Статья

Статья Определение релаксационных констант в модифицированных полимерных материалах методом линейной ре

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024



Определение релаксационных констант в модифицированных полимерных материалах методом линейной регрессии

В.А. Федорук, В.И. Суриков, Т.Г. Сичкарь, Н.И. Шут, Омский государственный технический университет, кафедра физики

Важнейшими характеристиками релаксационных процессов в полимерных материалах являются энергия активации U, температура релаксационного перехода Tm , предэкспоненциальный множитель B в уравнении Больцмана-Аррениуса. В настоящее время существуют экспериментальные методы определения релаксационных констант [1,2]. Наибольшее распространение получил подход, разработанный Г.М.Бартеневым с сотрудниками [2]. Несмотря на очевидные достоинства, он имеет один существенный недостаток - требует большого объема экспериментальных исследований. Применение современной вычислительной техники позволяет в ряде случаев упростить процедуру определения релаксационных констант. Особенно этот метод эффективен, с нашей точки зрения, при изучении релаксационных процессов в модифицированных полимерных материалах, когда известны релаксационные константы полимера-связующего.

Суть подхода в определении U, Tm и B с помощью ЭВМ заключается в аппроксимации анализируемого релаксационного максимума на температурной зависимости тангенса угла механических потерь максвелловским максимумом с помощью метода линейной регрессии в сочетании с методом регуляризации (ЛРР) [3].

Максимум Максвелла без учета фона в координатах может быть описан следующим выражением:



где U - энергия активации; k - постоянная Больцмана; - максимальное значение . Соотношение (1) было использовано для аппроксимации экспериментальной зависимости .

С этой целью искомые параметры Пi представляли в виде , где Пi0 - нулевое приближение, . Разлагая в ряд Тейлора по малой величине , можно получить уравнение вида



где A - матрица с тремя столбцами и M строками ( M - число экспериментальных точек); x - вектор-столбец с тремя неизвестными параметрами Пi ; C - вектор-столбец с M элементами, представляющими собой разности экспериментальных и рассчитанных значений . В рассматриваемой задаче неизвестными параметрами являлись U, , Tm.

Переопределенную систему (2) решали путем умножения на транспонированную матрицу AT и

Таблица 1

Релаксационные константы ЭП УП-643, пластифицированного дибутилфталатом

Содержание ДБФ,

K

эвм кДж/моль

кДж/моль

Коэффициент уширения r

0

420

140

157

1,1

5

411

155

154

1

10

401

118

150

1,3

добавлением в левую часть единичной матрицы E с параметром регуляризации [3]: Составленные подходящим образом алгоритмы и программы позволяют реализовать метод ЛРР на ПЭВМ.

Вышеуказанный метод использовали для расчета релаксационных констант в эпоксидном полимере (ЭП) на основе эпоксиноволачной смолы УП-643, модифицированного жидким пластификатором-дибутилфталатом (ДБФ).

Спектры внутреннего трения (тангенс угла механических потерь) определяли на торсионном маятнике в режиме вынужденных колебаний на частотах 20 - 90 Гц с погрешностью по . Скорость сканирования температуры - 2 град./мин. Из анализа спектров внутреннего трения следует, что введение пластификатора приводит к уменьшению температуры -перехода от 420 K (непластифицированный ЭП) до 401 K (ЭП с ДБФ). При этом резонансная частота -перехода остается неизменной и равной 29 Гц, а ширина спектра меняется аномально, достигая минимального значения в ЭП с ДБФ.

Результаты обработки экспериментальных данных непластифицированного и пластифицированного ЭП УП-643 методом ЛРР приведены в таблице. В этой же таблице приведены значения энергии активации -перехода, рассчитанные по известной формуле [2]: В этом соотношении C - константа, равная 10 для -перехода; =29 Гц; значение найдено в работе [4] и составляет . Расхождение найденных значений двумя способами может быть связано с рядом причин. Наиболее существенные из них: отклонение формы реального релаксационного максимума от максвелловского и (или) уширение релаксационного максимума за счет непрерывного распределения времени релаксации . Нами проанализированы эти причины. Хорошее совпадение расчетных кривых с экспериментальными свидетельствует в пользу максвелловской формы реальных релаксационных максимумов. В этом случае уширение релаксационного максимума вследствие распределения может быть учтено с помощью параметра нормального распределения , с которым связан коэффициент относительного уширения максимума [5]. При этом истинная энергия активации связана с рассчитанной по методу ЛРР простым соотношением [6]. Значения r, найденные из этого соотношения для непластифицированного и пластифицированного ЭП УП-643, приведены в таблице. Обращает на себя внимание отсутствие уширения в пластифицированном ЭП, содержащем ДБФ, в отличие от непластифицированного ЭП и пластифицированного ДБФ. Наблюдаемая аномалия в зависимости относительного коэффициента уширения r от доли ДБФ в полимере имеет место и для некоторых физических свойств ЭП УП-643. Так модуль упругости E достигает максимума в ЭП с ДБФ и с дальнейшим ростом содержания ДБФ уменьшается.

Детальный анализ причин, ответственных за аномальные явления в пластифицированном ЭП УП-643, не является целью данной работы. Однако, вероятней всего, повышение r и E в области малых концентраций пластификатора имеет ту же природу, что и аномалии механических свойств полимеров при межструктурной пластификации.

В заключение отметим, исходя из вышеуказанного, относительную простоту и эффективность предлагаемого метода определения релаксационных констант в модифицированных полимерах.

Список литературы

Перепечко И.И. Акустические методы исследования полимеров. М.: Химия, 1973. - 296 c.

Бартенев Г.М., Зеленев Ю.В. Физика и механика полимеров. М.: Высш. школа, 1983. - 373 c.

Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986. - 288 с.

Шут Н.И., Сичкарь Т.Г., Лопес О.А., Дущенко В.П. Влияние ДБФ на теплофизические и релаксационные свойства эпоксидной смолы УП-643 // Пласт. массы. 1987. N 4. С. 34.

Новик А., Берри Б. Релаксационные явления в кристаллах. М.: Атомиздат, 1975. - 472 с.

Метод внутреннего трения в металловедческих исследованиях: Справ. изд. Блантер М.С., Плаузов Ю.В., Ашмарин Г.М. и др. М.: Металлургия, 1991. - 248 с.

Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/



1. Реферат Значення міжнародних конгресів математиків для становлення математики як науки
2. Реферат Научные основы дактилоскопии
3. Курсовая Технология экскурсионного менеджмента
4. Реферат на тему Isaac Newton Essay Research Paper It was
5. Реферат Что может и чего не может социология
6. Реферат Конкурентная стратегия предприятия
7. Реферат Социальные коммуникации в организациях
8. Кодекс и Законы Участие граждан в осуществление правосудия
9. Реферат Мой кумир - Альберт Швейцер
10. Реферат Узорчатый полоз