно вызывающие спиртовое брожение. В то же время, несмотря на существенные отличия между сахаромицетами и небродящими дрожжевыми грибами, достаточно долго сохранялось представление о дрожжах как самостоятельной филогенетической линии грибов. Лишь после обнаружения у несовершенных дрожжей рода Rhodotorula полного жизненного цикла, типичного для телиоспоровых гетеробазидиомицетов, термин «дрожжи» окончательно утратил таксономическое содержание. Тем не менее, вплоть до настоящего времени дрожжи продолжают рассматриваться в качестве единой группы, представляющей собой особую жизненную форму, или экоморфу грибов. Дело в том, что все дрожжи обладают очень сходным обликом за счет роста преимущественно в виде одиночных клеток. Кроме того, с одноклеточной организацией дрожжей сопряжены многие их физиологические особенности, в частности узкий спектр усваиваемых соединений, отсутствие способности к гидролизу труднодоступных полимеров, особенно таких, как целлюлоза и лигнин, быстрый рост за счет потребления простых углеводов. Особенно характерен этот набор признаков для аскомицетовых дрожжей. Все это делает их более приспособленными к обитанию в жидких и мелкодисперсных средах, богатых легкодоступными источниками углерода, в то время как мицелиальные грибы получают преимущество при росте на плотных поверхностях. Одноклеточность у грибов - вторичное явление в их эволюции, которое возникало независимо в разных группах аско- и базидиомицетов как реакция на существование  в жидких и полужидких средах с относительно высокой  концентрацией легкодоступных источников питания. Вскоре после открытия Пастером дрожжевой природы спиртового брожения было показано, что дрожжи постоянно обитают на поверхности ягод винограда и других сладких плодов, в цветочном нектаре, в кишечнике многих ксилофагов, проложенных ими галереях и личиночных камерах, в измельченной древесине, в кишечниках самых разных беспозвоночных, на наземных частях растений, в почве и т.д.

 

3. Жизненные формы дрожжей

Специализация на выполнении неодинаковых функций приводит у разных групп дрожжевых грибов к формированию характерного комплекса морфологических и физиологических свойств. Это дает возможность говорить о различных жизненных формах дрожжей. В общей экологии термином «жизненная форма» обозначается внешний облик, определенный морфологический тип организма, сформировавшиеся в результате приспособления к определенной среде обитания. Как уже отмечалось, дрожжи в современном понимании представляют собой определенную жизненную форму грибов. У микроорганизмов приспособления носят в основном физиологический характер, и при выделении таких экологических групп необходимо учитывать физиологические характеристики, поэтому правильнее говорить не о жизненных формах, а о морфо-физиологических группах. Среди дрожжей можно выделять следующие жизненные формы:
·                   Сахаробионты - «настоящие» дрожжи, наиболее типичным представителем которых является Saccharomyces cerevisiae. Они обладают комплексом свойств, свидетельствующим об их приспособленности к существованию в средах, обогащенных легкодоступными источниками углерода. Отсутствие пигментации, развитых мицелиальных структур, хламидоспор, слизистых капсул, а также способность к более или менее интенсивному брожению и узкий спектр усваиваемых соединений углерода - характерный набор свойств этих дрожжей. Кроме сахаромицетов к сахаробионтам следует относить представителей родов Debaryomyces, Kluyveromyces, Torulaspora, Zygosaccharomyces, а также большинство видов из родов Pichia и Candida.
·                   Фитобионты - адаптированы к обитанию на поверхности живых частей растений и, как правило, образуют каротиноидные пигменты. Они часто имеют в цикле развития хламидоспоры или хламидоспороподобные клетки, устойчивые к высушиванию. Характерный признак многих видов - образование баллистоспор, рассеивающихся токами воздуха. Наиболее типичные представители фитобионтов - роды Sporobolomyces и Sporidiobolus, некоторые виды родов Rhodotorula и Cryptococcus.
·                   Сапробионты обладают относительно высокой гидролитической активностью и принимают участие в деструкции растительных остатков на средних и поздних стадиях. К типичным сапробионтам относятся некоторые виды рода Trichosporon, Cystofilobasidium capitatum, группа несовершенных видов базидиомицетового аффинитета, классифицируемых в роде Cryptococcus (Cryptococcus podzolicus, Cryptococcus humicolus).
·                   Педобионты - дрожжи, наиболее приспособленные к обитанию на твердых поверхностях почвенных частиц. Они обладают слизистыми капсулами, которые создают межклеточную среду, сохраняющую благоприятный режим влагообмена и питания в условиях временного иссушения почвы. Эти дрожжи способны накапливать большое количество запасных веществ, главным образом в форме липидов, которые обеспечивают переживание длительных периодов голодания. Для них также характерна способность к усвоению соединений азота в очень низкой концентрации. Типичные представители педобионтов - все виды липомицетов. По-видимому, к педобионтам можно также отнести некоторые виды криптококков, в частности Cryptococcus terreus, Cryptococcus aerius, Cryptococcus terricola.

 

4. Дрожжевая клетка. Цитология

Дожжевая клетка имеет все основные структуры, которые присущи любой эукариотической клетке, но в то же время она обладает особенностями, свойственными грибам, а именно, сочетанием признаков как растительной, так и животной клеток: клеточная стенка у них ригидная, как у растений, но в клетке отсутствуют хлоропласты и накапливается гликоген, как у животных.

Компоненты дрожжевой клетки
Ядро
В дрожжевой клетке в фазе между делениями всегда имеется только одно ядро. В световом микроскопе его можно увидеть после специальной окраски или с помощью фазово-контрастного устройства при высоких разрешениях. На электронно-микроскопических снимках ультратонких срезов дрожжевых клеток ядро выглядит как более или менее округлая органелла, окруженная двойной мембраной. В ней есть поры в виде округлых сквозных отверстий, которые образуются в результате слияния двух ядерных мембран. Однако ядерные поры - не просто отверстия, они заполнены сложноорганизованными структурами, которые называют комплексом пор ядра. Считается, что основная функция ядерных пор - транспорт готовых  рибосомных субъединиц в цитоплазму. Ядерная оболочка многофункциональна, но в основном играет роль барьера, отделяющего содержимое ядра и регулирующего транспорт макромолекул между ядром и цитоплазмой. Основные функциональные единицы ядра - молекулы ДНК, несущие основную генетическую информацию о клетке. ДНК составляет основную часть хроматина - основного компонента ядра. Число хромосом в ядре разных видов дрожжей может быть различным, оно колеблется от 2 до 16.
Митохондрии
В митохондриях имеется собственная митохондриальная ДНК (мДНК), а также весь аппарат белкового синтеза, включая матричную РНК и 70S рибосомы (в отличие от 80S рибосом в цитоплазме). мДНК у дрожжей составляет 5-20% от всей ДНК клетки. Число митохондрий в одной дрожжевой клетке варьирует в пределах 1-20 в разные периоды роста и в зависимости от условий. Как правило, 1-2 митохондрии в клетке более крупные, чем остальные и имеют разветвленную форму. Реконструкция ультратонких срезов клетки позволяет предположить, что в некоторых случаях (в подготовительный период почкования) клетка содержит всего одну вытянутую и сильно разветвленную митохондрию. Митохондрии способны к самовоспроизведению.
Цитоплазаматическая мембрана
На поперечном срезе под электронным микроскопом мембрана у дрожжей выглядит как трехслойная структура. Она представляет собой два слоя фосфолипидов, в которые погружены белковые молекулы, то есть построена по общему для всех клеточных мембран принципу. Однако, имеются различия, касающиеся химического состава. У Saccharomyces cerevisiae основными фосфолипидами мембран являются лецитин, фосфатидилэтаноламин и фосфатидилсерин. На их долю приходится около 90% всех липидов мембраны. В состав мембраны дрожжей входят стероиды  - эргостерол, зимостерол и др. Белки представлены в основном   ферментами, которые участвуют в трансмембранном переносе веществ,    расщеплении полисахаридов и синтезе внеклеточных структур.      . Функции цитоплазматической мембраны многообразны: регуляция биосинтеза клеточной стенки, активный транспорт транспорт в клетку специфических молекул органических веществ, транспорт ионов K+ и Na+ и др.
Вакуоли
В фазово-контрастном микроскопе в клетках дрожжей хорошо видны светлые и прозрачные структуры круглой формы. Это вакуоли (см. приложение 3). Обычно их 1-3 в клетке. Каждая вакуоль окружена одинарной мембраной и содержит различные ферменты, липиды, низкомолекулярные продукты метаболизма (аминокислоты), ионы металлов. В вакуолях сосредоточена большая часть ионов калия. Иногда в вакуоли видны «пляшущие» за счет броуновского движения плотные гранулы. Это так называемые метахроматические гранулы, «пляшущие тельца» (dancing bodies), или волютин. Гранулы эти состоят из полимеризованных остатков фосфатов, а по периферии они покрыты комплексными соединениями из РНК, белков и липидов. Волютин - это резерв полифосфатов в клетке. Основная функция вакуолей - разобщение процессов синтеза и распада белков и нуклеиновых кислот. Они выполняют также роль депо для хранения некоторых запасных веществ и ферментов, участвуют в регуляции тургорного давления. Также в клетке присутствуют: клеточная стенка, которая защищает протопласт от осмотического разрыва и придает клетке определенную форму; капсула (слизистый полисахаридный чехол вокруг клетки), цитоплазма и липиды.
5. Морфология дрожжей
Макроморфологические признаки очень изменчивы и сильно зависят от состава среды и условий культивирования, поэтому они имеют    весьма ограниченное значение в систематике дрожжей.     . Дрожжевые культуры, растущие на плотных средах, по консистенции бывают чаще всего пастообразными, а также слизистыми, иногда полностью стекающими на дно пробирки, вязкими, клейкими, кожистыми или крошащимися. Слизистый рост характерен для многих анаморфных базидиомицетовых дрожжей родов Cryptococcus (см. приложение 4), Rhodotorula (см. приложение 5), Sporobolomyces, образующих большое количество внеклеточных полисахаридов, а также для аскомицетовых почвенных дрожжей рода Lipomyces (см. приложение 6). У большинства аскомицетовых дрожжей колонии пастообразные, сухие, культура при росте на скошенном агаре не стекает на дно пробирки. Для дрожжеподобных грибов, образующих как одиночные клетки, так и мицелий, характерны колонии с ворсинчатым краем, который хорошо просматривается при просвечивании. У большинства дрожжей колонии белые, часто приобретающие при старении кремовый или слегка коричневатый оттенок. У некоторых аскоспоровых дрожжей, например из рода Lipomyces, старые колонии при обильном спорообразовании темнеют и становятся бурыми или шоколадными. Многие дрожжи образуют пигменты, окрашивающие их колонии в различные цвета. Наличие каротиноидных пигментов, придающих колониям красную, розовую, оранжевую или желтую окраску, характерно для базидиомицетовых дрожжей родов Rhodotorula, Sporobolomyces и др. Аскомицетовые дрожжи Metschnikowia pulcherrima образуют диффундирующий в среду красно-вишневый пигмент пульхерримин. Так называемые «черные дрожжи», формируют темно бурые или черные  колонии за счет накопления меланоидных пигментов. Микроморфология дрожжей включает признаки, характеризующие  отдельные клетки (форма, размеры), а также способы вегетативного и  бесполого размножения и образуемые при этом структуры.. Морфогенез дрожжевой клетки тесно связан со способом вегетативного размножения. Различают два принципиально различных способа образования вегетативных клеток у дрожжей - артрический (талломный) и бластический (зародышевый). При артрическом способе мицелий дрожжеподобных грибов одновременно распадается на отдельные одноклеточные элементы - артроспоры. Они образуются за счет расчленения гифы по поперечным септам после разрушения первичной стенки гифы в местах сочленения. Такой способ вегетативного размножения характерен для дрожжеподобных грибов Endomyces, Galactomyces, Arxula, Trichosporon, причем у двух последних родов образование артроспор сопряжено с их последующим почкованием. Бластический тип вегетативного размножения - это образование почек, что наиболее характерно для дрожжей. Почка представляет собой вырост на материнской клетке, который по мере увеличения в размерах отшнуровывается от нее. На материнской клетке при этом остается шрам почкования, а на отделившейся почке - шрам рождения. Шрамы почкования, или почечные рубцы, сохраняются на материнской клетке весь период ее жизни, а шрамы рождения со временем становятся малозаметными. Форма дрожжевых клеток довольно разнообразна (см. приложение 7) и этот признак тесно связан со способом почкования. У видов, размножающихся многосторонним почкованием, клетки имеют сферическую, округлую, овальную или яйцевидную форму. При биполярном почковании клетки приобретают апикулятную (лимоновидную) или грушевидную форму. У делящихся дрожжей клетки более или менее цилиндрические. Специфическую угловатую форму имеют клетки дрожжей рода Trigonopsis, серповидную - Metschnikowia lunata. Клетки дрожжей, образующие почки на стеригмах, зачастую приобретают форму, делающую их похожими на простекобактерии. У многих видов дрожжей в определенных условиях роста материнские и дочерние клетки после почкования не разъединяются, а продолжают почковаться. В результате возникают структуры, имитирующие мицелий. Такой мицелий называют ложным, или псевдомицелием (см. приложение 8). В отличие от истинного (септированного) мицелия, в нитях псевдомицелия между клетками обычно хорошо заметны перетяжки, а апикальные (концевые) клетки всегда короче предшествующих. Псевдомицелий, состоящий только из клеток одного типа, сходных по форме и размерам, называют примитивным (рудиментарным). Сложный псевдомицелий состоит из клеток более чем одного типа, обычно в нем резко различаются длинные клетки, составляющие псевдогифы, и расположенные на них одиночные или собранные гроздьями круглые, овальные или клиновидные почки, которые в этом случае называются бластоспорами (см. приложение 9). Образование псевдомицелия характерно для многих аскомицетовых дрожжей, например из родов Candida, Pichia.
Диморфизм и плеоморфизм
Для дрожжей, как и для других грибов, известны явления диморфизма и плеоморфизма. Мицелиально-дрожжевой диморфизм проявляется в том, что один вид может расти в двух формах - одноклеточной и мицелиальной.  Например, у базидиомицетовых дрожжей обычно гаплоидная   фаза одноклеточна, а диплоидная (дикариотическая) - мицелиальная.   . О явлении плеоморфизма говорят, когда в жизненном цикле одного вида существуют два или несколько видов бесполого размножения. Плеоморфизм у дрожжевых грибов выражается в том, что наряду с основным типом вегетативного размножения почкованием или делением некоторые дрожжи образуют особые бесполые структуры, предназначенные специально для распространения или сохранения вида, например:
·                   баллистоспоры (см. приложение 10). Это экзогенные споры (конидии), которые формируются на заостренных кончиках особых выростов - стеригм, и при созревании с силой отстреливаются за счет капельно-экскреторного механизма. Способность к образованию баллистоспор, рассеиваемых через воздушную среду, свойственна дрожжам, обитающим на наземных частях растений. Примерами могут служить дрожжи родов Sporidiobolus, Sporobolomyces и др.;
·                   эндоспоры, представляющие собой бесполые эндогенные клетки, формирующиеся чаще всего в гифах мицелиальных дрожжей (например, Trichosporon) из участков цитоплазмы, которые отделяются мембраной и затем образуют клеточную стенку. Процесс можно трактовать как эндогенное почкование. Количество эндоспор в одной клетке строго не фиксировано. После разрушения мицелия эндоспоры освобождаются и начинают почковаться. Эндоспоры ни по структуре, ни по устойчивости не отличаются от вегетативных клеток;
·                   хламидоспоры (см. приложение 11). Это крупные сферические или овальные клетки, которые образуются как из одиночных дрожжевых вегетативных клеток, так и на мицелии, по одной или цепочками. Хламидоспоры на мицелии образует, например, Candida albicans. Из дрожжевых клеток формируются хламидоспоры в старых культурах Lipomyces, Cryptococcus, Metschnikowia, Phaffia. Хламидоспоры отличаются утолщенной многослойной клеточной стенкой и высокой концентрацией запасных веществ. Биологическая функция таких структур заключается в длительном сохранении жизнеспособности в условиях голодания или низкой влажности. В средах с легкодоступными источниками энергии такие хламидоспоры прорастают путем почкования, или образуют трубки прорастания. В других случаях хламидоспоры выступают как структуры, в которых проходит кариогамия и мейоз, что ведет к образования асков (например, у Metschnikowia pulcherrima) или базидий (у базидиомицетовых дрожжей Leucosporidium, Mrakia, Rhodosporidium). В последнем случае такие структуры называют телиоспорами.
6. Половое размножение и жизненные циклы дрожжей
Половое размножение - это сложная цепь событий, включающая контакт двух гаплоидных клеток, их слияние (сначала слияние цитоплазмы - плазмогамия, а затем сразу же или со значительной задержкой слияние ядер - кариогамия), образование диплоидной зиготы, ядро которой затем либо делится мейотически с восстановлением гаплоидного состояния, либо дает начало диплоидному поколению клеток. Таким образом, половое размножение связано со сменой ядерных фаз. У дрожжей, как и у всех грибов, чередование ядерных фаз сопряжено с образованием половых гаплоидных спор – аскоспор (см. приложение 12) или базидиоспор (см. приложение 13). Весь ход событий в развитии организма от одной стадии до этой же стадии в следующем поколении составляет жизненный цикл, или онтогенез. Полный жизненный цикл включает вегетативную стадию, в течение которой клетки размножаются при помощи митотического деления, и половой цикл, включающий мейотическое деление ядра. У мицелиальных грибов вегетативное размножение занимает обычно одну из стадий жизненного цикла: у аскомицетов - преимущественно гаплоидную, у базидиомицетов - дикариотическую. У дрожжей вегетативное размножение может происходить в любой фазе жизненного цикла. На этом основании различают гаплоидные виды, у которых вегетативное размножение происходит в гаплоидной фазе, диплоидные виды, размножающиеся вегетативно в диплофазе, а также гапло-диплоидные, образующие стабильные как гапло-, так и диплофазы, или же   смешанные популяции гаплоидных и диплоидных клеток. У дрожжей встречаются различные типы полового процесса. У большинства видов в половом процессе у дрожжей участвуют обычные соматические, то есть неспециализированные клетки. Такой тип полового процесса называется соматогамией. Существуют разновидности соматогамии:
·                   гологамия - слияние (копуляция) двух морфологически сходных соматических клеток,
·                   педогамия - слияние материнской и дочерней клетки-почки,
·                   адельфогамия - слияние сестринских клеток-почек.
·                   У некоторых видов аскомицетовых дрожжеподобных грибов половой процесс представляет собой типичную для большинства аскомицетов гаметангиогамию - копуляцию специальных клеток мицелия - гаметангиев. Копулировать могут не любые две клетки, а лишь клетки, относящиеся к различным типам спаривания.
Термин «тип спаривания» используется вместо термина «пол» в том случае, когда копулирующие клетки не имеют морфологических отличий, а различаются лишь физиологически. У одних дрожжей при вегетативном размножении происходит разделение клеток на различные типы спаривания (обозначаемые a и α), и, следовательно, в потомстве одной клетки возможен половой процесс. Такие дрожжи называют гомоталличными. У других клетки не способны переключаться с одного типа спаривания на другой, и половой процесс в потомстве одной клетки невозможен. В этом случае дрожжи называют гетероталличными. Половой процесс у таких дрожжей происходит только при объединении клеток из популяций a и α типов спаривания.
Дифференциация пола у дрожжей
Особенности половой дифференциации и конъюгации клеток при половом размножении наиболее хорошо изучены у дрожжей Saccharomyces cerevisiae. При половом размножении могут конъюгировать не любые две клетки, а только клетки различных типов спаривания. Эти клетки различаются между собой только по одному генетическому локусу, обозначаемому mat (mating - спаривание). Локус mat может находиться в двух аллельных состояниях: mat a и mat α. Клетки, несущие локус mat a или mat α, обозначаются соответственно как a- и α-клетки. Локусы mat a и mat α ответственны за образование так называемых половых факторов (соответственно a- и α-фактора), которые представляют собой олигопептиды. a-Фактор, образуемый а-клетками, способен блокировать процесс митотического деления у α-клеток. α-Фактор, образуемый α-клетками, блокирует  митотическое размножение у а-клеток. Поэтому конъюгация возможна только   при взаимодействии а- и α-клеток, но не а х a или α х α. После конъюгации а- и α-клеток образуется диплоидная клетка (зигота), имеющая генотип а/α. Только такие клетки способны к мейотическому делению с образованием половых спор. В процессе мейотического деления а/α клетки образуется 4 гаплоидных ядра, два из которых а-типа, а два - α-типа. Поэтому в типичном  четырехспоровом аске две аскоспоры принадлежат к а-типу, а две - к α-типу. Более сложные случаи генетической детерминации пола наблюдаются у базидиальных дрожжей. У видов в родах Rhodosporidium, Leucosporidium, Sporidiobolus тип спаривания не биполярный, а тетраполярный, так как определяется не двумя (а и α), а четырьмя аллелями, которые принято обозначать как А, а, В, в. В этом случае скрещивание возможно лишь между штаммами, которые различаются всеми четырьмя аллелями: АВ ґ ав или Ав ґ аВ. В комбинациях ав ґ ав или АВ ґ АВ спаривание невозможно. При взаимодействии штаммов, различающихся только по одному локусу: АВ ґ аВ, АВ ґ Ав, ав ґ Ав или ав ґ аВ, иногда наблюдается копуляция клеток, но дикариотический мицелий, как правило, не развивается.

Аскомицетовые дрожжи

К аскомицетам относят дрожжи, половые споры которых формируются эндогенно внутри особых вместилищ - сумок, или асков. В отличие от мицелиальных аскомицетов, большая часть жизненного цикла которых проходит в гаплоидной фазе, а диплоидна только молодая сумка, среди аскоспоровых дрожжей есть виды с разными типами онтогенеза: гаплоидным, диплоидным и гапло-диплоидным. При этом аском может стать либо непосредственно зигота (Schizosaccharomyce, Zygosaccharomyces), либо отдельная диплоидная вегетативная клетка (Saccharomyces, Saccharomycodes), либо сумка развивается как новообразование с участием так называемых «активных» почек, выполняющих функцию гамет (Lipomyces). Аски могут также формироваться из хламидоспор (см. приложение 11), из клеток псевдомицелия (см. приложение 8), или на истинном мицелии. В любом случае формирование аска происходит из диплоидной клетки после мейотического деления ядра. Мейоз представляет собой два следующих друг за другом деления ядра с однократным удвоением хромосом. Перед вторым делением хромосомы не удваиваются, поэтому в результате происходит редукция числа хромосом и возникают четыре гаплоидных ядра. Затем в районе ядерных бляшек начинают формироваться мембраны, которые постепенно разрастаются и охватывают часть цитоплазмы будущего аска. После образования аскоспор остается небольшое количество «неиспользованной» цитоплазмы. Между двумя листками мембран закладывается клеточная стенка аскоспоры. Аскоспоры отличаются от вегетативных клеток более толстой и многослойной клеточной стенкой, меньшим развитием внутриклеточных мембранных систем, отсутствием вакуолей. Эти особенности связаны с пониженной метаболической активностью аскоспор. Обычно аскоспоры содержат большое количество запасных веществ, чаще всего - липидов. Аскоспоры дрожжей - это типичные покоящиеся споры, способные более или менее длительный период существовать в неактивном состоянии. Однако, устойчивость аскоспор к ряду повреждающих факторов, например, к повышенным температурам, обычно не намного выше, чем у вегетативных клеток. Форма аскоспор у дрожжей очень разнообразна. Они могут быть круглыми, овальными, бобовидными, чечевицеобразными, серповидными, игловидными и т.д. Кроме того, аскоспоры могут иметь на поверхности клеточной стенки различные скульптурные образования, которые хорошо выявляются в электронном микроскопе. За счет таких образований аскоспоры могут быть бородавчатыми, сатурновидными, напоминающими грецкий орех и пр. Морфология асков зависит от способа их образования, типа полового процесса (гологамия или педогамия), количества и формы аскоспор. Количество аскоспор в аске у разных видов может быть от одной до нескольких десятков. Наиболее часто встречаются аски с 1,2,4 и 8 аскоспорами. Аски различаются также временем существования. У большинства дрожжей аски устойчивые и разрушаются только в очень старых культурах. Но есть виды с быстро разрушающимися асками. Морфология асков, аскоспор, тип полового процесса имеют большое таксономическое значение. Эти признаки используются в систематике дрожжей при выделении таксонов родового уровня.   . Рассмотрим несколько примеров жизненных циклов аскомицетовых дрожжей.
·                   Гаплоидные. У таких дрожжей вегетативное размножение происходит в гаплоидной фазе, а диплоидная стадия очень короткая: образовавшееся диплоидное ядро сразу же делится мейотически с восстановлением гаплоидного состояния. Schizosaccharomyces pombe. Половой процесс - гологамия. Две морфологически сходные гаплоидные вегетативные клетки образуют выросты, с помощью которых происходит контакт, а затем слияние содержимого клеток. Возникает диплоидная зигота, которая вегетативно не размножается, а ядро ее сразу переходит к мейотическому делению. Образующиеся четыре гаплоидных ядра включаются в аскоспоры. После освобождения из аска аскоспоры прорастают и  дают начало длительной стабильной вегетативной фазе. Lipomyces tetrasporus. Половой процесс - адельфогамия. Роль гамет здесь выполняют активные почки. Такие почки формируются на гаплоидных вегетативных клетках на поздних стадиях роста после периода вегетативного размножения. Обычно две почки на одной материнской клетке выполняют функцию гамет и копулируют между собой, образуя зиготу, которая затем разрастается в виде мешка и отделяется перегородкой от несущей ее клетки. Ядро зиготы делится мейотически и она превращается в четырехспоровый мешковидный аск, прикрепленный к материнской клетке, на которой может затем формироваться вторая и третья сумки.
·                   Диплоидные. У этих дрожжей вегетативно размножаются только диплоидные клетки. Гаплофаза ограничена молодыми асками и аскоспорами.  . Saccharomycodes ludwigii. У этих дрожжей диплоидизация происходит при слиянии аскоспор. Четыре гаплоидные аскоспоры прорастают и начинают копулировать попарно, когда они еще находятся в аске. Образовавшиеся диплоидные клетки размножаются вегетативно, образуя стабильную и длительную диплофазу. При соответствующих условиях, когда снимается контроль митотического деления ядра, диплоидная клетка вступает в митотический цикл и превращается в аск с 4 аскоспорами. Hanseniaspora uvarum. Жизненный цикл сходен с описанным выше за исключением того, что споры не копулируют, но ядро в зрелой споре после освобождения ее из сумки в условиях, обеспечивающих вегетацию, делится мейотически. Образовавшиеся два гаплоидных ядра сливаются, образуя уже диплоидную клетку, способную к вегетативному размножению. Сходный цикл наблюдается и у почвенных дрожжей Williopsis saturnus. 
·                   Гапло-диплоидные. Существуют дрожжи, у которых вегетативное размножение может происходить как в гаплоидной, так и в диплоидной фазах. Длительность той  или другой фазы зависит от вида и от условий роста. Saccharomyces cerevisiae. Эти дрожжи вегетируют преимущественно в диплоидном состоянии, но у них имеется короткая вегетативная гаплоидная фаза. Диплоидная клетка в условиях дефицита легкодоступных источников углерода прекращает почковаться, и ядро ее делится мейотически. В результате она превращается в аск с 4 гаплоидными аскоспорами, которые после освобождения из аска прорастают и образуют гаплоидное поколение. Гаплоидные клетки обычно мельче диплоидных и имеют более округлую форму. Шрамы почкования у них сближены, почки образуются группами в одном локусе. После нескольких циклов почкования две клетки конъюгируют и сливаются, восстанавливая диплоидное состояние.
Базидиомицетовые дрожжи
В отличие от аскоспоровых дрожжей, все дрожжи, которые относят к базидиомицетам, образуют в ходе полового размножения специальные клетки - базидии, несущие экзогенные споры (базидиоспоры). Значительную часть жизненного цикла занимает дикариотическая фаза, представленная дикариотическим мицелием с пряжками. Большинство видов гетероталличны и поэтому многие из них долгое время были известны только в гаплофазе как несовершенные дрожжи. Жизненные циклы базидиомицетовых дрожжей также достаточно разнообразны. Активное исследование жизненных циклов базидиомицетовых дрожжей началось лишь в конце 60-х - начале 70-х годов XX в., после того как японский миколог Исао Банно опубликовал результаты открытия полового цикла у хорошо известных и ранее считавшихся несовершенными красных дрожжей Rhodotorula glutinis. Ему удалось подобрать типы спаривания среди большого числа проверенных штаммов, и в результате их скрещивания он наблюдал образование дикариотического мицелия, на котором формировались структуры, морфологически сходные с хламидоспорами, то есть крупные клетки с сильно утолщенными оболочками и большим запасом внутриклеточных липидов. Именно в них затем происходило слияние двух ядер и последующий мейоз с восстановлением гаплоидного состояния. Эти клетки получили название телиоспор. При прорастании они образовывали промицелий с поперечными септами, делящими его на 4 клетки. Эти клетки отпочковывали гаплоидные споридии. Совершенная стадия Rhodotorula glutinis была названа Банно Rhodosporidium toruloides. Позже сходный цикл был описан для некоторых баллистоспоровых дрожжей и для нескольких видов несовершенного рода Candida. Их телиоспоровые стадии получили соответственно родовые названия Sporidiobolus и Leucosporidium. Сейчас похожие полные или не завершенные жизненные циклы известны для   многих базидиомицетовых дрожжей. Они различаются формой    телиоспор, характером их прорастания и морфологией базидий.     . Другой тип жизненного цикла базидиомицетов с дрожжевой анаморфой известен для дрожалковых грибов порядка Tremellales. Эти грибы известны достаточно давно, так как в онтогенезе этих организмов есть стадия образования макроскопических плодовых тел, которые в природе обычно развиваются на старой древесине, на стволах мертвых деревьев. То, что базидиоспоры дрожалковых грибов способны к почкованию, было замечено микологами еще в конце XIX в., однако наличие самостоятельной дрожжевой фазы в цикле развития тремелловых было установлено после детального изучения видов рода Tremella в 1960-х гг. В культурах отдельные базидиоспоры гетероталличных видов дают начало дрожжевым стадиям. Мицелий обычно развивается только при смешивании штаммов совместимых типов спаривания. Смешение соответствующих типов спаривания приводит к быстрой реакции клеток на выделяющиеся феромоны; почкование прекращается, развиваются конъюгационные трубки, через которые клетки копулируют, происходит плазмогамия и развивается мицелиальная дикариотическая стадия. У многих видов в подходящих условиях вскоре после формирования дикариотического мицелия начинается развитие плодовых тел. В плодовых телах образуются 2-4-клеточные гетеробазидии. Освободившиеся базидиоспоры могут размножаться вегетативно почкованием или формированием баллистоспор. Характеристики жизненного цикла играют большую роль в систематике базидиомицетовых дрожжей. Однако очень часто у базидиомицетовых дрожжей, изолируемых из природных местообитаний, не удается наблюдать полный жизненный цикл при культивировании на лабораторных средах, поэтому их идентификация и классификация вызывают большие трудности. Значительные успехи в систематике таких анаморфных базидиомицетовых дрожжей достигнуты в последние десятилетия, особенно в связи с внедрением в таксономическую практику молекулярно-биологических методов. Как оказалось, группирование базидиомицетовых дрожжей на основе молекулярно-биологических признаков, в частности нуклеотидных последовательностей рРНК, часто не совпадает с характеристиками их жизненного цикла, особенно такими, как способность к образованию телиоспор, морфология базидий. Поэтому классификация базидиомицетовых дрожжей еще далека от завершенности и требует дальнейших исследований.
7. Особенности метаболизма
Хотя дрожжи и не так разнообразны по своему метаболизму, как бактерии, различные виды дрожжей могут катаболизировать разные соединения   углерода и азота и образовывать различные конечные продукты. При росте в аэробных условиях при низком содержании глюкозы в среде дрожжи получают АТФ за счет процессов дыхания, как это делает большинство аэробных организмов. Полное окисление углеродного субстрата до углекислого газа и воды может происходить у дрожжей в цикле трикарбоновых кислот, и в пентозофосфатном цикле. При функционировании каждого из этих циклов в клетке происходит образование восстановленных пиридиннуклеотидов. Они могут быть использованы либо для процессов восстановления в ходе биосинтеза, либо для получения АТФ путем окислительного фосфорилирования. В последнем случае НАД·Н становится донором электронов для электронно-транспортной цепи, в которую у дрожжей входят такие белки-переносчики электронов, как флавопротеиды и цитохромы, локализованные на внутренней мембране митохондрий. Наиболее известное свойство многих дрожжей - способность к спиртовому брожению. Многие виды дрожжей могут переключаться с бродильного метаболизма на дыхательный и обратно в зависимости от условий: при наличии кислорода брожение ингибируется и дрожжи начинают дышать, в отсутствие кислорода включается механизм спиртового брожения. Так как кислородное дыхание - энергетически более выгодный процесс, чем брожение, то выход биомассы дрожжей в расчете на единицу используемого  субстрата выше при выращивании их в аэробных условиях,    чем в анаэробных. Это явление называется эффектом Пастера.   . Спиртовое брожение может идти не только в анаэробных условиях. Если выращивать дрожжи в присутствии кислорода, но при высоком содержании глюкозы в среде, то в этом случае дрожжи также сбраживают глюкозу. Таким образом, глюкоза подавляет процессы аэробного дыхания. Это явление получило название эффекта Кребтри, или катаболитной репрессии. Многие дрожжи вообще не способны бродить. По соотношению между этими двумя процессами в метаболизме можно выделить следующие группы дрожжей:
·                   Дрожжи, существующие только за счет брожения и не способные расти в аэробных условиях. К ним относится, например, вид Arxiozyma telluris, обитающий в кишечном тракте грызунов.
·                   Активные бродильщики: интенсивно сбраживают различные субстраты, но в аэробных условиях переключаются на дыхательный обмен. Представители - Saccharomyces cerevisiae, Schizosaccharomyces pombe.
·                   Слабые бродильщики - в основном существуют за счет аэробного дыхания, но в анаэробных условиях могут бродить, однако значительно менее интенсивно, чем виды из предыдущей группы. Это аскомицетовые дрожжи из родов Pichia, Debaryomyces, а также все способные к брожению базидиомицетовые дрожжи.
·                   Дрожжи, существующие только за счет дыхания и не способные расти в анаэробных условиях. К этой группе относятся аскомицетовые дрожжи из рода Lipomyces и многие несовершенные дрожжи базидиомицетового аффинитета - Cryptococcus, Rhodotorula, Sporobolomyces.
Субстраты брожения
Все бродящие дрожжи сбраживают глюкозу и фруктозу, поскольку именно с этих сахаров начинается гликолитическое расщепление. Кроме глюкозы и фруктозы могут сбраживаться другие соединения. В основном к ним относятся гексозы и олигосахариды, включающие остатки гексоз. Из моносахаридов наиболее часто сбраживается  галактоза, из дисахаридов - сахароза, мальтоза, трегалоза. Значительно реже встречаются дрожжи, сбраживающие лактозу и мелибиозу. Долгое время не были известны дрожжи, способные интенсивно сбраживать пентозы. Такие виды были описаны только к началу 80-х годов XX в. К ним относятся, например, Pichia stipitis (несовершенная стадия - Candida shehatae), Pachysolen tannophilus. Брожение ксилозы начинается с восстановления ее до ксилита с помощью фермента ксилозоредуктазы. Затем ксилит окисляется ксилитдегидрогеназой до ксилулозы, которая фосфорилируется с образованием ксилулозо-5-фосфата. Последний может вступать в реакции пентозофосфатного пути, где происходит перестройка углеродного скелета ксилулозо-5-фосфата с образованием интермедиатов гликолиза.
8. Дрожжи - возбудители заболеваний человека
Среди дрожжей нет облигатно-патогенных видов, которые могут размножаться только в организме человека. Однако, в природных местообитаниях встречаются факультативно-патогенные и условно-патогенные дрожжи, которые могут вызывать серьезные заболевания у людей с ослабленным иммунитетом. К таким заболеваниям относятся:
Кандидоз
Основным возбудителем кандидоза является Candida albicans. Однако это заболевание могут вызывать и другие виды: C. tropicalis, C. parapsilosis, C. glabrata, C. krusei, реже C. lusitaniae, C. guilliermondii, C. rugosa и др. Все они являются несовершенными дрожжеподобными грибами аскомицетового аффинитета. Их довольно часто можно встретить в различных природных местообитаниях. Многие из них также относятся к компонентам нормальной микрофлоры человека, то есть постоянно обитают в теле здоровых людей. Их часто можно выделить с кожи, слизистых оболочек, из фекалий. Важной особенностью всех этих видов является их способность   к росту при 37°C, те есть при температуре тела человека. Массовое развитие дрожжей в теле человека приводит к кандидозу. Заболевание возникает в основном у людей с ослабленной иммунной системой. Наиболее распространенными причинами являются злокачественные новообразования, травмы, ожоги и серьезные хирургические вмешательства, длительное лечение антибиотиками широкого спектра действия, преждевременные роды; трансплантация органов и тканей, которая обычно сопровождается применением препаратов, подавляющих естественный иммунитет. Повышенные шансы заболеть кандидозом имеют недоношенные новорожденные и лица пожилого возраста с наличием тяжелых заболеваний, а также наркоманы, использующие нестерильные шприцы. В последнее время кандидоз особенно часто развивается у больных СПИДом. Кандидоз встречается во всем мире. Клинические формы кандидоза могут быть очень разнообразными. Они варьируют от поверхностных поражений слизистых оболочек, кожи и ногтей до обширных поражений различных внутренних органов и тканей. Распространенной формой кандидоза является т.н. «молочница», при которой поражаются слизистые оболочки рта и горла. При этом на языке и слизистой оболочке рта появляются кремово-белые пятна, которые распространяются на небо и глотку. Поскольку возбудитель при этом проглатывается, в отсутствие лечения возможно инфицирование легких и желудочно-кишечного тракта. Сходные с молочницей симптомы возникают при поражении слизистых оболочек половых органов. При поверхностном кандидозе могут также поражаться крупные складки кожи, особенно под молочными железами, паховые и межъягодичные области, заушные складки. На коже возникают омертвевшие белые участки, которые превращаются в мокнущие красные эрозии. Больных при этом беспокоит зуд, жжение. При поражении дрожжами внутренних органов возникают особенно тяжелые формы кандидоза, характеризующиеся высокой летальностью, достигающей 30-70%. В зависимости от локализации возбудителя в теле у больных могут развиваться кандидозная пневмония, кандидозный менингит, поражения различных внутренних органов. Основным способом лечения кандидозов является применение антимикотиков - антигрибных препаратов. Среди них наиболее распространены амфотерицин В, флуконазол, итраконазол. Очень большое значение имеет точная идентификация возбудителя, так как разные виды Candida, вызывающие кандидоз, имеют различную чувствительность к этим препаратам. Для этого возбудитель должен быть выделен из тела больного с помощью посева проб пораженных тканей на питательные среды и получен в виде чистой культуры. Некоторые виды при росте на питательных средах очень близки по морфологическим и физиологическим характеристикам и для их точной идентификации приходится применять современные молекулярно-биологические методы.
Криптококкоз
Криптококкоз (торулез, европейский бластомикоз) - заболевание, вызываемое несовершенными дрожжами базидиомицетового аффинитета Cryptococcus neoformans. Дрожжи этого вида можно встретить в природных местообитаниях, но наиболее часто его обнаруживают в помете голубей, воробьев и других птиц, при этом сами птицы не болеют. В сухом помете криптококки могут сохраняться в течение многих месяцев. Cryptococcus neoformans обнаруживали также на слизистых оболочках здоровых людей.     . Инфицирование человека обычно происходит воздушно-пылевым путем. Наиболее опасным проявлением криптококкоза является менингоэнцефалит, при котором поражается центральная нервная система. Заболевание начинается приступами головной боли, которые постепенно усиливаются и становятся нестерпимыми. Появляются признаки паралича, сознание нарушается. Развитие болезни ведет к постепенному истощению организма, затем коматозному состоянию. Смерть наступает от паралича дыхания через 4-6 месяцев. Смертность при криптококковом менингите достигает 100%. У многих больных, кроме поражения центральной нервной системы, развивается криптококкоз легких. Он протекает в виде пневмонии, которая по симптомам очень похожа на пневмонии другой этиологии. При диссеминированной форме криптококкоза могут поражаться самые различные органы. Встречаются также поражения кожи и слизистых оболочек, которые протекают относительно легко. Также как и в случае кандидоза, наибольшие шансы заболеть криптококкозом имеют люди с нарушением клеточного иммунитета, обусловленным СПИДом, лейкозом, отторжением трансплантанта при пересадке органов и тканей, а также длительным применением иммуносупрессантов. Для лечения криптококкоза используют различные антимикотики, такие как амфотерицин, флуконазол, подавляющие у грибов синтез эргостерина, и 5-фторцитозин, ингибирующий у них синтез нуклеиновых кислот. Для большей эффективности эти препараты используют комбинированно, что обусловлено также и частым обнаружением резистентных к ним штаммов. Обнаружение последних вынуждает медиков вести непрерывный поиск новых антифунгальных агентов.
Malassezia
Дрожжи рода Malassezia - облигатные симбионты человека и теплокровных животных, обитающие на поверхности их кожи и на волосяном покрове. В других местообитаниях эти организмы не встречаются. Первые описания этих грибов относятся к середине XIX в. Они были обнаружены в образцах кожи людей, больных так называемым пестрым лишаем. При микроскопировании кожных чешуй в них наблюдали короткие гифы, проникающие в слой эпидермиса. Первые попытки культивировать эти грибы были безуспешными. В образцах кожи и волос можно также нередко наблюдать присутствие дрожжевых клеток, которые также не культивируются на обычных средах для дрожжей. Этот организм, вызывающий образование перхоти, получил название Pityrosporum. Вырастить эти организмы в культуре удалось в 20-х гг. XX в. Оказалось, что для роста им необходимы добавки жирных кислот, например оливкового масла. Позже при культивировании Pityrosporum обнаружилось, что эти дрожжи способны к образованию гиф, которые по морфологии идентичны гифам Malassezia. Таким образом было доказано, что Pityrosporum и Malassezia - это дрожжевая   и мицелиальная стадия одного и того же гриба.    . Дрожжи рода Malassezia вместе с различными бактериями относятся к компонентам нормальной микрофлоры человека и постоянно обнаруживаются на разных участках кожи здоровых людей. Обычны они и на коже домашних и диких теплокровных животных, причем плотность заселения кожи этими дрожжами коррелирует с количеством выделяемого сального секрета. Однако при различных нарушениях иммунной системы виды рода Malassezia могут вызывать различные заболевания кожи. Из них наиболее известен упомянутый выше пестрый лишай, или питириаз. Это хроническое неконтагиозное заболевание, распространенное главным образом в тропических странах. Оно выражается в массовом развитии гиф Malassezia, которые проникают в слой эпидермиса, нарушая пигментацию и нормальную структуру поверхностного слоя кожи. Другим заболеванием, вызываемым этим грибом, является фолликулит, который характеризуется наличием воспалений в виде множества фолликул - мелких нарывов, распространяющихся по спине, груди, предплечьям и сопровождающихся сильным зудом. Фолликулит также встречается наиболее часто в странах с теплым климатом. Еще одно заболевание кожи, вызываемое дрожжами рода Malassezia - себоррейный дерматит. Они могут выступать в качастве важного аллергена при таком распространенном в последнее время аллергическом заболевании, как атопический дерматит. Заболевания, ассоциированные с Malassezia, являются в основном хроническими и характерны для людей с подавленной иммунной системой и предрасположенными к аллергии. Лечение их направлено на устранение дрожжей с помощью различных антимикотиков. У здоровых людей при нормальном функционировании сальных желез присутствие Malassezia на коже незаметно. Более того, они могут играть положительную роль, конкурируя с болезнетворными микроорганизмами.

9. Промышленное использование дрожжей
Дрожжи были первыми микроорганизмами, которые человек стал использовать для удовлетворения своих потребностей. Основное свойство дрожжей, которое всегда было привлекательным для человека - это способность к образованию довольно больших количеств спирта из сахара. Первое упоминание о получении спиртных напитков в Египте, так называемой «бузы», представляющей собой разновидность пива, относится к 6000 г. до н. э. Этот напиток получали в результате сбраживания пасты, полученной при раздавливании и растирании проросшего ячменя. Приготовление бузы можно считать рождением современного пивоварения. Из Египта технология пивоварения была завезена в Грецию, а оттуда в Древний Рим. В этих же странах активно развивалось виноделие. Крепкие спиртные напитки, полученные перегонкой бражки, по-видимому, были впервые получены в Китае около 1000 г. до н. э. В Европе процесс производства спирта был завезен значительно позже. Известно, что получение виски было налажено в Ирландии в XII в. Сейчас промышленное производство спиртных напитков существует в большинстве стран мира и представляет собой крупную отрасль промышленности. Другая группа процессов, в которых издавна используются дрожжи, также связана с их способностью к спиртовому брожению: образование углекислого газа под действием дрожжей - важнейший этап в приготовлении хлеба, приводящий к заквашиванию теста. Этот процесс также очень древний. Уже к 1200 г. до н. э. в Египте была хорошо известна разница между хлебом из кислого и пресного теста, а также польза от применения вчерашнего теста для заквашивания свежего.
Традиционные процессы
Виноделие, пивоварение и хлебопечение существуют уже несколько тысячелетий. Естественно, что за это время были отселекционированы сотни видов заквасок, которые используются для приготовления самых различных сортов вина и пива. Однако лишь в начале XIX в. были высказаны предположения, что за спиртовое брожение, вызываемое этими заквасками, ответственны присутствующие в них дрожжи, увиденные впервые в 1680 г. Антони ван Левенгуком. Окончательным доказательством роли дрожжей в сбраживании сахаров считается работа Пастера, опубликованная им в 1866 г. К концу ХIХ в. стало известно, что сахаромицеты, выделенные из различных заквасок и различных сортов вина и пива, различаются по физиологическим свойствам, например, по способности к сбраживанию различных сахаров. В дальнейшем на основании таких физиологических различий в роде Saccharomyces было описано несколько десятков видов. Однако в последние годы методами молекулярной и генетической таксономии было показано, что большинство этих «видов» на самом деле представляют собой различные физиологические расы нескольких близких биологических видов, главным образом Saccharomyces cerevisiae. Это такие «виды», как, например, Saccharomyces vini, Saccharomyces ellipsoides, Saccharomyces oviformis, Saccharomyces cheresiensis, Saccharomyces chevalieri и десятки других, которые сейчас переведены в разряд синонимов Saccharomyces cerevisiae. Большинство этих «видов» - это отселекционированные веками расы - такой же продукт человеческой деятельности, как сорта культурных растений. В природе их найти иногда просто невозможно. Однако, недавно Г.И.Наумов обнаружил, что дикие популяции Saccharomyces cerevisiae распространены на Дальнем Востоке в сокотечениях дуба. Он предположил, что Дальний Восток - центр видообразования этих дрожжей. Кроме Saccharomyces cerevisiae в природных местообитаниях обнаружены еще несколько очень близких видов-двойников: Saccharomyces bayanus, Saccharomyces paradoxus и Saccharomyces cariocanus, Saccharomyces kudriavzevii, Saccharomyces mikatae, а также их межвидовые гибриды. Дрожжи используются также при изготовлении множества других традиционных пищевых продуктов. Например, специальные расы дрожжей входят в состав заквасок, использующихся для приготовления кефира. Дрожжи применяются в сыроварении при получении некоторых сортов сыра. В Восточной Азии широко распространены многочисленные закваски для получения разнообразных традиционных соусов, в состав которых входят специфические виды дрожжей, не встречающиеся в других местообитаниях. В быту большую популярность получил «чайный гриб» - специфическая бактериально-дрожжевая ассоциация, с   помощью которой получают легкий, освежающий напиток. Двадцатый век с его безудержным развитием промышленности резко расширил и области применения дрожжей. Они стали выращиваться в больших масштабах в качестве источника белка и витаминов для сельскохозяйственных животных. Дрожжи - основной источник технического этанола. С помощью дрожжей сейчас получают большой спектр соединений, использующихся в разных областях человеческой деятельности. К ним относятся витамины, различные полисахариды, липиды, которые могут служить заменителями растительных масел, разнообразные ферменты, используемые в пищевой промышленности. Развитие генетической инженерии позволило использовать легко культивируемые дрожжи для получения многих полезных веществ животной и растительной природы, например инсулина.
Виноделие
В основе получения вина лежит сбраживание фруктозы и глюкозы виноградного сока с образованием этилового спирта. Собранный виноград давят и получают так называемое виноградное сусло, или муст, в котором содержится 10-25% сахара. При производстве красного вина кожица и косточки винограда остаются в соке в течение всего процесса брожения, тогда как для приготовления белых вин их удаляют после раздавливания ягод и сбраживается только сок. В традиционных процессах приготовления вина сбраживание муста ведется с помощью дрожжей, присутствующих на винограде. При этом в брожении участвует множество видов дрожжей, сменяющих друг друга, такие как Hanseniaspora, Brettanomyces, Saccharomyces. В современном виноделии для сбраживания в основном используют чистые культуры специальных рас сахаромицетов. При этом присутствующие в сусле «дикие» дрожжи сначала убивают, обычно пропуская через муст двуокись серы. После окончания брожения молодое вино необходимо осветлить и дать ему созреть. Эти процессы для высококачественных вин могут занимать несколько лет. В процессе созревания вина происходит рост бактерий, которые удаляют из него яблочную кислоту, а также различные биохимические   изменения, которые улучшают вкусовые качества вина. При производстве некоторых сортов вин в качестве исходного сырья используется не виноградный сок, а уже готовое вино. Такое, так называемое вторичное виноделие, включает процессы дображивания и модификации вин с использованием специальных рас дрожжей. К наиболее известным продуктам вторичного виноделия относятся шампанские вина. Шампанское получают из смеси вин (купажа), в которую добавляют сахар и дрожжи, после чего выдерживают в замкнутом объеме для вторичного брожения (шампанизации). Традиционные процессы шампанизации проводятся в бутылках, на крупных заводах - в больших емкостях. При шампанизации происходит растворение и химическое связывание образующейся углекислоты, которая при открывании бутылки в результате перепада давления освобождается и придает вину неповторимую игристость. Дрожжи вносят в производство вина двойной вклад: они ответственны за образования этанола в напитке, а также за накопление в нем множества вторичных соединений, от которых зависит его вкус и аромат. Такие соединения называются органолептическими. Часть из них образуется непосредственно в ходе брожения, часть - при химических превращениях компонентов вина в ходе его созревания. В винах обнаружены сотни органолептических соединений. Многие из них присутствуют в очень малых количествах и с трудом поддаются идентификации. Еще сложнее определить вклад всех этих соединений в окончательный букет вина, поскольку для каждого вещества характерна своя концентрация, при которой его присутствие можно уловить с помощью обоняния (так называемый порог запаха).
Пивоварение
Технология приготовления пива включает несколько этапов. Пиво производят из зерна, которое в отличие от винограда содержит в основном крахмал, плохо усваиваемый дрожжами. Поэтому перед сбраживанием этот крахмал необходимо осахарить (гидролизовать). Традиционно в различных странах для производства пива использовали различные виды зерновых: в Европе - ячмень, в Азии - рис, в Америке - кукурузу. При осахаривании ячменя обычно пользуются амилазами самого ячменя, которые образуются в большом количестве при прорастании зерна. Для гидролиза рисового крахмала на Востоке традиционно используют некоторые штаммы мицелиальных грибов (Mucor, Aspergillus). Проросший и высушенный ячмень (так называемый солод) затем высушивают в печи. При этом в результате карамелизации сахаров образуются окрашенные соединения, которые придают пиву характерный цвет. Высушенный солод размалывают, смешивают с водой и варят, в результате чего получается так называемое пивное сусло. В результате всех этих процессов часть крахмала исходного зерна гидролизуется до мальтозы, глюкозы и других сахаров, другая часть, фракция декстринов, не расщепляется и поэтому не утилизируется дрожжами и остается без изменений в течение всего последующего процесса брожения. Концентрация декстринов обусловливает плотность пива (светлое или темное). После осахаривания зерно высушивают, размалывают, кипятят, фильтруют. В процессе варки сусла в него обычно добавляют хмель придающий пиву характерный горьковатый привкус. Полученное пивное сусло сбраживают чистыми культурами дрожжей Saccharomyces cerevisiae. В пивоварении различают два типа брожения: верховое (теплое) и низовое (холодное). Вызывающие их дрожжи различаются рядом свойств и ранее рассматривались как различные виды: верховые Saccharomyces cerevisiae и низовое Saccharomyces carlsbergensis. Дрожжи низового брожения функционируют при температуре 6-10°C, в то время как верховое брожение протекает при 14-25°C. В конце брожения низовые дрожжи оседают на дно сосуда, образуя плотный осадок, а верховые дрожжи всплывают на поверхность, образуя так называемую «шапку». Подъем дрожжей верхового брожения на поверхность обусловлен более интенсивным брожением, при котором образуются пузырьки углекислого газа, поднимающие дрожжевые клетки. . Важное технологическое свойство дрожжей, используемых в пивоварении - так называемая флоккуляционная способность. Флоккуляция - слипание клеток друг с другом на заключительных стадиях брожения, в результате чего образуются хлопья, быстро оседающие на дно сосуда. От флоккуляционной способности дрожжей в значительной степени зависят степень сбраживания сусла, осветление пива и количество собранных дрожжей в конце брожения. Для максимального превращения сахара в этанол необходимо, чтобы дрожжи оставались суспендированными в бродящей жидкости. С другой стороны, флоккуляция дрожжей после того, как брожение закончилось или достигло желаемой стадии, очень облегчает удаление дрожжей из напитка. Другими словами, дрожжи должны флоккулировать только на определенной стадии брожения. Хотя важность процесса флоккуляции в изготовлении алкогольных напитков была оценена уже более ста лет назад, физиологический механизм этого явления был изучен лишь в последние десятилетия. В слипании клеток участвуют присутствующие в растворе ионы двухвалентного кальция, взаимодействующие с карбоксильными и фосфодиэфирными группами на поверхности клеточных стенок дрожжей.
Различные продукты, получаемые из дрожжей
В последние десятилетия разнообразие биотехнологических процессов, в которых используются дрожжи, резко увеличилось. Еще более разнообразны перспективы использования дрожжей: в различных разработках, патентах и т.п. упоминается более 200 видов. Сейчас дрожжи используются для получения различных ферментных препаратов, органических кислот, полисахаридов, многоатомных спиртов, витаминов и витаминных добавок, а также во множестве других мелкомасштабных процессах. Промышленно важные органические кислоты, продуцируемые микроорганизмами, являются либо конечными продуктами (молочная, масляная, пропионовая кислоты у анаэробных бактерий), либо интермедиатами метаболизма. Последние можно получать с помощью дрожжей. В наибольших масштабах производится лимонная кислота, в основном с помощью Aspergillus niger, с использованием в качестве субстрата мелассы. Однако, ее можно получать и с помощью дрожжей на более дешевых субстратах, таких как парафины нефти или этанол. Сейчас разработаны технологии получения и многих других кислот, например, изолимонной из Candida catenulata, фумаровой из Candida hydrocarbofumarica, яблочной из Pichia membranaefaciens и др. Многоатомные спирты (глицерин, ксилит, эритрит, арабит) - широко применяются в химической и пищевой промышленности. Перспективным считается способ получения сахароспиртов, таких как глицерин, эритрит и ксилит, с использованием ксеротолерантных дрожжей рода Zygosaccharomyces. Эти дрожжи способны расти в средах с высоким осмотическим давлением, синтезируя при этом большое количество внутриклеточных полиолов, которые служат осмопротекторами. Другой способ касается получения ксилита - важного полиола для пищевой промышленности. Ксилит накапливается как побочный продукт при сбраживании ксилозы дрожжами Pachysolen tannophilus. Применение дрожжей как источников витаминов началось в 1930-е годы. Одним из первых промышленных процессов получения витаминов было выделение эргостерина из Saccharomyces cerevisiae с последующим облучением ультрафиолетом для перевода в витамин D. Затем у дрожжей была открыта способность к сверхсинтезу некоторых витаминов группы В, в частности рибофлавина. Некоторые красные дрожжи используются для получения каротиноидов, в частности β-каротина, служащего предшественником витамина A, астаксантина, используемого в качестве кормовой добавки в рыбоводстве. Кроме производства индивидуальных витаминов уже много лет в мире практикуется получение автолизатов и гидролизатов дрожжей, питьевых дрожжей, которые используются как источник витаминов и как вкусовые добавки.

Заключение

 

Дрожжи – воистину удивительные обитатели нашей планеты. Незаметные вооруженному глазу, они окружают нас везде, не говоря уже об огромном их значении в жизни человека. Много ученых посвящали жизнь этим организмам, благодаря чему были открыты новые виды дрожжей, расширено их применение. . Мир дрожжей настолько разнообразен, что на данный момент не существует их общей систематики: есть только несколько относительных делений на определенные группы, но и они неидеальны. Ученые до сих пор работают над систематикой дрожжей.. Работая над этим рефератом, я прочитала много интересных книг о этих организмах, изучила работы некоторых современных ученых. Благодаря своей работе я нашла полезную информацию о распространении дрожжей, что, несомненно, пригодится в жизни.. Наука о дрожжах еще очень молодая и она продолжает развиваться. Дрожжи не относятся к числу организмов, полностью изученных: в их биологии есть нераскрытые тайны. Я надеюсь, что мой реферат не останется незамеченным и поможет другим ученикам узнать больше об таких интересных и в какой-то степени таинственных организмах – дрожжах.


Литература

1.     Бабьева И.П. Дрожжи в биогеоценозах разных природных зон. В кн.: «Почвенные организмы как компоненты биогеоценоза», Москва: Наука, 1984
2.     Бабьева И.П. Дрожжи. В кн.: «Мир растений», Москва: Просвещение, 1990, т. 2
3.     Бабьева И.П., Голубев В.И. «Методы выделения и идентификации дрожжей». М.: Пищевая промышленность, 1979
4.     Бабьева И.П., Горин С.Е. Почвенные дрожжи. Москва: Изд‑во МГУ, 1987
5.     Берри Д. Биология дрожжей. Москва: Мир, 1985
6.     Квасников Е.И., Щелокова И.Ф. Дрожжи. Биология. Пути использования. Киев: Наукова Думка, 1991
7.     Кудрявцев В.И. Систематика дрожжей. Москва: Изд‑во АН СССР, 1954
8.     Новое с систематике и номенклатуре грибов. Ред. Ю.Т.Дьяков, Ю.В.Сергеев. Москва: Национальная академия микологии. Медицина для всех, 2003, 494 с.
9.     Бабьева И.П., Чернов И.Ю. «Биология дрожжей» Москва:, 2004.

1. Реферат Кипр как место отдыха и туризма
2. Реферат Подведомственность дел арбитражным судам
3. Реферат на тему The Hunchback Of NotreDame Essay Research Paper
4. Реферат на тему Blood Of Children Sampling Essay Research Paper
5. Сочинение Человечность всегда была одним из важнейших явлений литературы
6. Диплом на тему Створення калькулятора множення
7. Реферат Психологическая готовность детей к школе 2
8. Контрольная работа на тему Биология с основами экологии
9. Реферат на тему История развития законодательства московской Руси
10. Курсовая Анализ производственной деятельности СПК Русь Вохомского района Костромской области и