Доклад

Доклад История и методология генетики и селекции

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024





Министерство образования и науки Российской федерации

Федеральное агентство по образованию

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Химико-биологический факультет

Кафедра микробиологии
Доклад

на

тему:

«История и методология

генетики и селекции»
Выполнила: Студент гр. 06 МБ

                                                                                                                     Умудова Э. И.

                                                                                                 Проверила: Дроздова Е. А.
Оренбург 2009

Содержание:

1.     Введение

2.     История развития генетики

3.     Современные методы генетики

4.     История развития селекции.

5.     Направления и методы селекции

6.     Заключение

7.     Список литературы
Введение

Генетика - наука о наследственности и её изменчивости - получила развитие в начале XX в., после того как исследователи обратили внимание на законы Г. Менделя, открытые в 1865 г., но остававшиеся без внимания в течение 35 лет. За короткий срок генетика выросла в разветвленную биологическую науку с широким кругом экспериментальных методов и направлений. Название генетика было предложено английским ученым У. Бэтсоном в 1906 г. Исследователями классического периода развития генетики были выяснены основные закономерности наследования и доказано, что наследственные факторы (гены) сосредоточены в хромосомах. Дальнейший прогресс в изучении закономерностей хранения и реализации генетической информации сдерживался по двум причинам. Во-первых, из-за слишком объемных экспериментов, связанных с более глубоким изучением генов, во-вторых, ввиду невозможности понять работу генов без углубленного исследования превращения молекул, вовлеченных в генетические процессы. Переход к генетическим исследованиям микроорганизмов, позволивший избегать многих трудностей, был вполне закономерен. Такой переход осуществился в 50-х годах. В 1941 г. Дж. Бидл и Э. Тейтум опубликовал короткую статью "Генетический контроль биохимических реакций у Neurospora ", в которой сообщили о первых генетических экспериментах на микроорганизмах. В последние годы эти исследования получили широкий размах и проводятся на самых различных биологических объектах.


История развития генетики

Попытки понять природу передачи признаков по наследству от родителей детям предпринимались ещё в древности. Размышления на эту тему встречаются в сочинениях Гиппократа, Аристотеля и других мыслителей. В XVII -XVIII гг., когда биологи начали разбираться в процессе оплодотворения и искать, с каким началом - мужским или с женским - связанна тайна оплодотворения, споры о природе наследственности возобновились с новой силой.

В 1694 году Р.Я. Каммерариусом было обнаружено, что для завязывания плодов необходимо опыление. Тем самым к концу XVII в. была подготовлена научная почва для начала опытов по гибридизации растений. Первые успехи в этом направлении были достигнуты в начале XVIII в. Первый межвидовой гибрид получил англичанин Т. Фэйрчайлд при скрещивании гвоздик. В 1760 г. Кельрейтер начал первый тщательно продумывать опыты по изучению передачи признаков при скрещивании растении. В 1761 - 1766 гг., почти за четверть века до Л. Спалланцани, Кельрейтер в опытах с табаком и гвоздикой показал, что после переноса пыльцы одного растения на пестик отличающегося по своим морфологическим признакам растения образуются завязи и семена, дающие растения со свойствами, промежуточных по отношению к обоим родителям. Точный метод, разработанный Кельрейтером, обусловил быстрый прогресс в изучении наследственной передачи признаков.

В конце XVIII -начала XIX в. английский селекционер - растениевод Т. Э. Найт, проводя скрещивание различных сортов, делает важный вывод. Важный вывод Найта явилось обнаружение неделимости мелких признаков при различных скрещиваниях. Дискретность наследственного материала, провозглашенная ещё в древности, получила в его исследованиях первое научное обоснование. Найту принадлежит заслуга открытия "элементарных наследственных признаков".

Дальнейшие существенные успехи в развитии методов скрещиваний связанны с О. Сажрэ и Ш. Нодэном. Крупнейшее достижение Саржэ явилось обнаружение феномена доминантности. При скрещивании сортов он нередко наблюдал подавление признака одного родителя признаком другого. Это явление в максимальной степени проявляется в первом поколении после скрещивания, а затем подавленные признаки снова выявлялись у части потомков следующего поколения. Тем самым Саржэ подтвердил, что элементарные наследственные признаки при скрещивании не исчезают. К этому выводу пришел и Нодэн в 1852 - 1869 гг. Но Нодэн пошел ещё дальше, приступив к количественному изучению перекомбинации наследственных задатков при скрещиваниях. Но на этом пути его ждало разочарование. Неверный методический прием - одновременно изучение большого количества признаков - привел к большой путанице в результатах, и он вынужден был отказаться от своих опытов. Недостатки, присущие опытам Нодэна и его предшественников, были устранены в работе Г. Менделя.

Развитие практики гибридизации повело к дальнейшему накоплению сведений о природе скрещиваний. Практика требовала решения вопроса о сохранении неизменными свойств " хороших растении, а также выяснения способов сочетания в одном растении нужных признаков, присущих нескольким родителям. Экспериментально решить этот вопрос не представлялось ещё возможным. В таких условиях возникали различные умозрительные гипотезы о природе наследственности.

Наиболее фундаментальной гипотезой такого рода, послужившей в известной мере образцом для аналогичных построений других биологов, явилась " временная гипотеза пангенезиса" Ч. Дарвина, изложенная в последней главе его труда " Изменение домашних животных и культурных растении " (1868). Согласно его представлениям, в каждой клетке любого организма образуются в большом числе особые частицы - геммулы, которые обладают способностью распространяться по организму и собираться в клетках, служащих для полового или вегетативного размножения. Дарвин допускал, что геммулы отдельных клеток могут изменяться в ходе онтогенеза каждого индивидуума и давать начало измененным потомкам. Тем самым присоединился к сторонникам наследования приобретенных признаков. Предположение Дарвина о наследие приобретенных признаков было экспериментально опровергнуто Ф. Гальтоном (1871).

Умозрительная гипотеза о природе наследственности была предложена ботаником К. Нэгели в работе " Механико-физиологическая теория эволюции"(1884). Нэгели предположил, что наследственные задатки передаются лишь частью вещества клетки, названного им идиоплазмой. Остальная часть (стереоплазма), согласно его представлению, наследственных признаков не несет. Он предположил, что идиоплазма состоит из молекул, соединенных друг с другом в крупные нитевидные структуры - мицеллы, группирующиеся в пучки и образующие сеть, пронизывающие все клетки организма. Гипотеза Нэгели подготовляла биологов к мысли о структурированности материальных носителей наследственности. Впервые идея о дифференцирующих делениях ядра клеток развивающегося зародыша была высказана В. Ру. в 1883 г. Выводы Ру послужили отправной точкой для создания теории зародышевой плазмы, получившей окончательное оформление в 1892 г. Вейсман четко указал на носителей наследственных факторов - хромосомы.

С начало Ру 1883 г., а затем и Вейсман высказали предположение о линейном расположении в хромосомах наследственных факторов (хромативных зерен, по Ру, и ид по Вейсману) и их продольном расщеплении во время митоза, чем во многом предвосхитили будущую хромосомную теорию наследственности. Развивая идею о неравно наследственном делении, Вейсман логично пришел к выводу о существовании в организме двух четко разграниченных клеточных линии - зародышевых и соматических. Первые, обеспечивая непрерывность передачи наследственной информации, "потенциально бессмертны" и способны дать начало новому организму. Вторые такими свойствами не обладают. Такое выделение двух категорий клеток имело большое положительное значение для последующего развития генетики.

В. Вальдейер в1888 г. предложил термин хромосома. Работы ботаников и животноводов подготовили почву быстрого признания законов Г. Менделя после их переоткрытия в 1900 г.

Честь открытия количественных закономерностей, сопровождающих формирование гибридов, принадлежит чешскому ботанику-любителю Иоганну Грегору Менделю. В своих работах, выполнявшихся в период с 1856 по 1863г., он раскрыл основы законов наследственности. Первое его внимание было обращено на выбор объекта. Для своих исследований Мендель избрал горох. Основанием для такого выбора послужило, во-первых, то, что горох - строгий самоопылитель, и это резко снижало возможность заноса нежелательной пыльцы; во-вторых, в то время имелось достаточное число сортов гороха, различавшихся по нескольким наследуемым признакам. Мендель получил от различных ферм 34 сорта гороха. После двух годов проверки,  он отобрал для экспериментов 22 сорта.

Мендель начал с опытов по скрещиванию сортов гороха, различающихся по одному признаку (моногибридное скрещивание). Во всех опытах с 7 парами сортов было подтверждено явление доминирования в первом поколении гибридов, обнаруженное Сажрэ и Нодэном. Мендель ввел понятие доминантного и рецессивного признаков, определив доминантными признаки, которые переходят в гибридные растения совершенно неизменными или почти неизменными, а рецессивными те, которые становятся при гибридизации скрытыми. Затем Мендель впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков при скрещивании.

Для дальнейшего анализа природы наследственности, Мендель изучил ещё несколько поколений гибридов, скрещиваемых между собой. В результате получили прочное научное обоснование следующие обобщения фундаментальной важности:

1. Явление неравнозначности наследственных признаков.

2. Явление расщепления признаков гибридных организмов в результате их последующих скрещиваний. Были установлены количественные закономерности расщепления.

3. Обнаружение не только количественных закономерностей расщепления по внешним, морфологическим признакам, но и определение соотношения доминантных и рецессивных задатков среди форм, с виду не отличных от доминантных, но являющимися смешанными по своей природе.

Таким образом, Мендель вплотную подошел к проблеме соотношения между наследственными задатками и определяемыми ими признаками организма. За счет перекомбинации задатков (впоследствии эти задатки В. Иоганнсен назвал генами), при скрещивании образуются зиготы, несущие новое сочетание задатков, чем и обусловливаются различия между индивидуумами. Это положение легло в основу фундаментального закона Менделя - закона чистоты гамет. Экспериментальные исследования и теоретический анализ результатов скрещиваний, выполненные Менделем, определили развитие науки более чем на четверть века.

Индивидуальные различия даже между близкородственными организмами вовсе не обязательно связаны с различием в генетической структуре этих особей; они могут быть связанны с неодинаковыми условиями жизни. Поэтому делать заключения о генетических различиях можно только на основании анализа большого числа особей. Первым, кто привлек внимание к математическим закономерностям в индивидуальной изменчивости, был бельгийский математик и антрополог А. Кэтлэ. Он явился одним из основателей статистики и теории вероятностей.

В то время важный вопрос был о возможности передачи по наследству уклонений от средней количественной характеристики признака, наблюдаемых у отдельных индивидуумов. Выяснением этого вопроса занялись несколько исследователей. По своей значимости выделились работы Гальтона, который собрал данные о наследовании роста у человека. Затем Гальтон изучил наследование величины венчика цветка у душистого горошка и пришел к выводу, что потомству передается лишь небольшая часть уклонений, наблюдаемых у родителей. Гальтон попытался придать своему наблюдению математическое выражение, положив начало большой серии работ по математико-статистическим основам наследования.

Последователь Гальтона К. Пирсон продолжил эту работу в более широких масштабах. Наиболее серьезное и ставшее классическим исследование вопросов, поднимавшихся Гальтоном и Пирсоном и их последователей, было выполнено в 1903 -1909 гг. В. Иоганнсеном, обратившим главное внимание на изучение генетически однородного материала. Исходя из полученных анализов, Иоганнсен дал точное определение генотипа и фенотипа и заложил основы современного понимания роли индивидуальной изменчивости.

В 70 - 80-х годах XIX в. были описаны митоз и поведение хромосом во время деления клетки, что навело на мысль, что эти структуры ответственны за передачу наследственных потенций от материнской клетки дочерним. Деление материала хромосом на две равные частицы свидетельствовало в пользу гипотезы, что именно в хромосомах сосредоточена генетическая память. Изучение хромосом у животных и растений привело к выводу, что каждый вид животных существ характеризуется строго определенным числом хромосом.

Открытый Э. ван Бенедоном (1883) факт, что число хромосом в клетках тела вдвое больше, чем в половых клетках, можно объяснить: поскольку при оплодотворении ядра половых клеток сливаются и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворения должно противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое.

В 1900 г. независимо друг от друга К. Корренс в Германии, Г. де Фриз в Голландии и Э. Чермак в Австрии обнаружили в своих опытах открытые ранее закономерности и, натолкнувшись на его работу, вновь опубликовали её в 1901 г. Эта публикация вызвала глубокий интерес к количественным закономерностям наследственности. Цитологи обнаружили материальные структуры, роль, и поведение которых могли быть однозначно связаны с менделевскими закономерностями. Такую связь усмотрел в 1903 г. В. Сэттон - молодой сотрудник известного американского цитолога Э. Вильсона. Гипотетические представления о наследственных факторах, о наличии одинарного набора факторов в гаметах, и двойного - в зиготах получили обоснование в исследованиях хромосом. Т. Бовери (1902) представил доказательства в пользу участия хромосом в процессе наследственной передачи, показав, что нормальное развитие морского ежа возможно только при наличии всех хромосом. Установлением того факта, что именно хромосомы несут наследственную информацию, Сэттом и Бровери положили начало новому направлению генетики - хромосомной теории наследственности.

После переоткрытия менделеевских закономерностей развернулось изучение этих закономерностей у всевозможных видов животных и растений. В 1909 г. к детальному изучению этого вопроса приступил Т. Г. Морган. Прежде всего, он четко сформулировал исходную гипотезу. На вопрос, всегда ли будут выполняться численные закономерности, установленные Менделем, Мендель совершенно справедливо считал, что такие закономерности верны только тогда, когда изучаемые факторы будут комбинироваться при образовании зигот независимо друг от друга. Но так как число хромосом по сравнению с количеством генов невелико, то следовало ожидать, что гены, расположенные в одной хромосоме, будут переходить из гамет в зиготы совместно. Следовательно, соответствующие признаки будут наследоваться группами.

Проверку это предположения осуществил Морган и его сотрудники К. Бриджес и А. Стертевант в исследованиях с дрозофилой. Выбор этого объекта по многим причинам можно считать крупной удачей, так как дрозофила имеет небольшой период развития , обладает высокой плодовитостью и имеет всего четыре пары хромосом. Вскоре у дрозофилы было обнаружено большое количество разнообразных мутаций, т.е. форм, характеризующихся различными наследственными признаками. Это позволило Моргану приступить к генетическим опытам. Он доказал, что гены, находящиеся в одной хромосоме, передаются при скрещивании совместно. Одна группа сцепления генов расположена в хромосоме. Веское подтверждение гипотезы о сцеплении генов в хромосомах Морган получил при изучении так называемого сцепленного с полом наследия.

Благодаря цитолого-генетическим экспериментам (А. Стертеванта, К. Бриджеса, Г. Дж. Меллера,1910) удалось установить участие некоторых хромосом в определении пола. Половые хромосомы оказались двух типов: Х-хромосомы, Y-хромосомы. Сочетание двух X-хромосом приводит к формированию женского пола, а одной X-хромосомы и Y-хромосомы дает начало мужской особи, такое сочетание присуще большинству млекопитающих( в том числе человек), амфибиям, растениям, рыбам. Проследив за поведением генов в потомстве определенных самцов и самок, Морган получил убедительное подтверждение предположения о сцеплении генов.

Таким образом, в развитии генетики выделяются два важных этапа. Первый этап, базирующийся на гибридологических исследованиях, связан с открытием Менделя. Второй, связанный с успехами цитологических исследований, завершился доказательством того, что носителями наследственных факторов являются хромосомы. Морган сформулировал и экспериментально доказал положение о сцеплении генов в хромосомах.

Современные методы генетики

Совокупность методов исследования наследственных свойств организма (его генотипа) называется генетическим анализом.  В зависимости от задачи и особенностей изучаемого объекта генетический анализ проводят на популяционном, организменном, клеточном и молекулярном уровнях.

1.     
Генеалогический метод.


Генеалогический метод заключается в анализе родословных и позволяет    определить   тип   наследования   (доминантный, рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

При аутосомном наследовании признак характеризуется равной вероятностью проявления у лиц обоих полов. Различают аутосомно-доминантное и аутосомно-рецессивное наследование.

При аутосомно-доминантном наследовании доминантный аллель реализуется в признак, как в гомозиготном, так и в гетерозиготном состоянии. При наличии хотя бы у одного родителя доминантного признака последний с разной вероятностью проявляется во всех последующих поколениях. Однако для доминантных мутаций характерна низкая пенетрантность. В ряде случаев это создает определенные трудности для определения типа наследования.

При аутосомно-рецессивном наследовании рецессивный аллель реализуется в признак в гомозиготном состоянии. Рецессивные заболевания у детей встречаются чаще при браках между фенотипически нормальными гетерозиготными родителями. У гетерозиготных родителей (Аа х Аа) вероятность рождения больных детей (аа) составит 25%, такой же процент (25%) буду здоровы (АА), остальные 50% (Аа) будут также здоровы, но окажутся гетерозиготными носителями рецессивного аллеля. В родословной при аутосомно-рецессивном наследовании заболевание может проявляться через одно или несколько поколений.

Интересно отметить, что частота появления рецессивного потомства значительно повышается при близкородственных браках, так как концентрация гетерозиготного носительства у родственников значительно превышает таковую в общей массе населения.

Сцепленное с полом, наследование характеризуется, как правило, неравной частотой встречаемости признака у индивидуумов разного пола и зависит от локализации соответствующего гена в Х - или Y-хромосоме. В X- и Y-хромосомах человека имеются гомологичные участки, содержащие парные гены. Гены, локализованные в гомологичных участках, наследуются так же, как и любые другие гены, расположенные в аутосомах. По-видимому, негомологичные гены имеются и в Y-хромосоме. Они передаются от отца к сыну и проявляются только у мужчин (голандрический тип наследования).

У человека в Y-хромосоме находится ген, обусловливающий дифференцировку пола. В Х-хромосоме имеется два негомологичных участка, содержащих около 150 генов, которым нет аллельных в Y-хромосоме. Поэтому вероятность проявления рецессивного аллеля у мальчиков более высока, чем у девочек. По генам, локализованным в половых хромосомах, женщина может быть гомозиготной или гетерозиготной. Мужчина, имеющий только одну Х-хромосому, будет гемизиготным по генам, которым нет аллелей в Y-хромосоме.

Наследование, сцепленное с Х-хромосомой, может быть доминантным и рецессивным ( чаще рецессивным). Рассмотрим Х - сцепленное рецессивное наследование на примере такого заболевания человека, как гемофилия (нарушение свертывания крови). Известный всему мипу пример: носитель гемофилии королева Виктория была гетерозиготной и передала мутантный ген сыну Леопольду и двум дочерям. Эта болезнь проникла в ряд королевских домов Европы и попала в Россию.

2.     
Популяционный метод.


Методы генетики популяций широко применяют в исследованиях человека. Внутрисемейный анализ заболеваемости неотделим от изучения наследственной патологии, как в отдельных странах, так и в относительно изолированных группах населения. Изучение частоты генов и генотипов в популяциях составляет предмет популяционно-генетического исследования. Это дает информацию о степени гетерозиготности и полиморфизма человеческих популяций, выявляет различия частот аллелей между разными популяциями.

Считают, что закон Харди — Вайнберга свидетельствует о том, что наследование как таковое не меняет частоты аллелей в популяции. Этот закон вполне пригоден для анализа крупных популяций, где идет свободное скрещивание. Сумма частот аллелей одного гена, согласно формуле Харди — Вайнберга р+q=1, в генофонде популяции является величиной постоянной. Сумма частот генотипов аллелей данного гена p2+2pq+q2=1  также величина постоянная. При полном доминировании, установив в данной популяции число рецессивных гомозигот (q2 — число гомозиготных особей по рецессивному гену с генотипом аа), достаточно извлечь квадратный корень из полученной величины, и мы найдем частоту рецессивного аллеля а. Частота доминантного аллеля А составит р = 1 - q. Вычислив таким образом частоты аллелей а и А, можно определить частоты соответствующих генотипов в популяции (р2=АА; 2рq=Аа). Например, по данным ряда ученых, частота альбинизма (наследуется как аутосомный рецессивный признак) составляет 1:20 000 (q2). Следовательно, частота аллеля a в генофонде будет q2=l/20000 = /l4l и тогда частота аллеля А будет   p=1-q. p=1. p=1 – 1/141=140/141.  В этом случае частота гетерозиготных носителей гена альбинизма (2pq) составит 2(140/141) x (1/141) = 1/70, или 1,4%

Статистический анализ распространения отдельных наследственных признаков (генов) в популяциях людей в разных странах позволяет определить адаптивную ценность конкретных генотипов. Однажды возникнув, мутации могут передаваться потомству на протяжении многих поколений. Это приводит к полиморфизму (генетической неоднородности) человеческих популяций. Среди населения Земли практически невозможно (за исключением однояйцевых близнецов) найти генетически одинаковых людей. В гетерозиготном состоянии в популяциях находится значительное количество рецессивных аллелей (генетический груз), обусловливающих развитие различных наследственных заболеваний. Частота их возникновения зависит от концентрации рецессивного гена в популяции и значительно повышается при заключении близкородственных браков.

3.     
Близнецовый метод.


Этот метод используют в генетике человека для выяснения степени наследственной обусловленности исследуемых признаков. Близнецы могут быть однояйцевыми (образуются на ранних стадиях дробления зиготы, когда из двух или реже из большего числа бластомеров развиваются полноценные организмы). Однояйцевые близнецы генетически идентичны. Когда созревают и затем оплодотворяются разными сперматозоидами две или реже большее число яйцеклеток, развиваются разнояйцевые близнецы. Разнояйцевые близнецы сходны между собой не более чем братья и сестры, рожденные в разное время. Частота появления близнецов у людей составляет около 1% ( 1/3 однояйцевых, 2/3 разнояйцевых); подавляющее большинство близнецов является двойнями.

Так как наследственный материал однояйцевых близнецов одинаков, то различия, которые возникают у них, зависят от влияния среды на экспрессию генов. Сравнение частоты сходства по ряду признаков пар одно- и разнояйцевых близнецов позволяет оценить значение наследственных и средовых факторов в развитии фенотипа человека.

4.     
Цитологический метод.


Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.

Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и т.д.

В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом:

22 пар аутосом и одной пары половых хромосом (XX — у женщин, XY — у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека.

Цитологический контроль необходим для диагностики хромосомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна (трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского — Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови — хроническому миелолейкозу.

При цитологических исследованиях интерфазных ядер соматических клеток можно обнаружить так называемое тельце Барри, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.

Выявление многих наследственных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем   биохимическом   и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних  сроках   беременности  и принять решение о се продолжении или прерывании.

5.     
Биохимический метод.


Наследственные заболевания, которые обусловлены генными мутациями, изменяющими структуру или скорость синтеза белков, обычно сопровождаются нарушением углеводного, белкового, липидного и других типов обмена веществ.

Наследственные дефекты обмена можно диагностировать посредством определения структуры измененного белка или его количества, выявления дефектных ферментов или обнаружения промежуточных продуктов обмена веществ во внеклеточных жидкостях организма (крови, моче, поте и т.д.). Например, анализ аминокислотных последовательностей мутационно измененных белковых цепей гемоглобина позволил выявить несколько наследственных дефектов, лежащих в основе ряда заболеваний, — гемоглобинозов. Так, при серповидно-клеточной анемии у человека аномальный гемоглобин вследствие мутации отличается от нормального заменой только одной аминокислоты (глутаминовой кислоты на валин).

В практике здравоохранения кроме выявления гомозиготных носителей мутантных генов существуют методы выявления гетерозиготных носителей некоторых рецессивных генов, что особенно важно при медико-генетическом консультировании. Так, у фенотипически нормальных гетерозигот по фенилкетонурии (рецессивный мутантный ген; у гомозигот нарушается обмен аминокислоты фенилаланина, что приводит к умственной отсталости) после приема фенилаланина обнаруживается повышенное его содержание в крови. При гемофилии гетерозиготное носительство мутантного гена может быть установлено с помощью определения активности фермента, измененного в результате мутации.

В генетическом анализе используют и многие другие методы: онтогенетический, иммуногенетический, сравнительно-морфологические и сравнительно-биохимические методы,  разнообразные математические методы и т. д.
Селекция

Селекция (лат. selectio — выбор, отбор, от seligo — выбираю, отбираю) -  наука о методах создания сортов и гибридов растений, пород животных.  Отрасль сельскохозяйственного производства, занимающаяся выведением сортов и гибридов сельскохозяйственных культур, пород животных. Селекция разрабатывает способы воздействия на растения и животных с целью изменения их наследственных качеств в нужном для человека направлении. Она является одной из форм эволюции растительного и животного мира, которая подчиняется тем же законам, что и эволюция видов в природе, но естественный отбор здесь частично заменен искусственным отбором. Селекция играла и играет большую роль в обеспечении населения земного шара продовольствием. Благодаря одомашниванию и примитивной селекции человечество уже в эпоху неолита имело почти все современные продовольственные культуры, многие виды домашнего скота. С развитием промышленной и научной селекции  значительно возросла продуктивность растений и животных. Сорт растений и порода стали средствами сельскохозяйственного производства, важными факторами интенсификации растениеводства и животноводства, способствующими переводу их на промышленную основу (например, создание короткостебельных неполегающих сортов зерновых культур, хорошо приспособленных к уборке комбайном; сортов овощных культур для выращивания в теплицах; винограда, томата, приспособленных к машинной уборке; групп крупного рогатого скота — к условиям содержания в животноводческих комплексах).

Селекция тесно связана с систематикой, анатомией, морфологией, физиологией, экологией растений и животных, биохимией, иммунологией, растениеводством, зоотехнией, фитопатологией, энтомологией и другими науками, использует их приёмы и методы исследования. Исключительно большое значение для  селекции имеют знания биологии опыления и оплодотворения, эмбриологии, гистологии и молекулярной биологии.

По определению Н. И. Вавилова, селекция  как наука характеризуется высокой комплексностью: она заимствует от других наук методы и законы о растениях и животных, трансформирует их, дифференцирует в соответствии с конечной задачей выведения сорта, разрабатывает свои методы и устанавливает закономерности, ведущие к созданию сорта (или породы). Теоретической основой селекции  является генетика, основные положения которой стали фундаментом для селекционной практики. Эволюционная теория Ч. Дарвина, законы Г. Менделя, учение о чистых линиях и мутациях позволили селекционерам разработать методы сознательного управления наследственностью растительных и животных организмов. В основе индивидуального отбора растений и животных лежат генетические представления о чистых линиях, гомо- и гетерозиготности, о нетождественности фенотипа и генотипа. Закономерности независимого наследования и свободного комбинирования признаков в потомстве послужили теоретической основой гибридизации и скрещивания, являющихся вместе с отбором основными методами селекции. Дальнейшее развитие генетики привело к созданию гетерозисных гибридов кукурузы, сорго, огурца, томата, свёклы, пшеницы, помесей крупного рогатого скота, птицы, к использованию в селекции растений цитоплазматической мужской стерильности, к получению искусственных мутаций и полиплоидных форм. Большую роль в селекционной практике играет гибридологический анализ. В свою очередь, генетика черпает в селекцию данные для обобщения и благодаря им развивает свои теории.

 История селекции.

Возникновение селекции связано с введением в культуру растений и одомашниванием животных. Начав возделывать растения и разводить животных, человек стал отбирать и размножать наиболее продуктивные, что способствовало их непроизвольному улучшению. Так на заре человеческой культуры возникла примитивная селекция. Её история исчисляется тысячелетиями. Древние селекционеры создали прекрасные сорта плодовых растений, винограда, многие сорта пшеницы, породы домашних животных. Им были известны некоторые современные селекционные приёмы. Например, искусственное опыление финиковой пальмы применяли в Египте и Месопотамии за несколько веков до н. э. С развитием земледелия и животноводства искусственный отбор лучших форм приобрёл массовый сознательный характер — появилась народная селекция. В России крестьяне создали сорта пшеницы (Крымка, Белотурка, Полтавка, Гарновка и др.), подсолнечника (Зелёнка, Фуксинка), высокорослые кряжи льна-долгунца (Смоленский, Псковский), сорта клевера (Пермский), яблони (Антоновка, Грушовка) и другие, получившие название местных, или стародавних, хорошо приспособленные к местным условиям произрастания. Лучшие сорта хлопчатника СССР и США берут своё начало от форм, происхождение которых связано с культурой майя. В Перу выращивают кукурузу с очень крупным зерном (относится к Куско-группе), созданную много веков назад. В результате длительной народной селекции получены каракульская и романовская породы овец, арабская и ахалтекинская породы лошадей, серый украинский скот, ярославская и холмогорская молочные породы крупного рогатого скота и др. В дальнейшем местные сорта и породы были использованы для выведения селекционных сортов и пород.

Развитие капитализма оказало большое влияние на селекционную практику, привело к зарождению промышленной селекции. В конца 18 — начала 19 вв. в Великобритании были впервые созданы селекционные питомники, организовано племенное животноводство. Р. Бекуэлл вывел лейстерскую породу овец с выдающимися мясными и шёрстными качествами, братья Ч. и Р. Коллинги — шортгорнскую породу крупного рогатого скота. Племенными животными Великобритания снабжала многие страны. Во 2-й половине 19 в. повысился интерес к выведению новых сортов растений. В Германии Ф. Ахард заложил основы селекции сахарной свёклы на повышенное содержание сахара и высокую урожайность. Стали известны сорта пшеницы английских селекционеров-практиков П. Ширефа, Ф. Галлета, немецкого учёного В. Римпау. В Европе и Америке были созданы промышленные семенные фирмы, крупные селекционно-семеноводческие предприятия. В 1774 под Парижем основана селекционная фирма «Вильморен» (см. Вильморен), снабжающая семенами всю Францию и экспортирующая их во многие страны. В России организованы Полтавское опытное поле (1884), где изучался сортовой состав пшеницы Верхнячская (1883), Немерчанская (1886) и Уладово-Люлинецкая (1886), опытно-селекционные станции по сахарной свёкле (см. Опытные поля, Опытные сельскохозяйственные станции). И. В. Мичурин успешно работал в области С. плодовых культур. В Швеции создана Свалёвская селекционная станция (1886, ныне институт), сыгравшая большую роль в развитии селекции в Западной Европе. Её сорта овса (Золотой дождь, Победа, Лигово II) и других культур получили мировую известность. В США опытно-селекционые станции и лаборатории были организованы в каждом штате. Селекцией занимались также семеноводческие компании. Л. Бёрбанк вывел сорта плодовых и декоративных растений. В это же время в США, Франции, Великобритании, Швеции и других странах проводилась большая работа по сбору растительных ресурсов, интродукции растений. Растительные коллекции стали исходным материалом для выведения новых сортов. Большое влияние на развитие селекции оказали открытия в области ботаники, зоологии, микроскопической техники. С изобретением специальных приборов, инструментов, машин селекционный процесс всё более механизировался, Несмотря на значительные успехи, промышленная селекция была лишена тех научных предпосылок, которые позволили ей в дальнейшем превратиться в теоретически обоснованную селекционную науку. Селекционеры 18—19 вв. действовали лишь на основании опыта и интуиции, хотя и применяли многие современные методы. Решающую роль в возникновении научной селекции сыграло эволюционное учение Ч. Дарвина, становление и развитие общей генетики, а затем генетики растений и генетики животных, радиационной генетики, Первые теоретические обоснования методов  приведены в трудах датского генетика В. Иогансена (1903), шведского селекционера и генетика Г. Нильсона-Эле (1908, 1911, 1912). Работы по химическому и радиационному мутагенезу (советские генетики М. Н. Мейсель, 1928, В. В. Сахаров, 1933, И. А. Рапопорт, 1943; английский — Ш. Ауэрбах, 1944), эволюционной генетике (советский учёный С. С. Четвериков, 1926; американский — С. Райт; английский — Дж. Холдейн, 20—30-е гг.) имели и имеют важное значение для развития селекции. Создав теоретическую базу, используя новые методы, селекция  стала наукой об управлении наследственностью организмов.

 В России началом развития научной селекции считается 1903 — год организации Д. Л. Рудзинским при Московском сельскохозяйственном институте (ныне Московская сельхоз академия им. К. А. Тимирязева) селекционные станции, на которой были выведены первые в стране сорта зерновых культур и льна. В этом же году началось чтение лекций по селекции и семеноводству в Московском сельхоз институте, а впоследствии преподавание курса селекции в других высших учебных заведениях. В 1909—14 созданы Харьковская, Саратовская, Безенчукская, Одесская опытные станции. В 1911 состоялся первый съезд селекционеров и семеноводов России (в Харькове), на котором были подведены итоги селекционно-семеноводческие работы опытных учреждений, Значительную роль в развитии научной селекции сыграло Бюро по прикладной ботанике, генетике и селекции (организовано в 1894 Р. Э. Регелем), которое провело успешное изучение сортового состава культурных растений.

 Больших успехов достигла селекция после Октябрьской революции 1917. В 1921 был принят декрет «О семеноводстве», подписанный В. И. Лениным, заложивший основы единой государственной системы селекционно-семеноводческие работы в СССР. В 20—30-е гг. создана сеть новых научно-исследовательских селекционных учреждений, организовано государственное сортоиспытание, проводится сортовое районирование, развернулись большие генетические и селекционные исследования. Открытый Н. И. Вавиловым гомологических рядов закон в наследственной изменчивости, обоснованные им теория центров происхождения культурных растений, эколого-географические принципы селекции, учение об исходном материале растений и иммунитете растений стали широко использовать в селекционной практике. В развитие генетических основ селекции животных крупный вклад внесли М. Ф. Иванов, П. Н. Кулешов, А. С. Серебровский. С именами Г. Д. Карпеченко и И. В. Мичурина связана разработка теории отдалённой гибридизации. Созданный в 1924 Всесоюзный институт прикладной ботаники и новых культур, преобразованный затем во Всесоюзный институт растениеводства, ВИР, под руководством Н. И. Вавилова становится мировым центром по сбору и изучению растительных ресурсов. Многочисленные коллекции растений ВИР и послужили исходным материалом (генофондом) для многих сортов растений.

Направления и методы селекции.

В селекции растений выделилось нескольких направлений. Селекция  на урожайность, которая является главным критерием сорта, продолжает оставаться основным направлением селекции. Всё большее значение приобретает селекция на качество: высокое содержание желаемых веществ (крахмала в картофеле, белка в пшенице, кормовом ячмене, кукурузе, масла в семенах подсолнечника, сои, рапса, сахара в сахарной свёкле и т. п.); более низкое содержание нежелательных соединений (алкалоидов в люпине, белка в пивоваренном ячмене, азотистых веществ в сахарной свёкле); хорошую пригодность для переработки (высокие мукомольные и хлебопекарные качества у пшеницы, пригодность для консервирования плодов и овощей, разваримость зерна крупяных культур); легкость плодов, овощей, картофеля, кормовых корнеплодов и т. п. Ведётся также селекция на содержание в белке зерновых культур незаменимых аминокислот (лизина, триптофана), на химический состав масла, на длину волокна. Проводят селекцию на устойчивость к болезням и вредителям и их комплексу, на холодостойкость, зимостойкость, морозостойкость, засухоустойчивость, приспособленность к орошаемым условиям, высоким дозам удобрений, машинной уборке и другое. Сочетание различных направлений в селекции обеспечивает создание сортов с комплексом свойств и признаков, обладающих высокой урожайностью и приспособленных к определённым почвенным, климатическим и хозяйственным условиям.   В животноводстве ведётся селекция  на продуктивность и качество продукции (жирномолочность, белковость и аминокислотный состав молока, длину и тонину шерсти, крупность яиц), плодовитость (особенно в овцеводстве и свиноводстве), окраску шкурок, приспособленность к местным условиям и др.

Основные методы, применяемые в селекции: отбор, гибридизация с использованием гетерозиса и цитоплазматической мужской стерильности, полиплоидия и мутагенез.

Отбор (массовый и индивидуальный) составляет сущность селекционной работы и ведётся по комплексу свойств и признаков. Гибридизация даёт возможность искусственно создавать исходный материал, объединять в одном организме свойства и признаки родительских форм, исправлять отдельные недостатки сорта или породы. При гибридизации, особенно отдалённой (например, географически отдалённых форм, разных видов и даже родов), можно получать новые формы, не похожие на исходные. Подбор пар для скрещивания часто определяет успех последующей селекционной работы. В качестве исходного материала используют естественные и гибридные популяции, самоопылённые линии, искусственные мутанты, полиплоидные формы; в СССР — также коллекцию ВИРа, иностранные сорта. Эффективен подбор пар, основанный на генетике селектируемых признаков. Если известно число генов, определяющих наследование признаков, то можно предвидеть частоту появления нужных сочетаний родительских признаков у гибридных растений. Всеобщее признание получил подбор пар по экотипам (эколого-географический метод подбора пар), различающихся генотипически, а также хозяйственно-ценными и биологическими свойствами и признаками. Наилучший результат даёт скрещивание отдалённых экотипов. Используют ступенчатую и возвратную гибридизацию, основанную на системе повторных скрещиваний; она позволяет добиться сочетания в гибридном потомстве тех ценных свойств, которые не удаётся получить при однократных скрещиваниях. Методом гибридизации и последующим отбором выведены многие современные сорта зерновых, масличных, кормовых, овощных, плодовых и других культур.

 В селекции используют явление гетерозиса, позволяющего получать гибриды, обладающие повышенной продуктивностью в первом поколении. Наиболее широко его применяют в селекции кукурузы, сорго, огурца, томата, сахарной свёклы и других растений. Основной путь использования гетерозиса — скрещивание специально подобранных пар сортов или самоопылённых линий (инцухт-линий). У свеклы, сорго и других культур получение гибридных семян и выращивание гибридов возможно только при наличии у материнских растений цитоплазматической мужской стерильности. Большинство гибридов кукурузы также переведено на стерильную основу.

С помощью полиплоидии можно получать растения — полиплоиды с увеличенным числом хромосом (триплоиды, тетраплоиды), отличающиеся от обычных (диплоидных) более интенсивной окраской, толстыми листьями и стеблями, мощным развитием, а нередко повышенным содержанием белка, сахара, крахмала. В производстве распространены триплоиды сахарной свёклы, получаемые при скрещивании тетраплоидов с диплоидами и обладающие гетерозисом. Триплоиды в основном стерильны, поэтому у них используют только первое поколение. На основе применения полиплоидии выведены высокоурожайные сорта ржи, красного клевера и других растений.

 Искусственный мутагенез — один из перспективных методов селекции. Мутации (наследственные изменения) могут быть вызваны при обработке семян и растений различными видами излучений, химическими веществами. Радиационные мутагены дают более широкий спектр разнообразных мутаций. Среди мутантов, полученных обработкой химическими веществами, часто обнаруживаются формы с полезными изменениями сразу несколько свойств. Пути использования мутантов различны. Возможен простой отбор полезных мутаций, целесообразны скрещивания мутантов между собой или мутантов с сортами. Получены и внедряются в производство ценные мутанты гороха, овса, ячменя, многолетних трав, фасоли, люпина и других растений.

Большие достижения имеет селекция в животноводстве. Выведены ценные высокопродуктивные породы крупного рогатого скота — костромская, казахская белоголовая; овец — асканийская (мировой рекорд по годовому настригу шерсти — 30,6 кг), красноярская, казахский архаромеринос и др. Благодаря селекции получены группы каракульских овец, дающие шкурки различной окраски. В птицеводстве созданы линии, используемые для получения скороспелых гибридов мясного и яичного направлений.

В последнее десятилетие активно изучается возможность искусственного массового клонирования уникальных животных, ценных для сельского хозяйства. Основной подход заключается в переносе ядра из диплоидной соматической клетки в яйцеклетку, из которой предварительно удалено собственное ядро. Яйцеклетку с подмененным ядром стимулируют к дроблению (часто электрошоком) и помещают животным для вынашивания. Таким путем в 1997 г. в Шотландии от ядра диплоидной клетки из молочной железы овцы-донора появилась овечка Долли. Она стала первым клоном, искусственно полученным у млекопитающих. Это достижение принадлежит Яну Вильмуту и его сотрудникам. Вскоре в других странах были получены клоны телят, мышей и прочих животных.

Однако говорить о массовом клонировании животных преждевременно. Эффективность клонирования крайне низкая: манипуляции с яйцеклеткой в условиях in vitro (вне организма), особенно замена ядра, нарушают сложную и хрупкую организацию яйцеклетки, поэтому среди клонов высок процент различных врожденных аномалий. При клонировании овец из 236 попыток успех был только в одном случае, да и то относительный: по комплексу физиологических параметров Долли состарилась уже к моменту достижения размеров взрослой овцы. Ненамного лучшими были результаты и у последователей Вильмута. Таким образом, целесообразность массового клонирования животных вызывает серьезные сомнения.

Рассматривается вопрос и о возможности клонирования человека — выдающейся личности, любимого родственника или себя самого. Набор генов не определяет личность, однояйцевые близнецы имеют одинаковый набор генов, но они — разные люди. Согласно христианскому учению, человек только однажды живет на земле; в соответствии с таким пониманием нельзя родиться заново в клоне. Клонирование человека недопустимо, поскольку искусственные клоны обречены на несчастную жизнь с уродствами и серьезными нарушениями здоровья, — а главное, это было бы вмешательством в Богом данный порядок. В большинстве стран после первых сообщений о клонировании животных был введен строгий запрет на эксперименты по клонированию человека.

Заключение

На протяжении последнего столетия генетика стала одной из самых динамично развивающихся наук, положившей начало многим разделам биологии. А поскольку изучающиеся ею свойства живого теснейшим образом связаны с процессами, лежащими в основе всей жизнедеятельности, то процесс генетических знаний в большей степени способствовал решению многих проблем касающихся жизни. Генетика сыграла выдающуюся роль в разработке эволюционного учения, послужила основой для развития молекулярной биологии.

     Очень велико и практическое значение генетики, она служит научной основой селекции полезных микроорганизмов, культурных растений и домашних животных, способствует успехам медицины. Все это делает знакомство с главными положениями современной генетики необходимыми для плодотворной работы в любой отрасли биологии, во многих отраслях сельского хозяйства и медицины, нужно оно и для правильного понимания ряда узловых вопросов естествознания.
Список литературы:
1.      Вавилов Н. И., Избранные сочинения, М., 1966;

2.      Лукьяненко П. П., Избранные труды, М., 1973;

3.      Мироновские пшеницы, под ред. В. Н. Ремесло, М., 1972;

4.      Пустовоит В. С., Избранные труды, М., 1966;

5.      Мазлумов А. Л., Селекция сахарной свеклы, 2 изд., М., 1970;

6.      Серебровский А. С., Селекция животных и растений, М., 1969;

7.      Букасов С. М., Камераз А. Я., Селекция и семеноводство картофеля, Л., 1972;

8.      Дубинин Н. П., Панин В. А., Новые методы селекции растений, М., 1967;

9.      Достижения отечественной селекции, [М., 1967];

10.  Гуляев Г. В., Дубинин А. П., Селекция и семеноводство полевых культур с основами генетики, 2 изд., М., 1974;

11.  Свалевская селекционная станция, перевод с английского, М., 1955;

12.  Брежнев Д. Д., Шмараев Г. Е., Селекция растений в США, М., 1972;

13.  Бриггс Ф., Ноулз П., Научные основы селекции растений, перевод с английского, М., 1972;

14.   Шмальц Х., Селекция растений, перевод с немецкого, М., 1973.


1. Реферат на тему ChaucerS Wife Of Bath Essay Research Paper
2. Реферат на тему Типы и модели конфликтов
3. Реферат на тему Charolotte Bronte Essay Research Paper Charlotte Bronte
4. Реферат на тему Динамика работоспособности
5. Курсовая на тему Дуговая механизированная сварка в защитных газах
6. Книга Понятие хозяйственного права, как системы права
7. Сочинение на тему Базаров
8. Реферат Республика Исколата
9. Реферат Наследуемость и повторяемость основных хозяйственно полезных признаков у сельскохозяйственных
10. Курсовая на тему Вайна Расіі з Рэччу Паспалітай 1654-1667 гг