Шпаргалка на тему Построение циклических кодов
Работа добавлена на сайт bukvasha.net: 2015-06-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
§ 1 Введение
Код ,в котором кодовая комбинация, полученная путем циклического сдвига разрешенной кодовой комбинации является также разрешенной кодовой комбинацией называется циклическим ( полиномиальным, кодом с циклическими избыточными проверками-ЦИП).
Сдвиг осуществляется справа налево, при этом крайний левый символ переносится в конец комбинации.
Циклический код относится к линейным, блочным, корректирующим, равномерным кодам.
В циклических кодах кодовые комбинации представляются в виде многочленов, что позволяет свести действия над кодовыми комбинациями к действием над многочленами (используя аппарат полиномиальной алгебры).
Циклические коды являются разновидностью систематических кодов и поэтому обладают всеми их свойствами. Первоначально они были созданы для упрощения схем кодирования и декодирования. Их эффективность при обнаружении и исправлении ошибок обеспечила им широкое применение на практике.
Циклические коды используются в ЭВМ при последовательной передаче данных .
2 Постановка задачи
Построить циклический код для передачи 31 разрядной кодовой комбинации с исправлением однократной ошибки ( n=31 ,s=1) двумя
способами.
Показать процесс обнаружения и исправления однократной ошибки в передаваемой кодовой комбинации. Составить программу, реализующую алгоритм кодирования, декодирования и исправления ошибки при передаче данных с использованием циклического кода.
3 Операции над циклическими кодами
1. Сдвиг справа налево осуществляется путем умножения полинома на x:
G(x)=x4+x2+1 Û 0010101;
G(x)× x=x5+x3+x Û 0101010.
2. Операции сложения и вычитания выполняются по модулю 2 .
Они являются эквивалентными и ассоциативными :
G1(x)+G2(x)=>G3(x);
G1(x) -G2(x)=>G3(x);
G2(x)+G1(x)=>G3(x);
Пример:
G1(x)= x5 +x3+x;
G2(x)=x4 +x3 +1;
G3(x)=G1(x) Å G2(x) = x5 +x4+x+1.
3. Операция деления является обычным делением многочленов, только вместо вычитания используется сложеное по модулю 2 :
G1(x)=x6+x4+x3 ;
G2(x)=x3+x2+1 .
4 Принцип построения циклических кодов
Идея построения циклических кодов базируется на использовании неприводимых многочленов. Неприводимым называется многочлен, который не может быть представлен в виде произведения многочленов низших степеней ,т.е. такой многочлен делиться только на самого себя или на единицу и не делиться ни на какой другой многочлен. На такой многочлен делиться без остатка двучлен xn+1.Неприводимые многочлены в теории циклических кодов играют роль образующих полиномов.
Чтобы понять принцип построения циклического кода, умножаем комбинацию простого k-значного кода Q(x) на одночлен xr ,а затем делим на образующий полином P(x) , степень которого равна r. В результате умножения Q(x) на xr степень каждого одночлена, входящего в Q(x), повышается на r. При делении произведения xrQ(x) на образующий полином получается частное C(x) такой же степени, как и Q(x).
Частное C(x) имеет такую же степень, как и кодовая комбинация Q(x) простого кода, поэтому C(x) является кодовой комбинацией этого же простого k-значного кода. Следует заметить, что степень остатка не может быть больше степени образующего полинома, т.е. его наивысшая степень может быть равна (r-1). Следовательно, наибольшее число разрядов остатка R(x) не превышает числа r.
Умножая обе части равенства (1) на P(x) и произведя некоторые перестановки получаем :
F(x) = C(x) P(x) = Q(x) xr + R(x) (2)
Таким образом, кодовая комбинация циклического n-значного кода может
быть получена двумя способами:
1) умножение кодовой комбинации Q(x) простого кода на одночлен xr
и добавление к этому произведению остатка R(x) , полученного в результате деления произведения Q(x) xr на образующий полином P(x);
2) умножения кодовой комбинации C(x) простого k-значного на образующий полином P(x).
При построении циклических кодов первым способом расположение информационных символов во всех комбинациях строго упорядочено - они занимают k старших разрядов комбинации, а остальные (n-k) разрядов отводятся под контрольные.
При втором способе образования циклических кодов информационные и контрольные символы в комбинациях циклического кода не отделены друг от друга, что затрудняет процесс декодирования.
6. Разработка текста программы
Для представления информационного слова в памяти используется
массив. В состав программы входит основная программа и два модуля,
реализующие алгоритм кодирования и декодирования информационных слов и диалога с пользователем соответственно.
Program Cyclic_Code;
Uses
Crt,_CC31,_Serv;
Var
m,mm:Move_code;
p:Polinom;
r:Rest;
i,Mainflag,From,Error:integer;
Switch:byte;
Key:boolean;
begin
Repeat
Key:=true;
TextColor(11);
TextBackGround(7);
Clrscr;
SetWindow(24,10,45,14,2,' Главное меню ');
Switch:=GetMainMenuChoice;
case Switch of
1:begin
About;
Readln;
Key:=False;
end;
2: begin
TextColor(0);
ClrScr;
SetWindow(25,10,40,13,1,' Образовать ');
Switch:=GetSubMenuChoice;
case Switch of
1:begin
TextBackGround(0);
TextColor(15);
ClrScr;
SetWindow(1,1,79,24,2,' Демонстрация');
TextColor(14);
GotoXY(2,2);
Init(m,p,r,MainFlag);
Write(‘Информационный полином ');
TextColor(2);
for i:=n downto 0 do
begin
if(i=0)and(r2[i1]=0))do dec(i1);
if(i1=-1)then goto RETURN;
Kol:=n1-i1;
while(Kol>0)do
begin
for i:=n1 downto 1 do
r2[i]:=r2[i-1];
dec(Kol);
end;
Kol:=n1-i1;
while((Kol>0)and(j>=0))do
begin
r2[Kol-1]:=m2[j];
dec(Kol);
dec(j);
end;
if((j=-1)and(Kol=0))
then begin
for i:=n1 downto 0 do
r2[i]:=r2[i] xor p2[i];
end
else flag:=Kol;
end;
end
else if(n1=j)
then begin
for i:=n1 downto 0 do
begin
r2[i]:=m2[j];
dec(j);
end;
for i:=n1 downto 0 do
r2[i]:=r2[i] xor p2[i]
end
else if(j0)then
begin
k:=n1-flag;
for i:=n1 downto flag do
begin
m3[k]:=r3[i];
dec(k);
end;
end
else begin
for i:=n1-1 downto 0 do
m3[i]:=r3[i];
end;
end;
Procedure MakeError(var m4:Move_code;var err:integer);
begin
Randomize;
err:=Random(n);
m4[err]:=m4[err] xor 1;
end;
Procedure Decoder(var m6:Move_Code);
var
i:integer;
k:byte;
begin
k:=5;
while(k>0) do
begin
for i:=0 to n-1 do
m6[i]:=m6[i+1];
dec(k);
end;
for i:=n downto n-n1+1 do
m6[i]:=0;
end;
Procedure BildMoveCodeMultiplication(var m7:Move_Code);
var
m1,m2,m3,m4,mm:Move_Code;
i,j:integer;
begin
mm:=m7;
m1:=m7;
for j:=0 to 1 do
begin
for i:=n downto 1 do
m1[i]:=m1[i-1];
m1[j]:=0;
end;
m2:=m7;
for j:=0 to 2 do
begin
for i:=n downto 1 do
m2[i]:=m2[i-1];
m2[j]:=0;
end;
m3:=m7;
for j:=0 to 3 do
begin
for i:=n downto 1 do
m3[i]:=m3[i-1];
m3[j]:=0;
end;
m4:=m7;
for j:=0 to 4 do
begin
for i:=n downto 1 do
m4[i]:=m4[i-1];
m4[j]:=0;
end;
for i:=n downto 0 do
m7[i]:=mm[i] xor m1[i]xor m2[i]xor m3[i] xor m4[i];
end;
Procedure Correction(var m5:Move_code;p5:Polinom;var r5:Rest);
var
i,Correctflag,i1:integer;
Count,Countcarry,Carryflag:byte;
begin
Correctflag:=0;
Countcarry:=0;
repeat
for i:=n1 downto 0 do
r5[i]:=0;
Count:=0;
Divizion(m5,r5,p5,Correctflag);
i1:=n1;
while((i1>=Correctflag)and(r5[i1]=0))do dec(i1);
if({(i1=Correctflag-1) or
(}(i1=Correctflag)and(r5[Correctflag]=1)){)}
then m5[0]:=m5[0] xor r5[Correctflag]
else begin
Carryflag:=m5[n];
for i:=n downto 1 do
m5[i]:=m5[i-1];
m5[0]:=Carryflag;
inc(Countcarry);
end;
until ({(i1=Correctflag-1) or
(}(i1=Correctflag)and(r5[Correctflag]=1));{);}
while (Countcarry>0) do
begin
Carryflag:=m5[0];
for i:=0 to n-1 do
m5[i]:=m5[i+1];
m5[n]:=Carryflag;
dec(Countcarry);
end;
end;
end.
Приложение № 2
Процедуры и функции модуля _Serv.
Unit _SERV;
Interface
Uses
Crt,Dos;
Const
EmptyBorder =0;
SingleBorder =1;
DoubleBorder =2;
BorderChar:array[0..2,1..6] of Char=
((#32,#32,#32,#32,#32,#32),
(#218,#196,#191,#179,#192,#217),
(#201,#205,#187,#186,#200,#188));
MaxChar=80;
MaxLine=25;
MenuTop=3;
SubMenuTop =2;
MenuLine :array[1..MenuTop]of string[20]=
(' О программе...',' Демонстрация ' ‘Выход ');
SubMenuLine :array[1..SubMenuTop]of string[20]=
(' Сложением' , ' Умножением');
Procedure SetWindow(x1,y1,x2,y2,Bord:byte;Header:string);
Procedure CursorOff;
Function GetMainMenuChoice:byte;
Function GetSubMenuChoice:byte;
Procedure About;
Implementation
Procedure SetWindow(x1,y1,x2,y2,Bord:byte;Header:string);
var
i:integer;
begin
if not ((x11)
then dec(Count);
#80 : if(Count1)
then dec(Count);
#80 : if(Count