Диплом на тему Операторы проектирования
Работа добавлена на сайт bukvasha.net: 2014-06-22Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Министерство Образования Российской Федерации
Вятский Государственный Гуманитарный УниверситетМатематический факультет
Кафедра математического анализа и МПМВыпускная квалификационная работа
Операторы проектирования.
Выполнил студент 5курса
математического факультета
Лежнин В.В.
/подпись/
Научный руководитель:
Старший преподаватель кафедры математического анализа и МПМ
Гукасов А.К.
/подпись/
Рецензент:
Старший преподаватель кафедры математического анализа и МПМ
Подгорная М.И.
/подпись/
Допущена к защите в ГАК
Декан факультета В.И. Варанкина
Киров
2003
Оглавление.
Введение. 2
Часть I. Основные понятия и предложения. 2
Часть II. Дополняемость в гильбертовых пространствах. 10
Часть III. Задача о дополняемости. 13
Литература. 15
Введение.
В данной работе рассматриваются операторы проектирования, которые являются частным случаев линейных операторов, их некоторые свойства, и рассматривается вопрос: как с помощью операторов проектирования можно выяснить дополняемо множество или нет. Так же освящается тема дополняемости в гильбертовых пространствах. Попутно для рассмотрения предлагаются некоторые определения и факты, на которые опираются нужные нам утверждения. К самостоятельно выполненным заданиям относятся доказательство замкнутости ядра (стр. 6, предложение 2), формула изменения коэффициентов Фурье при сдвиге на некоторое вещественное число и решение задачи о дополняемости.
Часть I. Основные понятия и предложения.
Определение. Метрику d на векторном пространстве X будем называть инвариантной, если d(x+z,y+z)=d(x,y), для любых x,y,z из X.
Определение. Пусть d – метрика на множестве X. Если каждая последовательность Коши сходится в X к некоторой точке, то d называется полной метрикой на X.
Определение. Векторное пространство X называется нормированным пространством, если каждому элементу x из X сопоставлено неотрицательное вещественное число
1.
2.
3.
Примеры нормированных пространств.
1) l
норма в таком пространстве определяется
2) L
3) С
Определение. Пусть X, Y – два топологических линейных пространства. Линейным оператором, действующим из X в Y, называется отображение y = Ax, где x принадлежит X, а y принадлежит Y, удовлетворяющее условию
A(ax
Определение. Оператор A называется непрерывным в точке x
Определение. Линейный оператор, действующий из Е в Е
Предложение 1. Всякий непрерывный линейный оператор ограничен.
Доказательство.
Пусть М – подмножество ограниченного множества Е, а подмножество АМ множества Е
В нормированных пространствах определение ограниченности линейных операторов можно сформулировать так: оператор А ограничен, если существует такая постоянная С, что для всякого f из Е
Наименьшее из чисел С, удовлетворяющее этому неравенству, называется нормой оператора А и обозначается
Определение. Пусть X - векторное пространство. Линейное отображение P:X → X называется проектором в пространстве X, если
Свойства проекторов.
Пусть P проектор в X с ядром N(P) и образом R(P).
1. R(P) = N(I-P) = {xÎX, Px = x}, где I – тождественное отображение;
2. R(P)ÇN(P) = {0} и X = R(P)+N(P);
Доказательство 1.
а) Так как (I-P)P = IP-
б) Если x принадлежит N(I-P), то x-Px = 0, следовательно, x = Px принадлежит R(P), значит N(I-P) содержится в R(P);
Таким образом, из а) и б) следует, что R(P) = N(I-P).
Доказательство 2.
Если x принадлежит пересечению R(P) и N(P), то x=Px=0, а следовательно, R(P) и N(P) пересекаются по {0};
Для любого x из X можно представить в виде x=Px+(x-Px), где Px принадлежит R(P) и x-Px принадлежит N(P), значит X=R(P)+N(P);
Определение. М – замкнутое подпространство топологического векторного пространства X. Если в X существует такое замкнутое подпространство N, что X=M+N и MÇN={0}, то говорят, что М дополняемо в X и что X является прямой суммой подпространств X=MÅN.
Определение. Топологическое векторное пространство X называется F-пространством, если топология порождается некоторой полной инвариантной метрикой.
Теорема o замкнутом графике.
Предположим, что X и Y являются F-пространствами, отображение Т:X→Y линейно и множество G={(x, Tx): xÎX} (его график) замкнуто в X´Y. Тогда Т – непрерывно.
Предложение 2. Пусть Ù - линейный функционал на топологическом векторном пространстве X. Допустим, что Ùx ¹0 для некоторого x из X.
Тогда если Ù непрерывен, то ядро N(Ù) замкнуто в X.
Доказательство.
Так как N(Ù) = Ù
Теорема 1.
а) Если Р – непрерывный проектор в топологическом векторном пространстве X, то X представляется в виде прямой суммы подпространств X=R(P)ÅN(P);
б) Обратно: если Х является F-пространством и X представляется в виде прямой суммы подпространств Х=АÅВ, то проектор Р с образом А и ядром В непрерывен.
Доказательство:
а) Так как Р и I-P непрерывны, то подпространства N(P) и R(P)=N(I-P) замкнуты (см. предложение 2), значит по второму свойству проекторов X=R(P)ÅN(P);
Чтобы доказать б) достаточно проверить, что проектор Р удовлетворяет условиям теоремы о замкнутом графике .
Пусть последовательности x
Так как Px
Аналогично x
Определение. Топологической группой называется группа G, снабженная такой топологией, относительно которой групповые операции в G непрерывны.
Расшифровка этого определения состоит в том, что постулируется непрерывное отображение j:G´G®G, определенного равенством: j(x,y)=xy
Определение. Топологическая группа G, топология которой компактна, называется компактной группой.
Определение. Топологическое векторное пространство X называется локально выпуклым, если в нем всякое непустое открытое множество содержит непустое выпуклое открытое подмножество.
Определение. Пространство X называется пространством Фреше , если оно является локально выпуклым F-пространством.
Определение. Предположим, что топологическое векторное пространство X и топологическая группа G связаны следующим образом: кждому элементу s из G сопоставлен непрерывный линейный оператор T
T
и отображение (s, x) ® T
Теорема 2.
Пусть Y – дополняемое подпространство Фреше Х, и пусть компактная группа G непрерывна и линейно действует на Х, причем Т
Лемма Фату. Пусть на множестве E задана последовательность измеримых, почти всюду конечных функций f
Пример недополняемого подпространства.
Рассмотрим подпространство Y=H
(для простоты обозначается: f(x)=f(e
В качестве группы G возьмем мультипликативную группу всех комплексных чисел, по модулю равных 1, и сопоставим каждому элементу
e
(t
Теперь посмотрим, как изменяются коэффициенты Фурье при таком сдвиге: (
Произведем замену: x+s = t Þ x = t-s. Тогда
(
=
то есть (t
Так как e
Если бы подпространство H
Найдем вид проектора. Положим e
Qt
Из (4) и (5) следует, что
(Qe
Пусть С
Qe
Воспользуемся тем, что образом оператора Q служит подпространство Н
С
Таким образом, проектор Q должен являться «естественным», то есть его действие сводится к замене нулями всех коэффициентов Фурье с отрицательными номерами:
Q(
Рассмотрим функцию f
которая представляет собой ядро Пуассона:
Так как
r ® 1. В силу (10) это противоречит непрерывности оператора Q.
Таким образом, доказано, что H
Часть II. Дополняемость в гильбертовых пространствах.
Гильбертово пространство.
Комплексное векторное пространство Н называется пространством с внутренним произведением (унитарное пространство), если каждой упорядоченной паре векторов x,y из Н сопоставлено комплексное число (x,y), называемое скалярным и:
а) (y,x)=
b) (x+y,z)=(x+z)+(y+z), "x, y, zÎH;
c) (ax,y)=a(x,y), "x, yÎH, "aÎC;
d) (x,x)³0, "xÎH;
e) (x,x)=0 Û x=0, "xÎH;
Если (x,y) = 0, то говорят, что x ортогонален y (обозначение x^y).
Если Е подмножество Н, F подмножество H, то Е^F обозначает, что (x,y) = 0 для любых x из E и любых y из F.
Через Е
Нормой в пространстве Н называется число
Если полученное нормированное пространство является полным, то оно называется гильбертовым пространством.
Примеры гильбертовых пространств.
1) l
2) L
(f, g) =
Теорема3:
М – замкнутое подпространство гильбертова пространства Н, следовательно H можно представить в виде прямой суммы M и М
Доказательство:
Если Е подмножество Н, то из линейности скалярного произведения (x,y) по x следует, что Е
(g, f) =
(1) Если х принадлежит М и х принадлежит М
(2) Пусть х принадлежит Н.
Рассмотрим множество х-М = {х-х
Из (1) и (2) следует, что Н представимо в виде прямой суммы М и М
Примеры дополняемых подпространств в гильбертовом пространстве.
1) в l
Рассмотрим также элементы y = (y
2) L (0,1).
Пусть X – подпространство L (0,1), состоящее из тех функций L (0,1), которые обращаются в 0 на интервале (0, а].
Пусть Y – подпространство L (0,1), состоящее из тех функций L (0,1), которые в ноль не обращаются на интервале [a, 1).
Тогда Y является ортогональным дополнением X, так как их скалярное произведение равно 0, а значит X дополняемо в L (0,1) с помощью Y.
Часть III. Задача о дополняемости.
Пусть С [0, 2p] - множество непрерывных 2p периодических функций на отрезке [0, 2p].
Пусть Е – множество четных чисел и пусть
С = {f(x)Î С : (n) = 0 "nÏE}.
Требуется доказать, что С дополняемо в С [0, 2p].
Доказательство:
Чтобы доказать требуемое, необходимо найти такой непрерывный проектор, который бы отображал множество С [0, 2p] на С (Т1.), таким образом, чтобы коэффициенты Фурье функций, стоящие на нечетных номерах, отображались бы в 0, а на четных оставались бы без изменения.
Рассмотрим оператор P = (t +I), где t - оператор сдвига на p, а I - тождественное отображение.
t ограничен, так как мы имеем дело с 2p периодическими функциями, так как
= = 1 , то есть С = 1.
А раз он ограничен, то следовательно и непрерывен (предложение 1).
I - тоже непрерывен.
Теперь посмотрим, как изменятся коэффициенты Фурье функций при таком отображении.
1) n = 2k-1, где к – целое.
(( )(2k-1)+( )(2k-1)) =
= (e (2k-1)+ (2k-1)) = (2k-1)( e +1). (*)
Так как e =cos j+isin j, значит e = cos ((2k-1)p)+isin((2k-1)p).
При любом k – целом выражение cos ((2k-1)p)+isin((2k-1)p) = -1, а, следовательно, и выражение (*) принимает значение 0. Мы показали, что коэффициенты Фурье функций, стоящие на нечетных номерах при таком отображении обращаются в 0.
2) n=2k, где k – целое.
(( )(2k)+( )(2k)) = (e (2k)+ (2k)) =
= (2k)( e +1). (**)
При любом k – целом выражение cos (2kp)+isin(2kp) = 1, а следовательно и выражение (**) не изменяет своего значения, то есть равно (2k). Мы показали, что коэффициенты Фурье функций, стоящие на четных номерах при таком отображении не изменяются, то есть оператор Р действительно является проектором.
Таким образом, нашелся такой непрерывный проектор P: С [0, 2p]® С , следовательно С дополняемо в С [0, 2p].
Литература.
1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М., Наука. 1989.
2. Рудин Уолтер. Функциональный анализ. М., Наука. 1975.
3. Вулих Б.З. Краткий курс в теорию функций вещественной переменной. М., Наука. 1973.
Пусть X – подпространство L
Пусть Y – подпространство L
Тогда Y является ортогональным дополнением X, так как их скалярное произведение равно 0, а значит X дополняемо в L
Часть III. Задача о дополняемости.
Пусть С
Пусть Е – множество четных чисел и пусть
С
Требуется доказать, что С
Доказательство:
Чтобы доказать требуемое, необходимо найти такой непрерывный проектор, который бы отображал множество С
Рассмотрим оператор P =
t
А раз он ограничен, то следовательно и непрерывен (предложение 1).
I - тоже непрерывен.
Теперь посмотрим, как изменятся коэффициенты Фурье функций при таком отображении.
1) n = 2k-1, где к – целое.
=
Так как e
При любом k – целом выражение cos ((2k-1)p)+isin((2k-1)p) = -1, а, следовательно, и выражение (*) принимает значение 0. Мы показали, что коэффициенты Фурье функций, стоящие на нечетных номерах при таком отображении обращаются в 0.
2) n=2k, где k – целое.
=
При любом k – целом выражение cos (2kp)+isin(2kp) = 1, а следовательно и выражение (**) не изменяет своего значения, то есть равно
Таким образом, нашелся такой непрерывный проектор P: С
Литература.
1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М., Наука. 1989.
2. Рудин Уолтер. Функциональный анализ. М., Наука. 1975.
3. Вулих Б.З. Краткий курс в теорию функций вещественной переменной. М., Наука. 1973.