Реферат

Реферат на тему Расчет ребристого радиатора

Работа добавлена на сайт bukvasha.net: 2015-01-15

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 20.2.2025


Реферат
Тема:
"Расчет ребристого радиатора"
2009

Расчёт ребристого радиатора при естественном воздушном охлаждении для транзистора 2Т808А заданной мощности 15 Вт
1.                Задаем исходными данными:
а) мощность транзистора, Р, 15 Вт;
б) температура окружающей среды, Тс, 30 °С;
в) максимально допустимая температура перехода, Тп, 150°С
г) тепловое контактное сопротивление между переходом и корпусом, Rпк, 2°С / Вт;
д) тепловое контактное сопротивление корпус – теплоотвод Rкр, 0.5С / Вт;
2.                Необходимо сопоставить максимальную мощность рассеяния транзистора при допустимой температуре р-п перехода Тп, температуре среды Тс и тепловом контактном сопротивлении Rпк с заданной мощностью транзистора
Рмах=(Тп-Тс)/Rпк                                    (1)
Рмах=(150–30)/2=60 Вт
Если заданная мощность Р превышает Рмах, то данный транзистор на заданную мощность применять нельзя.
3.                Рассчитываем тепловое сопротивление радиатора Rр исх, °С/Bт;
Rр исх=q · [(Тп-Тс) – P (Rпк+Rкр)]/Р,                       (2)
Rр исх=0,96 · [(150–30) – 15 (2+0,5)]/15=6.72°С/Bт
где q – коэффициент, учитывающий неравномерное распределение температуры по теплоотводу (q=0,96);
Rкр – тепловое контактное сопротивление между корпусом и радиатором.
4.                Определяем средняю поверхностную температуру радиатора Тр, °С:
Тр=Р ·Rр+Тс                                            (3)
Тр=15 ·7,84+30=147,6°С
5.                При Rр<5 Lmin выбирается по графику 1 (рис. 5.6. «Конструирование»), иначе Lmin=0.05 м.
6.                Задаём
а) толщина ребра d=0.002 м;
б) толщина плиты теплоотвода δ=0.004 м;
в) расстояние между рёбрами b=0.008 м;
г) высота ребра h=0.02 м;
д) протяжённость ребра L=0.05 м.
7.                Определяем число рёбер, n, шт.:
n=(L+b)/(b+d)                                          (4)
n=(0,05+0,008)/(0,008+0,002)=6 шт.
Рекомендуется выбирать на одно ребро больше расчётного.
8)                Определяем длина плиты радиатора, l, м;
l=b · (n‑1)+2*d                                         (5)
l=0,008· (6–1)+2·0,002=0,044 м
9)                Определяем площадь гладкой (неоребренной) поверхности радиатора, Sгл, м2;
Sгл=L ·l                                                     (6)

Sгл=0,05·0,044=0,0022м2
10) Определяем площадь оребренной поверхности одностороннего оребренного радиатора при креплении ППП с гладкой стороны, Sор1, м2;
Sор1=S1+S2+S3,                                         (7)
где S1=(n‑1) ·L ·b; (8)
S2=(δ+2 ·h) ·L ·n+2 ·l ·δ; (9)
S3=2 ·n ·δ ·h. (10)
S1=(6–1)· 0,05·0,008=0,002
S2=(0,004+2·0,02) ·0,1·6+2·0,044·0,004=0.027
S3=2 ·6 ·0,004 ·0,02=0,00096
Sор1=0,002+0,027+0,00096=0,0299м2
11) Определяем коэффициент теплоотдачи конвекцией для гладкой поверхности радиатора, aк.гл, Вт/м2*град;
aк.гл=А1· [(Тр-Тс)/2]1/4,                                     (11)
aк.гл=3,107 Вт/м2 · град;
где А1 определяется по формуле:
А1=1,424767–0,00251 ·Тм+0,000011 · (Тм)2-0,0000000013 · (Тм)3 (12)
A1=1,122107
Тм=0,5 (Тр+Тс). (13)
Тм=88,8
12)    Определяем коэффициент теплоотдачи излучения для гладкой поверхности радиатора, aл.гл, Вт/м2*град;
aл.гл=ε ·φ ·₣(Тр, Тс),                                         (14)
aл.гл=4,198
где ε – степень черноты тела (для Д‑16 ε=0,4);
φ – коэффициент облучённости (для гладкой поверхности φ=1);
₣(Тр, Тс) – рассчитывается по формуле:
₣(Тр, Тс)=5,67 ·10-8 · [(Тр+267)4 – (Тс+267)4]/(Тр-Тс)                 (15)
₣(Тр, Тс)=10,495
13)    Определяем эффективный коэффициент теплоотдачи гладкой поверхности радиатора, aгл, Вт/м2*град;
aгл=aк.гл+aл.гл                                       (16)
aгл=3,107+4,198=7,307
14)    Определяем мощность, рассеиваемая гладкой поверхностью радиатора, Ргл, Вт;
Ргл=aгл·Sгл· (Тр-Тс)                                 (17)
Ргл=7,307·0.0082·117,6=7,045
15)    Определяем тепловое сопротивление гладкой поверхности радиатора, Rгл, град / Вт;
Rгл=1/(aгл·Sгл)                                         (18)

Rгл=1/(7,307 ·0,0082)=16,68
16)    Определяем коэффициенты для нахождения относительного температурного напора;
А2=0,18372152–0,00163976·Тм – 0,0000602· (Тм)2-0,00000001· (Тм)3, (19)
А2=0,035
К=(Тр-Тс)1/4, (20)
K=3,07
М=L1/4, (21)
M=0,562
С=К/М, (22)
C=3,07/0,562=5,463
h=А2·С·b. (23)
h=0,035·5,463·0,002=0,000382
17)    Определяем относительный температурный напор Н:
Н=f(h) – определяется по графику (рис. 5.10. «Конструирование») H=0.1
18)    Определяем температуру окружающей среды между рёбрами, Тс1, °С;

Тс1=(Тр+Тс)/2                                         (24)
Тс1=(147,6+30)/2=88,8
19)    Определяем коэффициенты для нахождения конвективного коэффициента теплоотдачи оребрённой поверхности радиатора:
Тм1=(Тр+Тс)/2; (25)
Тм1=(147,6+30)/2=88,8
А11=1,424767–0,00251*Тм1+0,000011*(Тм1)2 - 0,0000000013*(Тм1)3; (26)
А11=1,114
К1=(Тр-Тс1)1/4; (27)
К1=(147,6–88,8)1/4=2,769
С1=К1/М; (28)
С1=2,762/0,562=3,625
20)    Определяем конвективный коэффициент теплоотдачи для оребрённой поверхности радиатора, aк.ор, Вт/м2*град;
aк.ор=А11·С1                                          (29)
aк.ор=1,114·3,625=4,038
21)    Определяем коэффициент теплоотдачи излучением для оребрённой поверхности радиатора, aл.ор, Вт/м2*град;

aл.ор=ε·φ·₣(Тр, Тс1),                                        (30)
aл.ор=0,4·13,038 ·0,166=0,86
где ε – степень черноты тела (для Д‑16 ε=0,4);
φ=b/(2·h+b); (31)
φ=0,008/(2 ·0,02+0,008)=0,166
₣(Тр, Тс1) – рассчитывается по формуле:
₣(Тр, Тс1)=5,67·10-8· [(Тр+267)4 – (Тс1+267)4]/(Тр-Тс1)             (32)
22)    Определяем мощность, рассеиваемая оребрённой поверхностью радиатора, Рор, Вт;
Рор=Sор· (aк.ор+aл.ор) · (Тр-Тс1)                                     (33)
Рор=0,127 (4,038+0,86) ·(147,6–88,8)=8,403
23)    Определяем тепловое сопротивление оребрённой поверхности радиатора, Rор, град / Вт;
Rор=(Тр-Тс1)/Рор                                             (34)
Rор=(147,6–88,8)/8,403=6,998
24)    Определяем общее расчётное тепловое сопротивление радиатора, Rрасч, град / Вт;
Rрасч=(Rгл·Rор)/(Rгл+Rор)                              (35)
Rрасч=(16,68 ·6,998)/(16,68+6,998)=4,93
25)    Определяем мощность, рассеиваемая радиатором, Рр, Вт;

Рр=Ргл+Рор                                   (36)
Рр=7,045+8,403=15,448
26)           Выполняем проверку правильности расчёта. Должны соблюдаться условия:
Rрасч<=Rисх                                           (37)
4,93<=6,72
Рр>=Р                                                      (38)
15,448>15
все условия выполняются – расчет проведен верно.

1. Реферат Принцип наочності 2
2. Реферат Молодежь как социокультурная общность
3. Реферат Виды суждений
4. Реферат Системный анализ в исследованиях систем управления
5. Статья Сравнение методов. Очистка воды от загрязнений
6. Реферат Отчет о производственной практике в ИП Агейкина Н.С.
7. Курсовая Общественное мнение как социальный институт 2
8. Шпаргалка Шпаргалка по Маркетингу 7
9. Реферат Literature Review Essay Research Paper Review Of
10. Реферат Управління містобудування