Статья

Статья Кубатурные формулы для вычисления интеграла гармонической функции по круговой луночке

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 14.1.2025



Кубатурные формулы для вычисления интеграла гармонической функции по круговой луночке

С.С. Трахименок, Новосибирский государственный университет, кафедра дифференциальных уравнений

Вычисление интегралов - задача, которая до сих пор интересует как физиков, так и математиков.

В настоящей статье в § 4 предложена формула в виде ряда для вычисления интеграла от гармонической функции по круговой луночке. Эта формула является обобщением теоремы о среднем.

Для того чтобы построить подобное представление в виде ряда, понадобилось ввести (§ 1) некую специальную последовательность гармонических полиномов, которая является базисом пространства типа Бергмана [1]. Введенная последовательность изначально не является ортогональной, поэтому в § 2 предлагаются формулы для вычисления скалярных произведений от базисных функций для того, чтобы применить метод Грама-Шмидта.

1.  Области,  функциональное пространство, полиномиальные последовательности

Ограниченную область S в R2 назовем круговой луночкой, если ее граница Г состоит из двух дуг окружностей Г1 и Г2, пересекающихся в угловых точках С1 и С2. Угол между Г1 и Г2 обозначим через . Введем в R2 декартову систему координат (x,y), поместив ее начало в середину отрезка С1С2, абсолютная величина которого равна 2, и направив ось абсцисс перпендикулярно к нему. С помощью биполярных координат [2]



(1.1)

круговая луночка S конформно отображается в бесконечную полосу.

Обозначив обратное к (1.1) преобразование как  =(x,y),  =(x,y), отметим, что поверхность (x,y)=j совпадает с Гj. Любая луночка S однозначно определяется заданием 1 и , т.е. S=S(1,). Для произвольной функции u(x,y) суперпозицию u(x(,),y(,)) обозначим как u(,).

В качестве функционального пространства будем рассматривать множество, являющееся подпространством так называемого пространства Бергмана b21, состоящее из гармонических в S функций u(x,y) класса W21(S), обладающих непрерывными следами на частях Г1 и Г2 границы Г. Кроме того, потребуем, чтобы функция fj()  u(,j) = u(x,y)Гj , j = 1,2, удовлетворяла на Гj условию Гельдера с показателем d0. Совокупность всех таких элементов u(x,y) обозначим как W(S). Определим в W(S) скалярное произведение, положив:. Здесь (x0,y0) - произвольная внутренняя точка из S.

Рассмотрим функцию комплексного переменного z = x+iy:   .

Функции u0 и v0 принадлежат W0(S) и в биполярных координатах имеют следующий вид:



(1.2)

Используя формулу [3, (7.117)] с некоторыми дополнительными вычислениями, можно получить интегральные представления:



(1.3)

Интегралы в (1.3), очевидно, сходятся при a(-,), b2.

Функции u0(,) и v0(,) удовлетворяют условиям Коши-Римана и аналитичны в окрестности любой точки  из интервала (0,2). Значит, для такого  и вещественного t, удовлетворяющего условию | t | max(, 2-), имеют место разложения:



(1.4)

Здесь и далее под k понимаются функции uk или vk, k = 0,1,.... Коэффициенты uk(,), vk(,) этих разложений при k1 обладают рядом интересных свойств.

1. Из (1.4) следуют рекуррентные соотношения:



(1.5)

2. Применим (1.5) к интегралам в (1.3), вычислим полученные равенства по формулам [3, (7.113), (8.108)] и, учитывая (1.1), получим в переменных (x,y):



(1.6)

3. Соотношения (1.4) в декартовых координатах принимают вид:



(1.7)

Из (1.6)-(1.7), используя индукцию по k, заключаем, что функции uk(x,y) и vk(x,y) - это гармонические полиномы степени k.

4. Полиномы uk(x,y) четны по y, а vk(x,y) нечетны. Кроме того, при всех k2 в угловых точках полиномы обращаются в нуль.

5. Последовательность {uk,vk}Ґk = 1 полна в W(S) и образует в нем базис.

2.  Ортогонализация последовательности полиномов

Последовательность {uk,vk}Ґk = 1 ортогонализуем в скалярном произведении:



(2.1)

g№0. Для того чтобы эта задача была решена при помощи хорошо известного процесса Грама-Шмидта, необходимо уметь вычислять скалярные произведения вида , и . Если воспользуемся формулой Грина, то значения этих скалярных произведений дают следующие формулы:











,  



где  =j, j = 1,2. Следовательно, можно ортогонализовать полиномы uk и vk методом Грама-Шмидта в смысле скалярного произведения (2.1). Получившийся базис будем обозначать как {ek,fk}.

3.  Канонический базис

Для дальнейших результатов нам понадобится новый базис W(S), обладающий кроме ортогональности еще некоторыми дополнительными свойствами. Так как ортогональных базисов в гильбертовом пространстве W(S) существует бесконечно много, то любой из них можно получить из последовательности {ek,fk} унитарным преобразованием с матрицей перехода Т. Воспользуемся этим и трансформируем наш базис в базис {l}, ортогональный не только в W(S), но и в следующем скалярном произведении:





где KR(x0,y0) - шар с центром в (x0,y0) и радиуса R, равного расстоянию от центра до границы S. Базис с таким дополнительным свойством назовем каноническим в точке (x0,y0). Доказано (см.[4]), что базис в W(S), канонический в точке (x0,y0), существует.

Вектор-столбец бесконечной высоты с координатами:

,     ,     , где        ,   

(3.1)

для l = 0,1,2,... - назовем нормированным следом u(x,y) в точке (x0,0) аналогично его определению в [4].

Ортонормированному базису {ek,fk} сопоставим бесконечную матрицу , столбцы которой являются нормированными следами в (x0,0) функций ek и fk. Матрица - это нормированная фундаментальная матрица следов (ФМС) в точке (x0,0). Из [4] известно, чторазложима в произведение трех сомножителей, первый из которых Q = (qij) частично изометричен в l2, второй  - диагонален с положительной возрастающей последовательностью диагональных элементов {j}, а третий  - изометричен в l2, т.е.





Учитывая параметры этого разложения и формулы нахождения коэффициентов ряда [4, §5, теорема 1] и используя свойства скалярного произведения, канонический в точке (x0,0) базис удобно записать в виде ряда по функциям ek и fk. Тогда при всех натуральных l имеют место равенства:



(3.2)



где    

(3.3)

Дифференцирование ek и fk сводится к дифференцированию uk и vk.

4.  Приближенное интегрирование гармонических функций

В этом параграфе построим формулы интегрирования произвольной функции из W(S) и базисной последовательности полиномов.

Теорема 4.1. Существует единственная последовательность такая, что для любой функции u из W(S) и точки (x0,0) луночки S скалярное произведение конечно и при этом



(4.1)

Последовательность вычисляется по формулам:



(4.2)

где базис в W(S).

Это утверждение легко доказать, если разбить функцию u(x,y) на две части - четную и нечетную по y и разложить каждую в ряд по каноническому базису W(S). Далее, учитывая определение (3.1) координат вектор-столбца , производя необходимые преобразования с суммами и учитывая (3.2)-(3.3), получим формулы (4.1).

В формулировке теоремы 4.1 мы вывели представления для коэффициентов D1j и D2j, которые используют интегралы по луночке S. Численное вычисление множителя Al сводится к результатам следующего утверждения. Но сначала условимся об обозначениях.

  

(4.2)

Теорема 4.2. Интеграл от полинома uk+1, взятый по луночке S = S(1,2-1), совпадает с приращением функции Qk() на отрезке [1,2], а от полинома vk+1, взятый по той же луночке, равен нулю.

Здесь отметим, что приведенное в §4 приложение системы полиномов является не единственным. Например, ее можно применять в задачах, использующих альтернирующий метод Шварца. Также с их помощью можно находить решения в составных областях на плоскости.

Список

литературы



Axler S., Bourdon P., Ramey~W. Harmonic Function Theory. Springer-Verlag, 1992.

Лебедев Н.Н. Специальные функции и их приложения.М.: Гос. изд-во физ.-мат. лит. 1963. 360 с.

Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. М.:Гос. изд-во физ.-мат. лит. 1961. 523 с.

Васкевич В.Л. Аналоги эрмитовых кубатурных формул для интеграла Дирихле от гармонической функции // Теоретические и вычислительные проблемы в задачах математической физики. Труды ИМ СО РАН, том 24. Новосибирск: Наука, Сибирское отделение, 1994. С. 93-126.

Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/



1. Доклад на тему СО2 лазеры с внутрирезонаторным электронным управлением параметрами излучения
2. Реферат на тему A Grave Decision Essay Research Paper A
3. Реферат Международный аспект турецко-иракских отношений 19912002 гг.
4. Кодекс и Законы Административно-правовые нормы понятие и виды
5. Реферат Зарубежный опыт организации местного самоуправления
6. Реферат на тему The Nature Of Man In Macbeth Essay
7. Контрольная_работа на тему Лесоматериалы Сталь Электродуговая сварка
8. Реферат Новый взгляд на основы мироздания 2
9. Реферат Идеи Вернадского о биосфере
10. Реферат на тему Dreams Essay Research Paper Dreams are a