Статья

Статья на тему О реальной структуре электромагнитного поля и его характеристиках р

Работа добавлена на сайт bukvasha.net: 2014-06-14

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024


О РЕАЛЬНОЙ СТРУКТУРЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ И ЕГО ХАРАКТЕРИСТИКАХ РАСПРОСТРАНЕНИЯ В ВИДЕ ПЛОСКИХ ВОЛН
В.В. Сидоренков
МГТУ им. Н.Э. Баумана
Установлена реальная структура электромагнитного поля, представляющего собой векторное четырехкомпонентное электродинамическое поле, состоящего из функционально связанных между собой составляющих полей: электрической и магнитной напряженности, электрического и магнитного векторного потенциала. Рассматривается физически очевидный и принципиальный вопрос о параметрах и характеристиках распространения волн конкретных составляющих реального электромагнитного поля.
В настоящее время установлено, что в отношении полноты охвата при описании наблюдаемых в Природе явлений электромагнетизма, наряду с обычной системой уравнений электродинамики Максвелла электромагнитного (ЭМ) поля с компонентами электрической  и магнитной  напряженности [1]:
(a)  ,               (b)  ,                     (1)
(c)  ,            (d)  ,
существуют и другие системы полевых уравнений [2 - 4], концептуально необходимые при анализе и адекватном реальности физико-математическом моделировании электродинамических процессов в материальных средах. Уравнения в этих других системах рассматривают такие области пространства, где присутствуют либо только поле ЭМ векторного потенциала с электрической  и магнитной  компонентами:
(a)  ,                           (b)  ,         (2)
(c)  ,      (d)  ;
либо электрическое поле с компонентами  и :
(a)  , (b)  ,                  (3)
(c)  ,                              (d)  ;                                    
либо, наконец, магнитное поле с компонентами  и :
(a)  ,       (b)  ,                (4)      
(c)  ,                              (d)  .        
Здесь  и  - абсолютные диэлектрическая и магнитная проницаемости среды, соответственно,   - удельная электрическая проводимость,  - постоянная времени релаксации заряда в среде за счет электропроводности.
Основная и отличительная особенность уравнений систем (2) – (4) в сравнении с традиционными уравнениями Максвелла ЭМ поля (1) с физической точки зрения состоит в том, что именно они, используя представления о поле ЭМ векторного потенциала, способны последовательно описать многообразие электродинамических явлений нетепловой природы в материальных средах, определяемых электрической или магнитной поляризацией и передачей среде момента ЭМ импульса, в частности, реализуемых в процессе электрической проводимости [4, 5] .
Принципиально и весьма существенно здесь то, что все эти системы электродинамических уравнений, в частности, и система (1) для локально электронейтральных сред ( ) непосредственно следуют из фундаментальных исходных соотношений первичной взаимосвязи ЭМ поля и поля ЭМ векторного потенциала [2 - 4]:
(a)  ,              (b)  ,                                       (5)         
(c)  ,                   (d)  .  
Очевидно, что представленная система соотношений может служить основой для интерпретации физического смысла поля ЭМ векторного потенциала [3], выяснения его роли и места в явлениях электромагнетизма. Однако самое главное и уникальное в них то, что все вместе эти соотношения являют собой систему базовых дифференциальных уравнений, описывающих необычное с точки зрения общепринятых позиций вихревое векторное поле, состоящее их четырех функционально связанных между собой вихревых векторных компонент , ,  и , которое условно назовем реальное электромагнитное поле
Объективность существования указанного поля однозначно иллюстрируется указанными системами уравнений (1) – (4) и получаемыми из них соотношениями баланса:
для потока ЭМ энергии из уравнений системы (1)
,               (6)
для потока момента ЭМ импульса из уравнений системы (2)
div ,                 (7)
для потока электрической энергии из уравнений системы (3)
div ,                      (8)
и, наконец, для потока магнитной энергии из уравнений системы (4)
div .                  . (9)
Как видим, соотношения (5) действительно следует считать фундаментальными уравнениями связи компонент реального электромагнитного поля, базирующегося на исходной своей составляющей - поле векторного потенциала, состоящего из двух взаимно ортогональных электрической  и магнитной  векторных полевых компонент. При этом поле векторного потенциала своим существованием реализует функционально связанные с ним другие составляющие единого поля: электромагнитное поле с векторными компонентами  и , электрическое поле с компонентами  и , магнитное поле с компонентами  и .
Интересно, что обсуждаемая здесь структура и взаимосвязь составляющих реального электромагнитного поля сохраняется и в статической асимптотике. Логика построения систем полевых уравнений для стационарных составляющих данного поля и анализ физического содержания таких уравнений изложены, например, в работе [6].
Форма представленных систем уравнений (1) – (4) говорит о существовании волновых решений для всех компонент ЭМ поля , ,  и . В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений любой системы, и после чего подставить в него другое роторное уравнение той же системы. Например, в качестве иллюстрации получим для системы (2) волновое уравнение относительно
 .
Здесь, согласно (2c), ,  - оператор Лапласа, а - фазовая скорость поля волны в отсутствие поглощения. Следовательно, тем самым описываются волны для конкретной составляющей реального электромагнитного поля посредством одной из парных комбинаций четырех указанных волновых уравнений. В итоге возникает физически очевидный вопрос, что это за волны, и каковы характеристики их распространения?
В этой связи рассмотрим волновой пакет плоской линейно поляризованной, например, электрической волны, распространяющейся вдоль оси 0X с компонентами  и  для системы (3) либо магнитной волны с компонентами  и  для системы (4), которые представим комплексными спектральными интегралами. Тогда, например, для уравнений электрического поля (3) указанные интегралы имеют вид:
 и , (10)
где  и  - комплексные амплитуды.
Подставляя их в уравнения (3a) и (3c), приходим к соотношениям  и . Соответствующая подстановка аналогичных (10) интегралов для магнитного поля  и  в уравнения (4а) и (4c) дает  и . Таким образом, получаем для обеих систем общее для них выражение:
В конкретном случае среды идеального диэлектрика ( ) с учетом формулы  для обеих систем из  следует обычное дисперсионное соотношение  [1], описывающее однородные плоские волны электрического или магнитного полей. При этом связь комплексных амплитуд компонент указанных волновых полей имеет специфический вид:
 и .
Специфика здесь в том, что при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на π/2. Конечно, математически данный результат тривиален, поскольку компоненты поля ЭМ напряженности и поля векторного потенциала связаны между собой посредством производной по времени (см. соотношения (5c) и (5d)). Однако концептуально с физической точки зрения это неожиданно и требует всестороннего анализа.
Справедливости ради следует сказать, что впервые о возможности реального существования чисто магнитной поперечной волны с двумя ее компонентами  и , сдвинутыми при распространении по фазе на π/2, официально в виде приоритета на открытие заявил Докторович еще в 1980 году, и этот факт он с удивительным упорством, достойным лучшего применения, безуспешно пытается донести до других, ссылаясь на приоритет и свою статью по этой теме, везде публикуемую многие годы (например, [7]). Печально, но только Время - высший судья, и именно оно расставит всех и все по своим местам! Будем надеяться, что независимое подтверждение этого научного достижения Докторовича в представленном здесь исследовании будет для него серьезной поддержкой в общении с оппонентами.
Соответствующие аналогичные вышеприведенным рассуждения теперь уже для ЭМ поля с компонентами  и  системы (1) и для поля векторного потенциала с компонентами  и  системы (2) дают окончательно соотношения ,  и . В итоге для этих двух систем уравнений снова получаем стандартное выражение:
Для диэлектрической среды ( ) дисперсионное соотношение для волновых решений уравнений систем (1) и (2) также будет обычное , что описывает режим распространения компонент поля ЭМ напряженности и поля векторного потенциала в виде однородных плоских волн. При этом связь комплексных амплитуд решений системы (1) имеет стандартный вид  [1] и  для системы (2), а сами волновые решения описывают волны, компоненты поля которых синфазно распространяются в пространстве. Причем, согласно соотношениям (5c) и (5d), волны поля ЭМ напряженности сдвинуты по фазе на π/2 от волн векторного потенциала, что и приводит к вышеуказанной определенной специфике в поведении компонент полей электрической и магнитной волн.
Легко убедиться, что для проводящей среды ( ) в асимптотике металлов ( ) дисперсионное соотношение для всех систем уравнений имеет обычный в таком случае вид  [1], где . Тогда связи комплексных амплитуд запишутся для систем (3) и (4) как  и , а для (1) и (2)  и .
Как видим, в данном случае распространение волн всех четырех составляющих реального электромагнитного поля  подчиняется теоретически хорошо изученному закону для плоских волн ЭМ поля в металлах [1], когда волновые решения для проводящей среды имеют вид экспоненциально затухающих в пространстве плоских волн со сдвигом фазы между компонентами на π/4.
Таким образом, как представляется, нам удалось провести серьезную концептуальную модернизацию основных воззрений о структуре и свойствах электромагнитного поля в классической электродинамике, где, в частности, показано, что, в Природе нет электрического, магнитного или другой составляющей реального электромагнитного поля с одной полевой компонентой. Структурно эти четыре составляющие принципиально состоят из двух векторных взаимно ортогональных полевых компонент, благодаря которым для конкретной составляющей реализуется объективно необходимый способ ее существования, принципиальная и единственная возможность распространения в виде потока соответствующей физической величины, в случае динамических полей - посредством поперечных волн.
Обобщая полученные результаты, приходим к выводу о том, что совокупность полей, определяемая соотношениями (5), действительно является четырехкомпонентным векторным электромагнитным полем, распространяющимся в пространстве в виде единого волнового процесса, а потому с концептуальной точки зрения  разделение реального электромагнитного поля на составляющие его поля в определенной мере условно. Однако с позиций общепринятых физических представлений и практики аналитического описания явлений электромагнетизма разделение этого поля на двухкомпонентные составляющие в виде электрического, магнитного, электромагнитного и векторного потенциала полей однозначно необходимо и, безусловно, удобно, поскольку диктуется объективным существованием конкретных электромагнитных явлений и процессов, реализуемых посредством рассматриваемых двухкомпонентных составляющих. Кстати, по поводу предложенного названия обсуждаемого здесь электродинамического поля. По нашему мнению, очевидно, что серьезных проблем не должно возникнуть, если в перспективе обсуждаемое поле сохранит за собой и традиционное нынешнее названиеэлектромагнитное поле.

Литература:
1. Матвеев А.Н. Электродинамика. М.: Высшая школа, 1980. 383 с.
2. Сидоренков В.В. Обобщение физических представлений о векторных потенциалах в классической электродинамике // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2006. № 1. С. 28-37.
3. Сидоренков В.В. Физические основы теории поля векторных потенциалов в классической электродинамике // Материалы IX Международной конференции «Физика в системе современного образования». Санкт-Петербург: РГПУ, 2007. Т. 1. Секция “Профессиональное физическое образование”. С. 127-129.
4. Сидоренков В.В. Фундаментальные основы электродинамической теории нетеплового действия электромагнитных полей на материальные среды // Вестник Воронежского государственного технического университета. 2007. Т.3. № 11. С.75-82.
5. Сидоренков В.В. Развитие физических представлений о процессе электрической проводимости в металлах // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2005. № 2. С. 35-46.
6.  Сидоренков В.В. Гипотетическое построение уравнений теории поля стационарных электромагнитных явлений // XLIV Всероссийская конференция по проблемам математики, информатики, физики и химии: Тезисы докладов. Секция «Теоретическая физика». М.: РУДН, 2008. С. 96-97.
7. Докторович З.И. Несостоятельность теории электромагнетизма и выход из сложившегося тупика // http://www.sciteclibrary.ru/rus/catalog/pages/4797.html.

1. Реферат на тему The Accomplishments Of Cardinal Richelieu Essay Research
2. Контрольная работа Понятие кредитного договора
3. Доклад Москва в годы Великой Отечественной войны
4. Реферат Фарамонд
5. Реферат Описание Антарктиды
6. Реферат на тему A Review Of City Terrace Field Manual
7. Реферат Бухгалтерский и налоговый учет операций по реализации и прочему выбытию акций
8. Курсовая на тему Автоматизация работы в Microsoft Word
9. Реферат Понятие и сущность рыночных отношений в экономике
10. Реферат Международная метрологическая организация, её функции