Диплом на тему Вивчення елементів стереометрії у курсі геометрії 9 класу
Работа добавлена на сайт bukvasha.net: 2015-06-24Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
ДИПЛОМНА РОБОТА
"Вивчення елементів стереометрії у курсі геометрії 9 класу"
Вступ
Дитина дуже рано починає орієнтуватися в оточуючому її реальному, а потім і уявному просторі з урахуванням положення власного тіла. В дослідженнях А.Я. Колодної, Б.Г. Ананьєва, А.А. Люблінської, А.Н. Сорокіна і багато інших показано, що перші просторові образи у дітей виникають при усвідомленні ними схеми свого тіла, залежно від розпізнавання правої і лівої руки (ноги). Всі предмети в просторі вони сприймають з урахуванням його вертикального положення (вгорі – внизу, спереду – ззаду, збоку, справа – зліва і т. д.). Ця природна позиція служить для створення різноманітних і адекватних просторових образів. Орієнтація по схемі тіла є ведучою не тільки при практичному оволодінні простором, але і при переході від реального (фізичного) до уявного (геометричного) простору.
Про це красномовно свідчать дитячі малюнки. Починаючи малювати, діти намагаються перш за все відтворити в малюнку себе або інших «чоловічків». Відтворюючи умовними засобами себе в малюнку, вони стараються на цій основі зробити композиційну побудову малюнка, тобто здійснити просторове розміщення всіх об'єктів. В молодших класах на уроках малювання учні малюють спочатку фігури на площині, але деякі з них вже стараються надавати їм об’ємного вигляду. Пізніше ці фігури зображають в просторі, не знаючи при цьому, що таке трьохвимірний простір. Діти ліплять об’ємні фігури з пластиліну та роблять їх з інших підручних матеріалів. У старших класах вивчення просторових фігур відбувається на уроках стереометрії.
Просторове мислення виникає в надрах практичної потреби орієнтації на місцевості, серед об'єктів матеріального світу. Особливість просторових зв'язків, як підкреслював Ананьєв, полягає в тому, що це є один з видів віддзеркалення відношень між об'єктами. Це означає, що просторові властивості не дані у всьому своєму різноманітті в окремих статичних, ізольованих предметах, застиглих геометричних формах. Вони можуть бути виявлені, вивчені, використані лише в ході активної перетворюючої діяльності суб'єкта, направленої на трансформацію, видозміну об'єктів, в ході якої тільки і можуть бути виділені (знайдені) просторові властивості і відношення.
Розвиток просторового мисленнями дітей відбувається і в процесі навчання. Як відомо, якнайповніше просторові властивості і відношення досліджуються в математиці. З одної сторони, розвиток просторового мислення школярів є необхідним для розвитку у них здібностей до уявлення взагалі, а з другої – це необхідна умова для свідомого засвоєння курсу стереометрії. Формування просторового мислення є одним із найважливіших завдань геометрії. Багато математиків працювали над тим, як покращити процес вивчення геометрії, щоб максимально розвинути просторове мислення учнів.
В даний час ведеться серйозна робота по удосконаленню змісту освіти і шляхів навчання з метою максимального їх наближення до сучасного рівня наукових знань і методів дослідження. В зв'язку з цим розробляються психолого-дидактичні принципи відбору навчального матеріалу з урахуванням досягнень науки і техніки, визначаються оптимальні способи його засвоєння.
На етапі розбудови системи національної освіти та інтеграції її в світову важливим є питання відповідності змісту базової математичної освіти вимогам суспільства, розвитку науки, сучасним потребам особи.
Основна школа в Україні згідно з Законом України «Про освіту» повинна забезпечити базову загальну середню освіту, тобто дати випускникам чітко окреслене коло знань, практичних навичок та умінь, потрібних для роботи в умовах сучасного виробництва, а також для здобуття повної загальної середньої освіти в старшій школі та продовження неперервної освіти.
Специфіка і структура шкільного курсу математики відкривають широкі можливості для розвитку творчих здібностей учнів, формування прийомів розумової діяльності, інтелекту.
У вирішенні цих питань важливе місце належить геометрії, оскільки геометричні знання і вміння є одним із вагомих факторів, що забезпечують, насамперед, готовність людини до неперервної освіти та трудової діяльності.
Оскільки повна загальна середня освіта в Україні є обов'язковою і її можна здобувати у різних типах навчальних закладів освіти, то частина учнів після 9 класу продовжує навчання в загальноосвітній школі, інші вступають до різних училищ, технікумів, ПТУ. Для більшості з тих, хто не продовжує далі навчання в середній школі, стереометрія викладається в меншому обсязі, тому залишаються майже незнайомими властивості просторових фігур, хоча саме вони є необхідними людині в повсякденному житті. Учні професійних навчально-виховних закладів зазнавали труднощів при вивченні спеціальних дисциплін та під час виробничої практики, тому що згідно з діючою раніше програмою в 7–9 класах вони вивчали геометрію на площині, тоді як стереометричні знання та уміння формувалися лише в старшій школі.
Виходячи з цього, виникає необхідність деякого перерозподілу геометричного матеріалу порівняно з діючими програмами. Це стосується, насамперед, вивчення в курсі геометрії основної школи на наочно-інтуїтивному рівні таких понять стереометрії, як паралельність і перпендикулярність прямих і площин, прямокутний паралелепіпед, пряма призма, піраміда, циліндр, конус, куля. Поряд з цим мають формуватися практичні вміння обчислювати площі поверхонь і об'єми основних геометричних тіл, зображати просторові фігури на площині, будувати їх розгортки, «читати» рисунки.
Саме тому у 2003 році, з метою систематизації деяких знань зі стереометрії у школярів основної школи та підготовки їх до вивчення цього курсу у старших класах, у програму з математики для дев’ятого класу введено розділ «Початкові відомості зі стереометрії».
На даний час практично немає розроблених методичних матеріалів, систем задач, які б відповідали нововведенню. Виникла потреба в створенні методики вивчення елементів стереометрії у дев’ятому класі. Тому тема «Про вивчення елементів стереометрії у курсі геометрії дев’ятого класу» є на сьогодні актуальною.
Розкриття цієї теми потребує розв’язання таких задач:
1. Вивчити програму з математики для дев’ятого класу, а особливо розділ «Початкові відомості зі стереометрії»; упорядкувати робочу програму вивчення цього матеріалу в дев’ятому класі.
2. Скласти систему задач до цього розділу.
3. Розробити методичні рекомендації до вивчення елементів стереометрії у дев’ятому класі.
4. Показати дидактичні можливості використання ППЗ GRAN-3D при вивченні елементів стереометрії у 9 класі.
Робота складається з вступу, двох розділів, висновків, списку літературних джерел і додатків.
У першому розділі увага зосереджена на меті і завданні введенню елементів стереометрії у курсі математики основної школи. Також він присвячений для з'ясування, яка роль і місце елементів стереометрії у розвитку просторового мислення школярів.
У другому розділі розглядаються методичні рекомендації вивчення елементів стереометрії у курсі геометрії 9 класу з врахуванням особливостей нових шкільних підручників з геометрії.
1. Елементи стереометрії у шкільному курсі математики
1.1 Мета і завдання введення елементів стереометрії у курсі математики основної школи.
Вирішальне значення для системи шкільної освіти має формуючий вплив предмета математики на розвиток логічного мислення, просторових уявлень і уяви, алгоритмічної і інформаційної культури, уваги, пам’яті.
Характеристика геометрії як науки становить методологічну основу для проектування шкільного предмета геометрії і, природно, ведуть до основних завдань навчання геометрії в школі:
1. розвиток образного, зокрема просторового, мислення, розвиток логічного мислення;
2. формування розуміння відношень між геометричними об’єктами і об’єктами реального світу;
3. вміння застосовувати геометрію для розв’язування практичних задач.
Вказана вище триєдина мета навчання геометрії є загальновизнаною. Однак її реалізація на практиці викликає значні труднощі. Безумовно, переважна частина цих труднощів має об’єктивну природу: складність предмета та складність видів діяльності, які мають опанувати учні.
Розділ «Початкові відомості зі стереометрії» є новим у програмі геометрії в 9-х класах і має на меті, щоб учні, які не будуть продовжувати вивчення геометрії в старших класах, мали уявлення про просторові фігури, про обчислення площ поверхонь та об’ємів простіших геометричних тіл. Інше призначення цього розділу – пропедевтична підготовка до вивчення геометрії в 10 і 11 класах. Основна мета – повторити, привести в систему і розширити відомості про геометричні фігури в просторі та навчити обчислювати площі поверхонь і об’єм розглянутих тіл.
Однією з основних ідей розбудови математичної освіти, що записані в «Концепції шкільної математичної освіти», є ідея гармонійного розвитку особистості, виховання творчих здібностей людини, здатної вирішувати найскладніші життєві проблеми. При цьому перед геометрією ставляться важливі завдання з формування мислення, розвитку уяви, просторових уявлень, практичних навичок і умінь, оскільки вони є вагомими компонентами загальнолюдської культури взагалі. Діюча система шкільної геометричної освіти не може забезпечити належне виконання цих завдань. Це обумовлено, насамперед, її будовою.
Курс математики 5–6-х класів вважається пропедевтичним у питаннях вивчення геометрії. Він має за мету сформувати в учнів елементарні знання про основні геометричні фігури перед вивченням систематичного курсу геометрії. Таке попереднє вивчення на рівні ознайомлення істотно полегшує наступне розгортання логічної системи знань з дотриманням строгості доведення. Однак геометрична частина настільки скорочена, що не дає змоги досягти поставленої мети навіть за умови, що молодший підлітковий вік є сприятливим для розвитку образного мислення, просторових уявлень та уяви, вкрай необхідних для орієнтації в середовищі, що нас оточує, для цілісного, багатогранного сприймання дійсності.
Систематичний курс геометрії у 7–11-х класах чітко розмежований. У підручнику О.В. Погорєлова «Геометрія 7–11», за яким донині навчали геометрії в переважній більшості шкіл України, розділи «Планіметрія» та «Стереометрія» подаються окремо, причому перша частина «Планіметрія» елементів стереометрії не містить. Така штучна й тривала ізоляція психіки дитини від співвідношень реального тривимірного світу завдає значної шкоди природному розвитку її просторової уяви. Актуальною є потреба перегляду шкільних програм з математики, зокрема з геометрії. Слід зазначити, що у цьому напрямку вже намітилися певні зрушення.
Так, нові програми з математики для основної та профільної старшої школи побудовані з урахуванням вимог Державного стандарту базової і повної середньої освіти, яким передбачено вивчення математики за методом фузіонізму. Зокрема, курс геометрії основної школи пропонується будувати так, щоб елементи стереометрії тісно перепліталися з відповідним планіметричним матеріалом, що значно полегшить створення в систематичному курсі стереометрії цілісних і міцних знань, стійких до збереження в пам'яті, сприятиме розвитку просторових уявлень та уяви учнів. Часті переходи від двовимірної площини до тривимірного простору сприятимуть розвитку інтуїції школяра. Позитивною рисою також є підвищена увага до питань пропедевтики геометрії, особливо в 5–6-х кл-х (див. додаток А).
Одночасно з підручником геометрії О.В. Погорєлова в 7–9-х класах використовується підручник геометрії авторського колективу на чолі з Г.П. Бевзом. Він у 9-му класі завершується розділом «Елементи стереометрії». У цьому розділі учнів ознайомлюють з прямими та площинами в просторі, вводять поняття многогранників, фігур обертання, а також пропонують формули площ поверхонь та об'ємів геометричних тіл. Вивчення даного розділу передбачає виконання практичних завдань з виготовлення моделей многогранників, фігур обертання, розв'язування вправ на обчислення їх площ поверхонь та об'ємів.
Як бачимо, зрушення щодо введення питань стереометрії в курс математики основної школи є. Однак питання визначення змісту і обсягу стереометричного матеріалу в курсі математики основної школи, його місця в програмі, вимог до підготовки учнів під час диференційованого навчання залишаються розв'язаними недостатньо. Недостатньо розроблена також методика його вивчення та не створена система задач, яка забезпечує це вивчення.
Виходячи з цілей і завдань вивчення математики, рекомендованого змісту питань геометрії, шкільний курс геометричної освіти доцільно будувати так.
5–6-ті класи – курс наочної геометрії, який по суті має бути пропедевтичним перед вивченням систематичних курсів планіметрії та стереометрії. Саме в цьому полягає одна з його основних цілей. Не менш важливим є озброєння учнів практичними знаннями з геометрії, які потрібні їм під час вивчення географії, фізики, креслення, трудового навчання та інших суміжних дисциплін.
Пріоритетними завданнями мають бути розвиток просторових уявлень та уяви, систематизація емпіричного геометричного матеріалу, накопиченого в дошкільному віці та в початкових класах; формування уявлень про певні класи геометричних фігур на площині та в просторі; формування навичок використання формул площ та об'ємів геометричних фігур під розв'язування задач прикладної спрямованості.
Реалізація цих завдань має здійснюватися через спостереження геометричних фігур (зокрема й просторових) в оточуючому середовищі, виділення їх з цього середовища та маніпулювання ними; використання моделей плоских і просторових фігур та їх виготовлення; вимірювання та обчислення за готовими формулами певних геометричних величин; дослідне встановлення деяких властивостей фігур, що розглядаються.
Спираючись на Державні стандарти базової та повної середньої освіти, доцільно в зміст даного курсу разом з наявним геометричним матеріалом включити питання стереометрії.
Зміст геометричного матеріалу та вимоги до підготовки учнів подано у таблиці 1 (див. додаток Б).
7–9-й класи – систематичний курс планіметрії, який має будуватися на основі фузіонізму, тобто стереометричний матеріал має органічно поєднуватися з відповідними поняттями та фактами планіметрії без суттєвих змін внутрішньої логічної структури самого курсу. При цьому планіметрія вивчається на систематичному рівні в межах існуючих державних програм, з відповідними обґрунтуваннями та доведеннями розглядуваних фактів, стереометрія – на рівні пропедевтики.
Стереометричний матеріал, що вивчається у 7–9-х класах, за назвами дещо збігається із запропонованим у 5–6-х класах, проте зміст понять поступово наповнюється новими логіко-математичними властивостями, а сформовані образи перетворюються у математичні поняття, яким потім даються чіткі означення.
До завдань, що стосуються вивчення стереометричної частини курсу, належать такі: формування понять про певні класи многогранників, тіл обертання та вивчення деяких їх властивостей; формування вмінь застосовувати формули площ поверхонь та об'ємів тіл до розв'язування прикладних задач; формування конструктивних умінь учнів, їх графічної культури.
Питання стереометрії мають рівномірно розглядати у 7–9-х класах, що забезпечить безперервність їх вивчення. Для міцного та свідомого засвоєння понять стереометрії слід якомога ширше використовувати моделі, таблиці, рисунки.
Зміст стереометричного матеріалу в 7–9-х класах та вимоги до підготовки учнів подано у таблиці 2 (див. додаток Б).
10–11-й класи – систематичний курс стереометрії, завдання якого – систематичне вивчення стереометричного матеріалу на глибшому теоретичному рівні з повним обґрунтуванням тверджень, що доводяться.
1.2 Роль і місце елементів стереометрії у розвитку просторового мислення школярів
1.2.1 Психолого-педагогічні особливості вивчення елементів стереометрії
Навчання – складний і багатогранний процес. Його основною метою є прагнення дати (або отримати) цілісне уявлення про оточуючий матеріальний світ. Для досягнення цієї мети необхідно враховувати фізіологічні, психологічні та педагогічні особливості цього процесу.
Просторове мислення, як відомо, є складовою частиною чуттєво-образного мислення і не є апріорі визначеним, запрограмованим від народження. Воно формується в процесі індивідуального розвитку людини. Для правильного його формування слід спиратися насамперед на здобутки в галузі фізіології та психології, зокрема на відкриття явища асиметрії півкуль головного мозку. Ще порівняно недавно існувала думка про їх рівноправність щодо деяких функцій. Проте досліди Р. Сперрі та його послідовників, а також досягнення вітчизняної науки переконливо свідчать про функціональні відмінності півкуль головного мозку у сприйнятті образів реального світу, формуванні мислення.
Відомо, що ліва півкуля керує роботою правої частини людського тіла, а права відповідає за рух лівих кінцівок і чуттєвість його лівої частини. Крім того, у лівій півкулі локалізовані центри мови, хоча не можна повністю виключати здатність правої півкулі розуміти мову. Дослідження Р. Сперрі показали, що при відокремленні півкуль ліва рука, керована правою півкулею, здатна відтворити показаний рисунок або зобразити куб у трьох вимірах, тоді як права не може виконати жодну з цих вправ. З цих досліджень було зроблено припущення, що ліва півкуля спеціалізована на оперуванні словами та іншими умовними знаками, права ж оперує образами реальних об'єктів, відповідає за орієнтацію в просторі. "Вивчення елементів стереометрії у курсі геометрії 9 класу"
Вступ
Дитина дуже рано починає орієнтуватися в оточуючому її реальному, а потім і уявному просторі з урахуванням положення власного тіла. В дослідженнях А.Я. Колодної, Б.Г. Ананьєва, А.А. Люблінської, А.Н. Сорокіна і багато інших показано, що перші просторові образи у дітей виникають при усвідомленні ними схеми свого тіла, залежно від розпізнавання правої і лівої руки (ноги). Всі предмети в просторі вони сприймають з урахуванням його вертикального положення (вгорі – внизу, спереду – ззаду, збоку, справа – зліва і т. д.). Ця природна позиція служить для створення різноманітних і адекватних просторових образів. Орієнтація по схемі тіла є ведучою не тільки при практичному оволодінні простором, але і при переході від реального (фізичного) до уявного (геометричного) простору.
Про це красномовно свідчать дитячі малюнки. Починаючи малювати, діти намагаються перш за все відтворити в малюнку себе або інших «чоловічків». Відтворюючи умовними засобами себе в малюнку, вони стараються на цій основі зробити композиційну побудову малюнка, тобто здійснити просторове розміщення всіх об'єктів. В молодших класах на уроках малювання учні малюють спочатку фігури на площині, але деякі з них вже стараються надавати їм об’ємного вигляду. Пізніше ці фігури зображають в просторі, не знаючи при цьому, що таке трьохвимірний простір. Діти ліплять об’ємні фігури з пластиліну та роблять їх з інших підручних матеріалів. У старших класах вивчення просторових фігур відбувається на уроках стереометрії.
Просторове мислення виникає в надрах практичної потреби орієнтації на місцевості, серед об'єктів матеріального світу. Особливість просторових зв'язків, як підкреслював Ананьєв, полягає в тому, що це є один з видів віддзеркалення відношень між об'єктами. Це означає, що просторові властивості не дані у всьому своєму різноманітті в окремих статичних, ізольованих предметах, застиглих геометричних формах. Вони можуть бути виявлені, вивчені, використані лише в ході активної перетворюючої діяльності суб'єкта, направленої на трансформацію, видозміну об'єктів, в ході якої тільки і можуть бути виділені (знайдені) просторові властивості і відношення.
Розвиток просторового мисленнями дітей відбувається і в процесі навчання. Як відомо, якнайповніше просторові властивості і відношення досліджуються в математиці. З одної сторони, розвиток просторового мислення школярів є необхідним для розвитку у них здібностей до уявлення взагалі, а з другої – це необхідна умова для свідомого засвоєння курсу стереометрії. Формування просторового мислення є одним із найважливіших завдань геометрії. Багато математиків працювали над тим, як покращити процес вивчення геометрії, щоб максимально розвинути просторове мислення учнів.
В даний час ведеться серйозна робота по удосконаленню змісту освіти і шляхів навчання з метою максимального їх наближення до сучасного рівня наукових знань і методів дослідження. В зв'язку з цим розробляються психолого-дидактичні принципи відбору навчального матеріалу з урахуванням досягнень науки і техніки, визначаються оптимальні способи його засвоєння.
На етапі розбудови системи національної освіти та інтеграції її в світову важливим є питання відповідності змісту базової математичної освіти вимогам суспільства, розвитку науки, сучасним потребам особи.
Основна школа в Україні згідно з Законом України «Про освіту» повинна забезпечити базову загальну середню освіту, тобто дати випускникам чітко окреслене коло знань, практичних навичок та умінь, потрібних для роботи в умовах сучасного виробництва, а також для здобуття повної загальної середньої освіти в старшій школі та продовження неперервної освіти.
Специфіка і структура шкільного курсу математики відкривають широкі можливості для розвитку творчих здібностей учнів, формування прийомів розумової діяльності, інтелекту.
У вирішенні цих питань важливе місце належить геометрії, оскільки геометричні знання і вміння є одним із вагомих факторів, що забезпечують, насамперед, готовність людини до неперервної освіти та трудової діяльності.
Оскільки повна загальна середня освіта в Україні є обов'язковою і її можна здобувати у різних типах навчальних закладів освіти, то частина учнів після 9 класу продовжує навчання в загальноосвітній школі, інші вступають до різних училищ, технікумів, ПТУ. Для більшості з тих, хто не продовжує далі навчання в середній школі, стереометрія викладається в меншому обсязі, тому залишаються майже незнайомими властивості просторових фігур, хоча саме вони є необхідними людині в повсякденному житті. Учні професійних навчально-виховних закладів зазнавали труднощів при вивченні спеціальних дисциплін та під час виробничої практики, тому що згідно з діючою раніше програмою в 7–9 класах вони вивчали геометрію на площині, тоді як стереометричні знання та уміння формувалися лише в старшій школі.
Виходячи з цього, виникає необхідність деякого перерозподілу геометричного матеріалу порівняно з діючими програмами. Це стосується, насамперед, вивчення в курсі геометрії основної школи на наочно-інтуїтивному рівні таких понять стереометрії, як паралельність і перпендикулярність прямих і площин, прямокутний паралелепіпед, пряма призма, піраміда, циліндр, конус, куля. Поряд з цим мають формуватися практичні вміння обчислювати площі поверхонь і об'єми основних геометричних тіл, зображати просторові фігури на площині, будувати їх розгортки, «читати» рисунки.
Саме тому у 2003 році, з метою систематизації деяких знань зі стереометрії у школярів основної школи та підготовки їх до вивчення цього курсу у старших класах, у програму з математики для дев’ятого класу введено розділ «Початкові відомості зі стереометрії».
На даний час практично немає розроблених методичних матеріалів, систем задач, які б відповідали нововведенню. Виникла потреба в створенні методики вивчення елементів стереометрії у дев’ятому класі. Тому тема «Про вивчення елементів стереометрії у курсі геометрії дев’ятого класу» є на сьогодні актуальною.
Розкриття цієї теми потребує розв’язання таких задач:
1. Вивчити програму з математики для дев’ятого класу, а особливо розділ «Початкові відомості зі стереометрії»; упорядкувати робочу програму вивчення цього матеріалу в дев’ятому класі.
2. Скласти систему задач до цього розділу.
3. Розробити методичні рекомендації до вивчення елементів стереометрії у дев’ятому класі.
4. Показати дидактичні можливості використання ППЗ GRAN-3D при вивченні елементів стереометрії у 9 класі.
Робота складається з вступу, двох розділів, висновків, списку літературних джерел і додатків.
У першому розділі увага зосереджена на меті і завданні введенню елементів стереометрії у курсі математики основної школи. Також він присвячений для з'ясування, яка роль і місце елементів стереометрії у розвитку просторового мислення школярів.
У другому розділі розглядаються методичні рекомендації вивчення елементів стереометрії у курсі геометрії 9 класу з врахуванням особливостей нових шкільних підручників з геометрії.
1. Елементи стереометрії у шкільному курсі математики
1.1 Мета і завдання введення елементів стереометрії у курсі математики основної школи.
Вирішальне значення для системи шкільної освіти має формуючий вплив предмета математики на розвиток логічного мислення, просторових уявлень і уяви, алгоритмічної і інформаційної культури, уваги, пам’яті.
Характеристика геометрії як науки становить методологічну основу для проектування шкільного предмета геометрії і, природно, ведуть до основних завдань навчання геометрії в школі:
1. розвиток образного, зокрема просторового, мислення, розвиток логічного мислення;
2. формування розуміння відношень між геометричними об’єктами і об’єктами реального світу;
3. вміння застосовувати геометрію для розв’язування практичних задач.
Вказана вище триєдина мета навчання геометрії є загальновизнаною. Однак її реалізація на практиці викликає значні труднощі. Безумовно, переважна частина цих труднощів має об’єктивну природу: складність предмета та складність видів діяльності, які мають опанувати учні.
Розділ «Початкові відомості зі стереометрії» є новим у програмі геометрії в 9-х класах і має на меті, щоб учні, які не будуть продовжувати вивчення геометрії в старших класах, мали уявлення про просторові фігури, про обчислення площ поверхонь та об’ємів простіших геометричних тіл. Інше призначення цього розділу – пропедевтична підготовка до вивчення геометрії в 10 і 11 класах. Основна мета – повторити, привести в систему і розширити відомості про геометричні фігури в просторі та навчити обчислювати площі поверхонь і об’єм розглянутих тіл.
Однією з основних ідей розбудови математичної освіти, що записані в «Концепції шкільної математичної освіти», є ідея гармонійного розвитку особистості, виховання творчих здібностей людини, здатної вирішувати найскладніші життєві проблеми. При цьому перед геометрією ставляться важливі завдання з формування мислення, розвитку уяви, просторових уявлень, практичних навичок і умінь, оскільки вони є вагомими компонентами загальнолюдської культури взагалі. Діюча система шкільної геометричної освіти не може забезпечити належне виконання цих завдань. Це обумовлено, насамперед, її будовою.
Курс математики 5–6-х класів вважається пропедевтичним у питаннях вивчення геометрії. Він має за мету сформувати в учнів елементарні знання про основні геометричні фігури перед вивченням систематичного курсу геометрії. Таке попереднє вивчення на рівні ознайомлення істотно полегшує наступне розгортання логічної системи знань з дотриманням строгості доведення. Однак геометрична частина настільки скорочена, що не дає змоги досягти поставленої мети навіть за умови, що молодший підлітковий вік є сприятливим для розвитку образного мислення, просторових уявлень та уяви, вкрай необхідних для орієнтації в середовищі, що нас оточує, для цілісного, багатогранного сприймання дійсності.
Систематичний курс геометрії у 7–11-х класах чітко розмежований. У підручнику О.В. Погорєлова «Геометрія 7–11», за яким донині навчали геометрії в переважній більшості шкіл України, розділи «Планіметрія» та «Стереометрія» подаються окремо, причому перша частина «Планіметрія» елементів стереометрії не містить. Така штучна й тривала ізоляція психіки дитини від співвідношень реального тривимірного світу завдає значної шкоди природному розвитку її просторової уяви. Актуальною є потреба перегляду шкільних програм з математики, зокрема з геометрії. Слід зазначити, що у цьому напрямку вже намітилися певні зрушення.
Так, нові програми з математики для основної та профільної старшої школи побудовані з урахуванням вимог Державного стандарту базової і повної середньої освіти, яким передбачено вивчення математики за методом фузіонізму. Зокрема, курс геометрії основної школи пропонується будувати так, щоб елементи стереометрії тісно перепліталися з відповідним планіметричним матеріалом, що значно полегшить створення в систематичному курсі стереометрії цілісних і міцних знань, стійких до збереження в пам'яті, сприятиме розвитку просторових уявлень та уяви учнів. Часті переходи від двовимірної площини до тривимірного простору сприятимуть розвитку інтуїції школяра. Позитивною рисою також є підвищена увага до питань пропедевтики геометрії, особливо в 5–6-х кл-х (див. додаток А).
Одночасно з підручником геометрії О.В. Погорєлова в 7–9-х класах використовується підручник геометрії авторського колективу на чолі з Г.П. Бевзом. Він у 9-му класі завершується розділом «Елементи стереометрії». У цьому розділі учнів ознайомлюють з прямими та площинами в просторі, вводять поняття многогранників, фігур обертання, а також пропонують формули площ поверхонь та об'ємів геометричних тіл. Вивчення даного розділу передбачає виконання практичних завдань з виготовлення моделей многогранників, фігур обертання, розв'язування вправ на обчислення їх площ поверхонь та об'ємів.
Як бачимо, зрушення щодо введення питань стереометрії в курс математики основної школи є. Однак питання визначення змісту і обсягу стереометричного матеріалу в курсі математики основної школи, його місця в програмі, вимог до підготовки учнів під час диференційованого навчання залишаються розв'язаними недостатньо. Недостатньо розроблена також методика його вивчення та не створена система задач, яка забезпечує це вивчення.
Виходячи з цілей і завдань вивчення математики, рекомендованого змісту питань геометрії, шкільний курс геометричної освіти доцільно будувати так.
5–6-ті класи – курс наочної геометрії, який по суті має бути пропедевтичним перед вивченням систематичних курсів планіметрії та стереометрії. Саме в цьому полягає одна з його основних цілей. Не менш важливим є озброєння учнів практичними знаннями з геометрії, які потрібні їм під час вивчення географії, фізики, креслення, трудового навчання та інших суміжних дисциплін.
Пріоритетними завданнями мають бути розвиток просторових уявлень та уяви, систематизація емпіричного геометричного матеріалу, накопиченого в дошкільному віці та в початкових класах; формування уявлень про певні класи геометричних фігур на площині та в просторі; формування навичок використання формул площ та об'ємів геометричних фігур під розв'язування задач прикладної спрямованості.
Реалізація цих завдань має здійснюватися через спостереження геометричних фігур (зокрема й просторових) в оточуючому середовищі, виділення їх з цього середовища та маніпулювання ними; використання моделей плоских і просторових фігур та їх виготовлення; вимірювання та обчислення за готовими формулами певних геометричних величин; дослідне встановлення деяких властивостей фігур, що розглядаються.
Спираючись на Державні стандарти базової та повної середньої освіти, доцільно в зміст даного курсу разом з наявним геометричним матеріалом включити питання стереометрії.
Зміст геометричного матеріалу та вимоги до підготовки учнів подано у таблиці 1 (див. додаток Б).
7–9-й класи – систематичний курс планіметрії, який має будуватися на основі фузіонізму, тобто стереометричний матеріал має органічно поєднуватися з відповідними поняттями та фактами планіметрії без суттєвих змін внутрішньої логічної структури самого курсу. При цьому планіметрія вивчається на систематичному рівні в межах існуючих державних програм, з відповідними обґрунтуваннями та доведеннями розглядуваних фактів, стереометрія – на рівні пропедевтики.
Стереометричний матеріал, що вивчається у 7–9-х класах, за назвами дещо збігається із запропонованим у 5–6-х класах, проте зміст понять поступово наповнюється новими логіко-математичними властивостями, а сформовані образи перетворюються у математичні поняття, яким потім даються чіткі означення.
До завдань, що стосуються вивчення стереометричної частини курсу, належать такі: формування понять про певні класи многогранників, тіл обертання та вивчення деяких їх властивостей; формування вмінь застосовувати формули площ поверхонь та об'ємів тіл до розв'язування прикладних задач; формування конструктивних умінь учнів, їх графічної культури.
Питання стереометрії мають рівномірно розглядати у 7–9-х класах, що забезпечить безперервність їх вивчення. Для міцного та свідомого засвоєння понять стереометрії слід якомога ширше використовувати моделі, таблиці, рисунки.
Зміст стереометричного матеріалу в 7–9-х класах та вимоги до підготовки учнів подано у таблиці 2 (див. додаток Б).
10–11-й класи – систематичний курс стереометрії, завдання якого – систематичне вивчення стереометричного матеріалу на глибшому теоретичному рівні з повним обґрунтуванням тверджень, що доводяться.
1.2 Роль і місце елементів стереометрії у розвитку просторового мислення школярів
1.2.1 Психолого-педагогічні особливості вивчення елементів стереометрії
Навчання – складний і багатогранний процес. Його основною метою є прагнення дати (або отримати) цілісне уявлення про оточуючий матеріальний світ. Для досягнення цієї мети необхідно враховувати фізіологічні, психологічні та педагогічні особливості цього процесу.
Просторове мислення, як відомо, є складовою частиною чуттєво-образного мислення і не є апріорі визначеним, запрограмованим від народження. Воно формується в процесі індивідуального розвитку людини. Для правильного його формування слід спиратися насамперед на здобутки в галузі фізіології та психології, зокрема на відкриття явища асиметрії півкуль головного мозку. Ще порівняно недавно існувала думка про їх рівноправність щодо деяких функцій. Проте досліди Р. Сперрі та його послідовників, а також досягнення вітчизняної науки переконливо свідчать про функціональні відмінності півкуль головного мозку у сприйнятті образів реального світу, формуванні мислення.
За допомогою «лівопівкульної» стратегії будь-який матеріал організується так, що створюється однозначний контекст, який розуміється всіма однаково та необхідний для успішного спілкування між людьми. Відмінною ж особливістю «правопівкульної» стратегії є формування багатозначного контексту, який не піддається вичерпному поясненню у традиційній системі спілкування.
Тому просторово-образне мислення забезпечує сприйняття реальності в усій її багатогранності, дає можливість орієнтуватись у просторі багатьох вимірів, зокрема в реальному тривимірному просторі. Стратегія лівої півкулі полягає у здатності серед багатогранності зв'язків між предметами та явищами відібрати основні, найістотніші.
Сучасна система освіти, зокрема й геометричної (коли у школі вивчаються два розмежовані курси «Планіметрія» та «Стереометрія»), спрямована, переважно, на розвиток формально-логічного мислення, на оволодіння способами побудови однозначного контексту. Можливо, з точки зору дидактики, таке розділення й доцільне, але цим самим «закріпачується» образне мислення. Тривалий час плоскі фігури розглядаються відірвано від аналогічних їм просторових, що створює штучне обмеження мислення двовимірним простором і призводить до послаблення просторової інтуїції, просторових уявлень, стримує розвиток інтелектуальних і розумових здібностей учнів. І чим більше зусиль прикладається для того, щоб логіко-знакове мислення було домінуючим, тим складніше зламати цей стереотип потім. Набагато корисніше та ефективніше було б спочатку спрямувати більше зусиль на формування образного мислення, а потім, під час формування формально-логічного, на певне обмеження потенційних можливостей першого, на його впорядкування. Так само штучне розмежування геометрії на два предмети замінити систематичним вивченням в основній школі курсу планіметрії та елементів стереометрії.
Формування образного мислення в усій повноті та своєрідності його функцій – необхідна умова ефективного засвоєння знань. Разом з тим це один із важливих засобів розвитку особистості.
Дитина не народжується з уже сформованою тією чи іншою системою мислення. Його логічна та образна складові розвиваються в процесі навчання, виховання залежно від того, у якому напрямку цей розвиток спрямовано. Щоб створити сприятливі умови такого розвитку, найперше, мають бути враховані вікові особливості дитини.
Психологи Б.Г. Ананьєв, Є.Ф. Рибалко, В.І. Зикова, Е.А. Фарапонова стверджують: сприйняття простору дітьми вже у дошкільному віці набуває певного розвитку. У них формуються елементарні вміння орієнтуватися в навколишньому світі, утворюються системи зв'язків між зоровим, слуховим і руховим аналізаторами. Так, уже на третьому році життя у дитини складається системний механізм просторової орієнтації. З її розвитком цей процес збагачується новими відношеннями та складовими.
Значно якісніше це сприйняття простору відбувається у молодшому шкільному віці, оскільки програмується навчанням і керується вчителем. Переважна більшість молодших школярів здатна «уявити» геометричні тіла (куля, куб, прямокутний паралелепіпед, конус тощо) як реальні об'єкти, що їм відповідають (м'яч, цеглина, пенал, лійка тощо). Діти спроможні розпізнати ці тіла на готових моделях, малюнках, назвати їх. У них рано формується сприймання зображень просторових фігур.
І.СЯкиманська, аналізуючи вікові відмінності учнів, що проявляються під час розв'язування задач на просторові перетворення, виділяє таку особливість: просторові образи молодших школярів досить рухомі та динамічні. У навчальній діяльності діти ознайомлюються не тільки з такими ознаками об'єктів, як колір, маса, форма тощо, а й з властивостями, що визначають положення цих об'єктів у тривимірному просторі.
Крім того, за належного навчання діти легко справляються з завданнями на перетворення елементів зображення, добре розрізняють геометричні форми, з бажанням, залюбки складають розгортки об'ємних предметів за їх наочним зображенням. Звідси випливає потреба у використанні наочності під час навчання дітей цього віку.
З переходом учнів до середніх класів (підлітковий вік) зміст їх навчальної діяльності ускладнюється, на основі чого відбувається дальший розвиток образного мислення. Глибше розуміння учнями властивостей предметів і явищ навколишнього світу проявляється тепер у формуванні абстрактних понять. З наочно-образного їх мислення поступово стає абстрактно-понятійним.
Підлітки, на відміну від молодших школярів, уже вміють розпізнавати та виділяти в предметах і явищах ті ознаки, які істотні для даного роду чи виду явищ. Проте варто зазначити, що формування абстрактних понять у цьому віці часто зводиться до формального засвоєння властивостей, їх відриву від конкретних об'єктів. Тому часто учні знають визначення, формули і добре оперують ними, та не можуть належно розкрити їх зміст і успішно застосовувати до розв'язування конкретних задач.
У процесі формального засвоєння знань природна здатність дітей до динамізму сприймання витісняється установкою на використання однієї, фіксованої позиції спостереження. Подолати це негативне явище можна включенням дітей в активну навчальну діяльність, залученням до виготовлення наочних посібників, зокрема моделей просторових фігур, їх розгорток з картону, різноманітного підручного матеріалу; вимірювання та обчислення їх розмірів, площ поверхонь, об'ємів. У ході такої роботи школярі не тільки оволодівають практичними навичками, а й глибше засвоюють зміст понять.
І.С. Якиманська, В.В. Давидов, Є.М. Кабанова-Меллер, Г.С. Костюк, Н.А. Менчинська, І.Є. Унтта та ін. зазначають, що для розвитку просторового мислення недостатньо враховувати лише вікові особливості учнів, необхідно брати до уваги їх індивідуальні відмінності.
Учні одного й того самого віку помітно відрізняються один від одного за своїми здібностями до просторового мислення. В одних під впливом певних факторів (інтерес до техніки, робота з «конструкторами», домашнє навчання і виховання та ін.) здатність до просторового мислення формуються ще до початку систематичного вивчення предметів, які висувають до нього спеціальні вимоги. Учитель, який працює з такими учнями, спираючись на наявні здібності, має забезпечити подальший розвиток просторового мислення, добираючи завдання відповідно до індивідуальних відмінностей. Є учні, які з певних причин до цього часу не досягли такого рівня. Тому перед учителем постає інша задача – формувати здібності учнів до просторового мислення. Зрозуміло, що учні, у яких така здібність не сформована, не можуть засвоювати знання на однаковому рівні з іншими. Тому слід диференціювати та індивідиалізувати роботу щодо розвитку наявних здібностей і щодо їх формування.
В учнів, які приступають до вивчення систематичного курсу геометрії, просторові (тривимірні) уявлення розвиненіші більше, ніж двовимірні, що недостатньо враховано під час складання програми з математики 5–9-х класів, особливо з курсу геометрії. Багатий досвід дітей, накопичений ними у практиці оперування реальними предметами, не знаходить свого безпосереднього застосування та подальшого удосконалення, оскільки, вивчаючи планіметрією, школярі оперують лише площинними зображеннями, тоді як тривимірні образи відходять на другий план.
Проведені нами дослідження переконливо вказують на наявність в учнів середніх класів уявлень про площину (поверхня столу, класної дошки, підлоги, вікна), паралелепіпед (сірникова коробка, цеглина), циліндр (склянка), конус (лійка), кулю (м'яч, глобус), призму (шестигранний олівець, намет). Діти намагаються дати наочне зображення таких фігур, проте не можуть цього зробити, тому що у них недостатньо сформовані просторові уявлення, відсутні відповідні навички та вміння. Основна причина названого явища очевидна. Вона полягає в тому, що під час вивчення планіметрії учнів привчили мислити «плоскими» образами.
Викладені вище міркування приводять до загальних висновків:
1) існують як фізіологічні, так і психологічні передумови вивчення елементів стереометрії в курсі математики основної школи, що не враховує сучасна система шкільної геометричної освіти, яка, будучи бездоганною з дидактичної точки зору, не відповідає періодам розвитку геометрії як науки (принцип історизму) і, певною мірою, гальмує розвиток мислення учнів;
2) є потреба у вивченні стереометричного матеріалу в основній школі, яке доцільно здійснювати на наочно-оперативному рівні в систематичних курсах математики (5–6-й класи) і планіметрії (7–9-й класи);
3) таке вивчення вимагає розробки відповідного методичного забезпечення (програми, дидактичні матеріали, інформаційні технології тощо).
1.2.2 Місце стереометричного матеріалу в курсі математики основної школи та вимоги до його засвоєння
Структурування навчального матеріалу з геометрії доцільно здійснити на основі таких принципів:
а) у курсі математики в 5–6-х класах треба ознайомити учнів з основними поняттями геометрії площини та простору на наочно-інтуїтивному та оперативному рівнях, формулами для обчислення площ поверхонь та об’ємів геометричних тіл, готувати учнів до вивчення систематичного курсу геометрії, суміжних дисциплін;
б) систематичне вивчення геометрії має починатися з 7-го класу курсом планіметрії, який містить дещо розширену порівняно з 5–6-м класами стереометричну частину;
в) стереометричний матеріал має органічно поєднуватися з аналогічним планіметричним матеріалом; властивості плоских фігур треба демонструвати на відповідних елементах стереометричних фігур, розкриваючи тим самим певні властивості останніх;
г) вивчення стереометричного матеріалу в основній школі має носити практичний характер, базуватися переважно на дослідах, інтуїції, експерименті; тим самим буде сформовано необхідний запас просторових уявлень як основи для вивчення систематичного курсу стереометрії в 10–11-х класах на науково-теоретичному рівні;
ґ) курс планіметрії треба завершити узагальнюючим розділом «Елементи стереометрії».
Уявлення про місце стереометричного матеріалу в курсі математики основної школи та його структурування дає таблиця 3 (див. додаток В).
Передбачається вивчення геометричного матеріалу з різним ступенем обґрунтованості та повноти. Мінімальний рівень підготовки описаний за допомогою завдань відповідно до класу та навчального матеріалу.
Обовязкові результати навчання
5–6-й класи
1. Точка, пряма, площина, промінь, відрізок.
1. Позначте точку і проведіть через неї три прямі.
2. Проведіть пряму і позначте на ній точки A, B, C. Назвіть відрізки, що утворилися.
3. Розгляньте рис. 1.
Рис. 1 Рис. 2
Які фігури зображено на ньому? Назвіть: три відрізки; три промені. Скільки прямих зображено на рисунку?
6. Назвіть відрізки і точки, зображені на рисунку прямокутного паралелепіпеда (рис. 2).
2. Довжина відрізка.
1. Накресліть пряму і позначте на ній точки A та B. Виміряйте відрізок АВ. Запишіть, чому дорівнює його довжина.
2. Накресліть відрізки AB та BC, якщо AB=5 см, BC=4 см
3. Виберіть серед запропонованих моделей модель куба. Виміряйте та запишіть довжину його ребра в сантиметрах (з точністю до десятих).
4. Виміряйте та запишіть довжини ребер сірникової коробки в сантиметрах (з точністю до десятих).
3. Кут та його елементи. Види кутів.
1. Позначте точку О. Проведіть промені ОА та ОВ. Яка фігура утворилася? Назвіть її елементи.
2. Серед оточуючих предметів назвіть ті, які містять прямий кут.
3. На рис. 3 зображено кути. Назвіть:
а) гострі кути;
б) прямі кути;
в) тупі кути; Рис. 3
г) розгорнуті кути.
4. Побудуйте прямий, гострий і тупий кути. Який з цих кутів найбільший (найменший)?
5. За допомогою косинця накресліть дві прямі, які при перетині утворюють прямі кути. На скільки частин вони ділять площину? Скільки розгорнутих кутів на рисунку?
4. Міра кута.
1. Виміряйте кути, зображені на рис. 3; запишіть результати вимірювань.
2. Накресліть кут, градусна міра якого: а) 65°; б) 115°.
3. Які з кутів гострі, а які тупі, якщо
5. Паралельні та перпендикулярні прямі.
1. На рис. 4 зображено прямі. Які з них:
а) перетинаються; б) перпендикулярні; в) паралельні?
Рис. 4 Рис. 5
2. На оточуючих предметах назвіть (покажіть) елементи, які містять паралельні та перпендикулярні прямі.
3. Накресліть пряму. Поза прямою позначте точку та проведіть через неї за допомогою косинця пряму, перпендикулярну до даної прямої.
4. Назвіть у кубі, зображеному на рис. 5:
а) відрізки паралельних прямих;
б) відрізки перпендикулярних прямих.
6. Трикутник і його елементи.
1. Накресліть трикутник. Назвіть вершини, сторони, кути трикутника.
2. Назвіть трикутники, зображені на рис. 6.
Рис. 6 Рис. 7
3. Назвіть кілька предметів, що вас оточують, які мають форму трикутника.
4. Накресліть прямокутний, гострокутний, тупокутний трикутники.
5. Накресліть рівносторонній, рівнобедрений, рівносторонній трикутники.
6. Серед трикутників, зображених на рис. 7, назвіть:
а) гострокутні, прямокутні, тупокутні;
б) різносторонні, рівнобедрені, рівносторонні.
7. Накресліть гострокутний, прямокутний і тупокутний трикутники та проведіть усі їх висоти.
8. Накресліть довільний трикутник і виміряйте його кути. Знайдіть суму цих кутів.
7. Чотирикутники. Види чотирикутників. Прямокутник, квадрат, паралелограм, ромб. Висота паралелограма.
1. Які із зображених на рис. 8 фігур мають форму чотирикутника?
Рис. 8 Рис. 9
2. Серед зображених на рис. 9 фігур назвіть: а) прямокутник; б) паралелограм.
3. Назвіть кілька предметів, що мають форму прямокутника, квадрата.
4. Накресліть за допомогою косинця та лінійки паралелограм ABCD. За допомогою косинця проведіть його висоти з вершини A до сторони CD та з вершини B до сторони AC.
8. Коло. Круг. Кругові діаграми.
1. Накресліть коло. Позначте точкою О його центр. Проведіть радіуси ОА та ОВ. Як називають частину кола між точками A та B? Як називають частину круга між радіусами ОА та ОВ?
2. Назвіть кілька предметів, що мають форму: а) кола; б) круга.
3. За допомогою циркуля накресліть коло радіусом
9. Довжина кола. Число
1. Обчисліть довжину кола, радіус якого
2. Накресліть довільне коло. Виміряйте його радіус і обчисліть довжину кола.
3. Довжина діаметра земного екватора дорівнює
10. Прямі призми: прямокутний паралелепіпед, куб, трикутна призма, прямий паралелепіпед.
1. Серед моделей геометричних тіл знайдіть:
а) прямий паралелепіпед; б) трикутну призму.
2. Серед оточуючих предметів назвіть ті, що мають форму прямокутного паралелепіпеда. Скільки граней має прямокутний паралелепіпед?
3. Серед оточуючих предметів назвіть ті, що мають форму прямої трикутної призми.
4. Виготовіть за готовими розгортками (рис. 10) відповідні фігури.
5.
Рис. 10 Рис. 11
6. Які фігури зображено на рис. 11?
11. Піраміда та її елементи.
1. Серед даних моделей пірамід знайдіть:
а) трикутні піраміди; б) чотирикутні піраміди.
2. Які геометричні фігури є бічними гранями піраміди?
3. Скільки бічних граней має трикутна, чотирикутна, п'ятикутна піраміди?
5. Дано модель піраміди. Покажіть:
а) основу піраміди;
б) бічні грані піраміди;
в) вершину піраміди.
6. Яку фігуру зображено на рис. 12? Назвіть:
а) основу зображеної фігури;
б) вершину зображеної фігури;
в) бічні грані цієї фігури;
г) її бічні ребра.
12. Циліндр, конус, куля та їх елементи.
1. Серед даних моделей знайдіть: а) циліндр; б) конус; в) кулю.
2. Назвіть кілька предметів, що мають форму: а) циліндра; б) конуса; в) кулі.
3. Розгляньте модель циліндра. Що є його основами? Яка фігура є бічною поверхнею циліндра?
4. На моделі конуса покажіть його основу, вершину, бічну поверхню.
5. Яку фігуру зображено на рис. 13? Назвіть:
а) основи фігури; б) її твірну.
6. Назвіть основу, вершину, висоту, твірну зображеної на рис. 14 фігури.
Рис. 12 Рис. 13 Рис. 14
7. Серед даних розгорток (рис. 15) знайдіть: а) розгортку циліндра; б) розгортку конуса.
Рис. 15
13. Площа. Одиниці вимірювання площі.
1. Площа одного квадрата, зображеного на рис. 16, дорівнює 1 см2. Яка площа кожної фігури, зображеної на рисунку?
Рис. 16
2. На прямокутній ділянці зі сторонами
3. Знайдіть площу паралелограма з основою 16 дм і висотою 7 дм, опущеною на цю основу.
4. Знайдіть площу круга радіуса
5. Діаметр арени цирку
14. Об'єм. Одиниці вимірювання об'єму.
1. Фігури на рис. 17 складені з кубів, об'єм кожного з яких 1 см3. Знайдіть об’єм кожної фігури.
Рис. 17
2. Знайдіть об'єм прямокутного паралелепіпеда, якщо його виміри дорівнюють
3. Виміряйте на моделі прямокутного паралелепіпеда його довжину, ширину та висоту. Обчисліть його об'єм.
4. Знайдіть об'єм кімнати, якщо її довжина
5. Знайдіть об'єм ями, що має форму куба, якщо її глибина
6. Знайдіть об'єм призми, основою якої є прямокутний трикутник з катетами 5 дм і 6 дм. Висота призми дорівнює 8,5 дм.
7. Обчисліть об'єм піраміди, основою якої є квадрат зі стороною
8. Знайдіть об'єм труби, що має форму циліндра, якщо її радіус 3 дм, а довжина 50 дм.
9. Знайдіть об'єм води, що вміщує лійка у вигляді конуса, якщо її діаметр
10. Знайдіть об'єм кулі, радіус якої
15. Поверхня геометричного тіла. Площа поверхні геометричного тіла.
1. Знайдіть площу поверхні куба, якщо довжина його ребра дорівнює
2. Основою прямої призми є рівносторонній трикутник зі стороною
3. Скільки потрібно жерсті, щоб покрити дах у вигляді піраміди, основою якої є квадрат зі стороною
4. Знайдіть площу повної поверхні циліндра, радіус основи якого дорівнює
5. Знайдіть площу повної поверхні конуса, якщо висота конуса
6. Знайдіть площу поверхні кулі, радіус якої
7–9-й класи
Елементи стереометрії
1. Прямі на площині та в просторі. Паралельність і перпендикулярність прямих на площині та в просторі.
1. На моделі прямокутного паралелепіпеда (або на його зображенні) покажіть по дві пари:
а) паралельних прямих; б) перпендикулярних прямих; в) мимобіжних прямих.
2. На каркасній моделі піраміди покажіть прямі, шо не перетинаються.
3. На моделі трикутної піраміди покажіть:
а) дві мимобіжні прямі; б) дві прямі, що перетинаються.
4. На зображенні прямої призми покажіть:
а) дві паралельні прямі; б) дві перпендикулярні прямі; в) дві мимобіжні прямі.
5. На зображенні чотирикутної піраміди покажіть дві мимобіжні прямі.
6. На зображенні куба покажіть дві прямі, паралельні третій.
2. Рівність трикутників.
1.На зображенні трикутної призми назвіть і покажіть рівні трикутники.
2.Основою піраміди PABCD є прямокутник ABCD. ЇЇ бічні ребра РА, РВ, PC, PD рівні. Для кожної її трикутної грані назвіть рівну їй грань.
3.У чотирикутній піраміді SABCD всі ребра рівні. Встановіть вид трикутників SAB, SAC, BSD.
4.У призмі ABCA1B1C1 бічні грані ABB1A1 та ВСС1В1 рівні. Доведіть, що в трикутнику ABC, який є основою призми, кути А та С рівні.
3. Коло.
1. На моделі або зображенні циліндра покажіть коло, його центр, радіус.
2. На зображенні конуса проведіть діаметр та хорду кола основи.
3. На каркасній моделі кулі покажіть її центр, радіус, діаметр.
4. Чотирикутники.
1. На моделі прямої призми, основою якої є паралелограм, покажіть рівні грані.
2. Основою прямої призми є ромб. Доведіть, що її бічні грані – рівні прямокутники.
3. На моделі прямої призми, основою якої є рівнобічна трапеції, покажіть:
а) рівні бічні грані; б) паралельні прямі; в) перпендикулярні прямі.
4. На зображенні піраміди, основою якої є прямокутник, проведіть діагоналі основи та позначте точку їх перетину.
5. Основою піраміди є прямокутник. Бічні ребра піраміди рівні. Доведіть рівність трикутників, що містять вершину піраміди та діагоналі основи.
5. Теорема Піфагора.
1. Ребро куба дорівнює a. Знайдіть довжину діагоналі його грані.
2. Ребро куба дорівнює a. Знайдіть довжину його діагоналі.
3. Дано зображення прямокутного паралелепіпеда. Знайдіть довжини діагоналей паралелепіпеда, якщо довжини трьох ребер, що виходять з однієї вершини, дорівнюють 2 дм, 3 дм, 6 дм.
4. Обчисліть діагональ бічної грані прямої призми, основою якої є ромб зі стороною
5. Обчисліть висоту бічної грані піраміди, основою якої є квадрат зі стороною
6. Розв'язування трикутників.
1. Основа прямого паралелепіпеда – ромб зі стороною
2. За готовим зображенням обчисліть діагоналі прямої призми, основою якої є паралелограм зі сторонами
3. Основою піраміди SABCD є прямокутник ABCD. O – точка перетину його діагоналей; 50 – висота піраміди. Обчисліть довжину бічного ребра піраміди, якщо її висота дорівнює
4. Висота прямої призми, основою якої є квадрат, дорівнює h, а діагональ призми утворює з діагоналлю основи кут
а) діагональ призми; б) діагональ основи призми.
5. Діагональ осьового перерізу циліндра d нахилена до площини його основи під кутом
7. Прямі та площини в просторі.
1. На моделі прямої трикутної призми покажіть:
а) паралельні пряму та площину; б) перпендикулярні площини.
2. На моделі трикутної піраміди покажіть дві площини, що перетинаються.
3. Зобразіть площину
4. Зобразіть площину
5. Зобразіть площини
8. Многогранники. Тіла обертання.
1. Накресліть прямокутний паралелепіпед. Зобразіть діагоналі основи.
2. Накресліть многогранник, який має 4 грані. Скільки він має ребер, вершин?
3. Накресліть циліндр. Зобразіть його висоту, твірну.
4. Висота циліндра дорівнює
5. Обчисліть діагональ осьового перерізу циліндра, твірна якого дорівнює
6. Накресліть конус. Зобразіть його висоту, твірну. Покажіть його вершину, основу.
7. Обчисліть площу осьового перерізу конуса, радіус основи якого дорівнює
8. Накресліть кулю. Зобразіть її радіус. Зобразіть переріз кулі площиною. Яка фігура утворилася в перерізі?
9. У кулі радіуса
9. Об'єм і поверхня геометричного тіла.
1. Знайдіть площу поверхні прямокутного паралелепіпеда, у якого діагональ дорівнює 13 дм, висота 12 дм, а одне з ребер основи 4 дм.
2. Основою прямої призми є трикутник, у якого сторони довжиною
3. У прямій призмі основа – прямокутний трикутник з катетами
4. Знайдіть площу поверхні піраміди, основою якої є квадрат. Кожне ребро піраміди дорівнює 3 дм.
5. Сторони прямокутника дорівнюють
6. Осьовий переріз циліндра – прямокутник зі сторонами
7. Твірна та радіус основи конуса дорівнюють відповідно
8. Покрівля силосної башти має форму конуса. Висота покрівлі
2. Методичні основи вивчення елементів стереометрії у курсі геометрії 9 класу
2.1 Аналіз змісту і методів вивчення елементів стереометрії у курсі геометрії 9 класу за новими підручниками з геометрії
У зв'язку з введенням у школах нових навчальних планів і програм з математики постала гостра потреба у підручниках, які б відповідали вимогам нових програм.
Навчання математики у 9 класах загальноосвітніх навчальних закладів здійснюється за новими підручниками: «Геометрія. 9 клас» (автори А.Г. Мерзляк, В.Б. Полонський, М.С. Якір) видавництва «Гімназія», «Геометрія. 9 клас» (автори Бурда М.І., Тарасенкова Н.А.) видавництва «Зодіак – ЕКО», «Геометрія. 9 клас» (автори А.П. Єршова, В.В. Голобородько, О.Ф. Крижановський, С.В. Єршова) видавництва «Ранок».
Ці підручники створено відповідно до Державного стандарту та нових програм з алгебри та геометрії для 9 класу загальноосвітніх навчальних закладів. Однією з основних проблем шкільних підручників геометрії – оптимальне поєднання науковості й доступності викладення матеріалу. Складністю вирішення цієї проблеми пояснюється те, що українські школи мають обмаль підручників, за якими справді хотілося б навчати учнів. Та з іншого боку, це дало поштовх до педагогічної творчості чималій кількості небайдужих вчителів.
Розглянемо, як висвітлений розділ «Початкові відомості зі стереометрії» у цих підручниках.
У підручнику «Геометрія, 9» М.І. Бурди, Н.А. Тарасенкової розділ розпочинається переліком передбачуваних пізнавальних результатів («У розділі дізнаєтесь…»), а завершується рубрикою «Перевірте, як засвоїли матеріал розділу». Тут подано контрольні запитання узагальнюючого характеру і тестові завдання. У кожному параграфі є: основний навчальний матеріал; додаткові відомості (рубрика «Дізнайтеся більше»); запитання для повторення вивченого (рубрика «Згадайте головне»); система задач, диференційована за складністю (рубрика «Розв'яжіть задачі»), яку завершує окремий блок завдань «Застосуйте на практиці».
Науковість змісту розділу забезпечена в першу чергу логічно послідовним розміщенням навчального матеріалу, коректним формулюванням означень понять, достатнім рівнем строгості. Логічне упорядкування і послідовність навчального матеріалу розділу відповідають вимогам дидактики і математики як науки. Термінологія сучасна, предметна й однозначна. Поняття і властивості геометричних фігур сформульовані коректною математичною мовою. Чітко розмежовується зміст понять (перераховуються всі суттєві ознаки) і їх обсяг (вказується множина об'єктів, де застосовується поняття). При цьому зміст понять розкривається за допомогою означень, а їх обсяг – із залученням класифікацій (поділу понять за певною ознакою). З одного боку, це покращить засвоєння і застосування понятійного апарату даної теми, а з другого – посилить його зорове сприймання. Заслуговує на увагу і те, що поряд з означеннями понять через найближчий рід і видову відмінність, сприймання яких вимагає складнішої розумової діяльності, використовуються і конструктивні означення, які дають змогу учневі усвідомити сам процес створення (побудови) відповідного стереометричного об’єкта. Тому означення поняття нерідко спирається або на малюнок, або побудову відповідної геометричної фігури, або на розгляд життєвої ситуації. Учням пропонується спочатку самостійно дати означення поняттю, а потім порівняти його з наведеним у підручнику.
Вивчення геометричних фактів, як правило, розпочинається з аналізу учнем емпіричного досвіду (відповідних прикладів із довкілля, моделей чи малюнків), або з опису практичних дій. Це дає змогу проводити невеликі дослідження, з'ясовувати суттєві ознаки понять, властивості геометричних фігур і на основі цього самостійно формулювати відповідні твердження. Самостійно оволодіти навчальним матеріалом допоможе і підкріплення його малюнками, які виконують не лише ілюстративну, а й евристичну роль – на малюнках кольором виділено дані і шукані величини, допоміжні побудови тощо. Кольорові фотографії та ілюстрації також несуть ретельно продумане дидактичне навантаження.
Задачі підручника мають чотири рівні складності – початковий, середній, достатній і високий. Усередині набору кожного рівня складності задачі згруповані за порядком вивчення теоретичних відомостей. Як правило, набори початкового і середнього рівнів складності розпочинаються із задач за готовими малюнками. Хоча вони не є винятком і серед більш складних задач. Окремі найбільш важливі задачі-теореми виділені чорним шрифтом. Учням доцільно запам’ятати їх формулювання. Ці геометричні твердження можна застосовувати у розв'язуванні інших задач. Особливістю задач є те, що задачі високого рівня складності включають елементи задач середнього і достатнього рівнів, а останній – елементи задач початкового рівня.
Особливістю розділу є прикладна спрямованість змісту. Автори намагалися, де це можливо, не лише показати виникнення геометричного факту із практичної ситуації, а й проілюструвати застосування його на практиці. З цією метою в окремо виділеному блоці завдань «Застосуйте на практиці» подано типові практичні ситуації, де потрібно застосувати вивчений матеріал.
У підручнику «Геометрія, 9» А.П.Єршової, В.В. Голобородько, О.Ф. Крижановського, С.В.Єршова зазначено, що цей розділ «своєрідний стислий огляд курсу геометрії 10–12 класів». Тема «Початкові відомості зі стереометрії» передбачає ознайомлення учнів з фігурами в просторі і є пропедевтичним вступом до курсу стереометрії, що вивчатиметься у старших класах. Разом із цим, у порівнянні з попередніми підручниками, з'являються нові дидактичні акценти, пов'язані зі специфікою «геометрії методів», розширюються і поглиблюються окремі питання щодо властивостей геометричних фігур, методики розв'язування задач тощо.
Структура, обсяг і співвідносність розділів навчального матеріалу повністю відповідають діючій програмі. Однак порівняно з традиційними підходами до розгляду відповідного навчального матеріалу запропоновано декілька важливих інновацій. Це дає можливість спростити низку доведень. Найбільш складні з точки зору обґрунтування теореми супроводжуються в основному тексті зрозумілими для пересічного учня загальними схемами міркувань, а відповідні строгі доведення подаються в «Додатках».
У тексті виділено основний зміст (означення, теореми й наслідки з них), доповнення та приклади розв'язування задач. До кожної теореми подано її назву. Наприкінці розділу міститься підсумковий огляд його змісту у вигляді таблиці, які наочно ілюструють змістовно-логічні та структурно-функціональні зв'язки між елементами навчального матеріалу.
Крім того, наприкінці розділу пропонуються контрольні запитання і типові задачі для підготовки до контрольної роботи. Наявність цих матеріалів дає змогу учневі самостійно оцінити рівень своєї математичної підготовки; запитання і задачі мають діагностичну цінність і сприяють корекції знань. Додаткові задачі до розділу призначені для організації інтегрованого повторення і узагальнення вивченої теми, встановлення внутрішніх взаємозв'язків між окремими фрагментами теми. Окремо після розділу виділено задачі підвищеної складності. Така організація матеріалу дає змогу забезпечити опанування учнем програмового змісту як під керівництвом учителя, так і самостійно.
Теоретичний матеріал побудовано за схемою «означення основних понять – аксіоми й теореми – наслідки – приклади застосування». Окреме місце відводиться опорним задачам, які містять додаткові теоретичні відомості, на які учні далі можуть посилатися без доведення. Такі задачі подаються як в основному тексті параграфів, так і в задачному матеріалі. Задачі до кожного параграфа розподілено на чотири групи. Першу групу складають усні вправи – завдання теоретичного плану, розгляд яких є проміжним етапом між вивченням теорії і розв'язуванням письмових задач. Наявність таких задач дає змогу використовувати на уроці інтерактивні форми роботи. Друга група завдань – графічні вправи, які учні можуть виконувати як власноруч у зошиті, так і за допомогою комп'ютера. Ці вправи дають наочне уявлення про базові геометричні конфігурації, що вивчаються, сприяють розвитку початкових креслярських умінь і навичок роботи з графічними комп'ютерними програмами. Наступну групу складають письмові задачі, згруповані за трьома рівнями складності. Зазначимо, що на кожному рівні завдання диференційовано за змістом навчальної діяльності – задачі на обчислення, доведення, побудову тощо. Нарешті, наприкінці кожного параграфа виділено теоретичний матеріал, який необхідно повторити для свідомого засвоєння наступної теми, і подано задачі для повторення.
Розв'язувати всі задачі розділу не обов'язково (а з урахуванням наявного навчального часу і неможливо). Задачі до кожної теми свідомо подано в надлишковій кількості, щоб розширити творчі можливості вчителя, сприяти організації особистісно-орієнтованого навчання, диференціації роботи учнів у класі та вдома з урахуванням їхніх індивідуальних можливостей і рівня математичної підготовки.
До теми «Взаємне розташування прямих у просторі» у трьох підручниках докладно подано основні фігури в просторі, позначення і зображення площин, розміщення точок у просторі. У підучниках Мерзляка і Єршова чітко виділені твердження, як однозначно задати площину. Також тут подані графічні зображення взаємного розміщення двох прямих у просторі, у підручнику Бурди лише продемонстровано на прикладі кімнати.
До теми «Взаємне розміщення прямих і площин у просторі» у підручнику Бурди всі випадки взаємного розміщення прямої і площини, двох площин наведені в таблиці, графічних зображень немає.
При вивченні в 9 класі даного розділу значну увагу слід приділити формуванню в учнів культури графічного зображення просторових тіл та їх елементів. До даних тем у трьох підручниках вдало підібрані усні та графічні вправи, у підручниках Мерзляка, Бурди значна увага приділена задачам практичного змісту, більшість задач супроводжуються допоміжними малюнками. Таким чином, вивчаючи перші теми стереометрії учні відзначають, що в просторі взаємне розташування фігур є більш різноманітним, ніж у площині.
Наступні теми передбачають вивчення основних тіл стереометрії, вони закладають формування переходу від мислення в категоріях плоских фігур до мислення в просторі, також усвідомлення того, що для визначення взаємного розташування фігур у просторі слід правильно виокремити ті елементи, які визначають це взаємне розташування.
Так, до теми «Поняття многогранника. Призма.» у даних підручниках сформульоване поняття геометричного тіла, многогранника та його елементів, наведені наочні та графічні зображення призм. Дев’ятикласники вже мають запас просторових уявлень, тому при вивченні даних тем вони доповнюються і систематизуються.
У підручниках Мерзляка і Єршова подається доведення теорем про площу бічної поверхні прямої призми.
У підручнику Бурди вивчення піраміди і призми подано одночасно, властивості розглядаються без доведень, проте вони мають достатньо переконливе наочне підтвердження. Так, вивчення властивостей фігур у просторі спирається на приклади з довкілля, макети, малюнки або досліди. Щоб учні до формул об’ємів призми (піраміди) розглядаються досліди з пересипанням піску.
Циліндр, конус, куля подаються в усіх підручниках як тіла обертання. Бічні поверхні циліндра і конуса розглядаються через розгортки відповідно циліндра і конуса.
На мою думку, те, що у підручнику Бурди призма і піраміда подаються разом є своєрідним недоліком. Також сюди можна віднести той факт, що ми бачимо перенасичення задачами. Слід зазначити, що не всі задачі однаковою мірою сприяють цілеспрямованому розвитку даного процесу. Саме тому доцільно використовувати систему вправ і задач, яку будують так, щоб учень самостійно застосовував свої знання, вміння, уявлення, щоб у нього вироблялася звичка переносити знання у нові ситуації. Розв’язуючи задачі учні повинні усвідомлювати ті дії, які вони при цьому виконують. Аналіз дій дає їм змогу підходити до пошуків алгоритмів розв’язання задач певного виду, а потім і до алгоритмізації більш складних видів навчальної діяльності.
У школі вчителі протягом вивчення стереометрії приділяють увагу в основному опрацюванню теорії та розв’язуванню абстрактних задач, оскільки вони недооцінюють можливості реалізації прикладної спрямованості для досягнення цілей вивчення цього курсу. Посилюють цю ситуацію такі фактори: невелика кількість годин, що відведена для вивчення курсу стереометрії; у методичній літературі мало матеріалів, які доводять значущість прикладної спрямованості та конкретних методичних розробок, що допомагають вчителю ефективно використовувати її засоби тощо. З огляду на перераховані обставини, у вчителів відсутня мотивація для систематичного прикладного спрямування курсу, зокрема для розв’язування з учнями прикладних задач, особливо враховуючи їх невелику кількість у підручниках, посібниках та майже повну відсутність серед добірок завдань контролюючого характеру.
2.2 Загальні методичні рекомендації вивчення елементів стереометрії у курсі геометрії 9 класу
2.2.1 Формування уявлень і понять про стереометричні фігури та деякі їх властивості
Формування понять – складний психологічний процес, який починається з утворення найпростіших форм пізнання – відчуття. Він проходить часто за такою схемою: відчуття
Дитина народжується, розвивається у тривимірному просторі.
Ознайомлення з просторовими об'єктами починається в ранньому віці на рівні відчуттів і сприйняття цих об'єктів органами чуття. Чим багатший і різноманітніший навколишній світ дитини, тим більше знань про просторові об'єкти вона одержує до початку навчання у школі.
Наприкінці 9-го класу під час вивчення розділу «Початкові відомості зі стереометрії» варто ознайомити учнів із взаємним розміщенням прямих і площин у просторі, зосередити увагу на властивостях просторових фігур, паралельності та перпендикулярності, систематизувати, узагальнити та дещо доповнити стереометричний матеріал, відомий з курсу математики 5–6-х класів та планіметрії 7–9-х класів. Основна мета вивчення розділу – розвиток просторових уявлень та уяви учнів, що має велике значення не тільки для загального їх розвитку, а є своєрідним завершенням шкільної геометричної освіти учнів, підготовкою до вивчення систематичного курсу стереометрії та продовження освіти в інших середніх навчальних закладах.
Особливістю вивчення елементів стереометрії у 9-му класі (порівняно з питаннями планіметрії) є те, що майже всі стереометричні факти повідомляються у цій темі без доведення. Їх обґрунтування та доведення – завдання систематичного курсу стереометрії. Засвоєння властивостей стереометричних фігур має здійснюватися з опорою на наочність: моделі, таблиці, рисунки тощо.
Вивчення розділу «Початкові відомості зі стереометрії» розпочинаємо з розгляду питання про взаємне розміщення точок, прямих і площин. Уявлення про площину, про взаємне розміщення точок і прямих на площині та деякі їх властивості учні одержали в курсі планіметрії. Їх слід повторити, навести приклади плоских поверхонь (поверхня підлоги, стелі, шибки, спокійного озера тощо).
Після цього вчитель пропонує зображення площини (здебільшого у вигляді паралелограма), її позначення (буквами грецького алфавіту
Оскільки питання про взаємне розміщення прямих у просторі учням відоме з курсу планіметрії 7-го класу, то його варто повторити, сформулювати означення паралельних, мимобіжних прямих, ознаку паралельності прямих у просторів
Одночасно з цим потрібно з'ясувати випадки взаємного розміщення точки та площини, прямої та площини, навчитися виконувати умовні зображення площини та точки, яка лежить у цій площині або поза нею; площини та прямої, що лежить у площині, має з нею одну спільну точку (перетинає її), або такої, що не має спільних точок (паралельної їй). Можна дати означення паралельних прямої та площини: пряму та площину називають паралельними, якщо вони не мають спільних точок.
Слід показати учням, що коли пряма
Далі формулюємо ознаку паралельності прямої і площини.
Наступним кроком є розгляд випадків взаємного розміщення двох площин. Логічно міркуючи, учні без особливих труднощів доходять висновку, що дві площини можуть не мати спільних точок (бути паралельними) або перетинатися по прямій. На моделях прямокутного паралелепіпеда, прямої призми учні інтуїтивно вказують їх паралельні грані і такі, що перетинаються. Учитель додає, що площини, у яких лежать ці грані, відповідно паралельні або перетинаються. За аналогією з означенням паралельних прямих на площині варто дати означення паралельних площин: дві площини називають паралельними, якщо вони не мають спільних точок.
За допомогою двох аркушів паперу пропонуємо учням сконструювати моделі:
а) паралельних площин;
б) площин, що перетинаються.
Рисунки, що ілюструють паралельність або перетин площин, учитель виконує на дошці, а учні відтворюють у зошитах. Після цього вчитель формулює ознаку паралельності площин.
Перед розглядом перпендикулярності прямої та площини, треба повторити питання про перпендикулярність прямих на площині, у просторі, пригадати означення перпендикулярних прямих.
Уявлення про перпендикулярність прямої та площини дають стовп і поверхня землі, ніжка стільця та підлога, канат у спортзалі, прикріплений до стелі, тощо. За допомогою спиці та картонного паперу створюємо модель прямої, перпендикулярної до площини. Перпендикулярність перевіряємо за допомогою косинця. Прикладаючи косинець катетом до спиці з кількох сторін, показуємо, що в кожному випадку спиця з картонкою утворює прямий кут. Так підводимо учнів до означення перпендикулярних прямої та площини: пряму, яка перетинає площину, називають перпендикулярною до цієї площини, якщо вона перпендикулярна до будь-якої прямої, що лежить у цій площині і проходить через точку перетину.
Слід показати учням, що коли пряма
Варто повідомити учням, що у курсі стереометрії доводиться ознака перпендикулярності прямої та площини: «якщо пряма перпендикулярна до двох прямих, що лежать у площині та перетинаються, то вона перпендикулярна до даної площини».
Основну увагу треба звернути на формування в учнів поняття відстані від точки до площини. Насамперед слід повторити, як знаходиться відстань від точки до прямої. Якщо пряма
Розгляд можливих випадків перетину двох площин приводить до уявлення про перпендикулярні площини. Нехай дві площини
Далі слід дати означення перпендикулярних площин і сформулювати ознаку, яка доводиться в систематичному курсі стереометрії. Таке пояснення необхідно також супроводжувати показом моделей. Якщо косинець прикласти до двох площин, що перетинаються так, що його катети будуть перпендикулярні до лінії їх перетину, то ми матимемо уявлення про перпендикулярні площини. Перпендикулярність площин на практиці можна перевірити за допомогою виска (шнура з тягарцем). Так, наприклад, перевіряють вертикальність стін будівлі.
Важливо, щоб учні могли показувати приклади взаємного розміщення прямих і площин у просторі на моделях відомих їм геометричних тіл, на предметах навколишнього середовища.
За дослідженнями психологів, середній шкільний вік є найбільш сензитивним для засвоєння методу проектування. Враховуючи це в практиці навчання, необхідно вже в курсі планіметрії ознайомити учнів з виконанням зображень геометричних тіл. У зв'язку з цим як спосіб зображення просторових фігур доцільно розглянути паралельне проектування, а саме конструкцію паралельного проектування точки та фігури на площину, сформулювати властивості паралельної проекції.
Під час вивчення розділу «Елементи стереометрії» відомості про многогранники, які учні одержали раніше, необхідно узагальнити й систематизувати. А саме: на основі попереднього досвіду учнів потрібно дати загальне поняття многогранника, його граней, ребер, вершин. Доцільно сформулювати таке означення.
Многогранник – це геометричне тіло, поверхня якого складається із скінченної кількості плоских многокутників.
Многокутники, які обмежують многогранник, називають його гранями, їх сторони – ребрами, а вершини – вершинами многогранника.
При цьому вчителю слід продемонструвати різні моделі многогранників. Учні повинні вміти показувати їх грані, ребра, вершини.
Корисно нагадати учням, що з найпростішими з многогранників – призмами і пірамідами – вони зустрічалися раніше і вже ознайомлені з їх елементами та деякими властивостями.
Перший вид многогранників, який слід розглянути, – призми. Відомості, одержані про призму раніше, варто пригадати, повторити. Зокрема, призму учні мають розпізнавати як многогранник, у якого дві грані – довільні рівні многокутники з відповідно паралельними сторонами, а решта граней – паралелограми. Рівні многокутники називають основами призми, а паралелограми – бічними гранями.
Демонструючи моделі різних призм, учитель має звертати увагу учнів на те, що є призми, у яких бічні грані – прямокутники. У цьому випадку бічне ребро перпендикулярне до площини основи. Можна дати означення прямої призми: призму називають прямою, якщо її бічні ребра перпендикулярні до основ. В іншому випадку призма буде похилою. У 9-му класі досить обмежитися розглядом прямої призми.
Висотою прямої призми є довжина її бічного ребра. Відрізок, який сполучає дві вершини, що не належать одній грані, називають діагоналлю призми. Уявлення про діагональний переріз можна дістати, коли розрізати призму, виготовлену з пластичного матеріалу (пластиліну, воску, гуми), площиною, що проходить через бічні ребра призми.
Серед чотирикутних призм корисно виділити ті, основою яких є паралелограм. Такі призми називають паралелепіпедами. Отже, всі грані паралелепіпеда є паралелограмами. Якщо бічні ребра паралелепіпеда перпендикулярні до площини основи, то його називають прямим паралелепіпедом (в іншому випадку він буде похилим). У прямого паралелепіпеда дві грані (основи) – паралелограми, а решта граней – прямокутники. З класу прямих паралелепіпедів виділяють такі, основою яких є прямокутник. Це прямокутний паралелепіпед. Куб – це прямокутний паралелепіпед, у якого всі ребра рівні.
Важливо, щоб учні усвідомили, що і куб, і прямокутний паралелепіпед, і прямий паралелепіпед є різновидами призми. Доречним є поданий нижче ланцюг, який демонструє зв'язок між цими поняттями: призма – чотирикутна призма – паралелепіпед – прямий паралелепіпед – прямокутний паралелепіпед – куб.
Деякі відомості про елементи прямої призми (ребра, грані, основи) учням уже відомі. На основі планіметричних знань їх доцільно уточнити. Оскільки основи та бічні грані прямої призми є плоскими фігурами, то для них справедливі твердження планіметрії, зокрема: бічні ребра рівні між собою як протилежні сторони прямокутника. Після цього, використовуючи властивості паралельного проектування, вчимо учнів будувати зображення прямої призми. Це можна зробити в такій послідовності. Спочатку зображуємо одну з основ призми (це буде деякий плоский многокутник). Потім через вершини многокутника проводимо вертикальні паралельні прямі та відкладаємо на них рівні відрізки (вони будуть зображенням бічних ребер прямої призми). Послідовно сполучаючи кінці цих відрізків, одержуємо зображення другої основи призми.
Одночасно доцільно дати учням уявлення про зображення прямокутного паралелепіпеда, куба. За відповідної підготовки переважна більшість учнів правильно виконує ці зображення, досить легко за ними знаходить паралельні, взаємно перпендикулярні грані, ребра тощо.
Наступний вид многогранників, які пропонуємо розглянути, – піраміди. Уявлення про піраміду і деякі відомості про неї учні вже мають. Тому їх слід пригадати. Зокрема, піраміду вони розпізнають як многогранник, у якого одна грань – довільний многокутник, а решта граней – трикутники, що мають спільну вершину. Такий опис дає безпосереднє уявлення про форму всіх граней піраміди. Це значно полегшує сприймання форми піраміди, а отже, й дослідження її властивостей. При узагальненні поняття піраміди має бути сформульовано її означення.
Пірамідою називають многогранник, одна з граней якого – плоский многокутник, а решта граней – трикутники, що мають спільну вершину. Потрібно пригадати види пірамід залежно від многокутника, що є основою піраміди, показати їх на моделях та зображеннях.
Оскільки учні вже мають уявлення про перпендикулярність прямої та площини, то можна ввести поняття висоти піраміди як перпендикуляра, опущеного з вершини піраміди на площину основи. Точку перетину перпендикуляра та площини основи називають основою висоти піраміди. Висота утворює прямий кут з будь-якою прямою, що лежить у площині основи піраміди та проходить через основу висоти. Це твердження широко використовується під час розв'язування задач на обчислення елементів піраміди.
Зображати піраміду вчимо учнів у такій послідовності. Будуємо зображення основи піраміди у вигляді плоского многокутника. Позначаємо вершину піраміди і сполучаємо її відрізками з вершинами основи (ці відрізки будуть зображенням бічних ребер піраміди).
Під час побудови зображень призми, піраміди радимо використовувати відповідні демонстраційні комп'ютерні програми.
Варто на наочному рівні дати уявлення про діагональний переріз піраміди аналогічно до того, як це було зроблено у випадку призми.
Якщо піраміду перетнути площиною, паралельною площині основи, то одержимо два многогранники, один з них – піраміда, інший – зрізана піраміда. Слід наголосити, що зрізана піраміда – окремий вид многогранників.
Грані, що лежать у паралельних площинах, називають основами, решту граней називають бічними гранями. Основи – подібні многокутники, бічні грані – трапеції.
З найпростішими тілами обертання учні ознайомлені у 5–6-х класах. У 9-му класі пропонуємо розглядати лише прямий круговий циліндр, прямий круговий конус, зрізаний конус і кулю.
Учні вже мають уявлення про те, як дістати поверхню циліндра обертанням прямокутника навколо однієї з його сторін та поверхню конуса обертанням прямокутного трикутника навколо одного з катетів. Тому, як підсумок, на уроці демонструємо моделі циліндрів, конусів, серед яких є моделі похилих і некругових циліндрів і конусів. При цьому повідомляємо, що надалі розглядатимемо лише прямі кругові циліндри та прямі кругові конуси, які називатимемо відповідно циліндрами і конусами. Формулюємо означення циліндра як геометричного тіла, утвореного обертанням плоского прямокутника навколо однієї з його сторін. З'ясовуємо, що називають основами, твірними, радіусом, висотою, віссю циліндра. Учитель має зауважити, що у прямого циліндра твірні перпендикулярні до площин основ.
Побудова зображень геометричних тіл – ефективний спосіб розвитку просторових уявлень. Побудова зображень циліндра, конуса, кулі не становить для учнів значних труднощів.
Після ознайомлення з паралельністю площин учні досить легко помічають, що основи циліндра знаходяться в паралельних площинах. Якщо каркасну модель циліндра розмістити в полі зору учнів так, що його основи матимуть вигляд еліпсів, а твірні та висота циліндра будуть вертикальними, то зрозумілим стає зображення циліндра. За допомогою шаблона будуємо два рівних еліпси – основи циліндра, малі осі яких лежать на одній вертикальній прямій. Спільні вертикальні дотичні до обох еліпсів будуть контурними твірними зображуваного циліндра. Для організації роботи учнів треба забезпечити достатньою кількістю шаблонів еліпса різних розмірів.
Відомості, одержані учнями про конус раніше, варто пригадати, повторити.
Прямий круговий конус означуємо як геометричне тіло, утворене обертанням плоского прямокутного трикутника навколо одного з катетів. Пояснюємо учням побудову зображення конуса. Основою конуса є круг, який зображується у вигляді довільного еліпса, мала вісь якого лежить на вертикальній прямій. На цій прямій, яка проходить через центр еліпса, позначимо точку – вершину конуса, через неї проведемо дві дотичні до еліпса – контурні твірні. Одержана фігура і буде зображенням конуса на площині.
Даємо уявлення про зрізаний конус. Перетнемо конус площиною, паралельною його основі. Вона відтинає від нього менший конус. Частину, що залишилася, називають зрізаним конусом. Демонструємо учням відповідні моделі.
Слід звернути увагу учнів на практичне значення конічних форм. З конусом, і особливо зрізаним, дуже часто доводиться мати справу на виробництві, зокрема в токарній справі.
Уявлення про осьовий переріз циліндра, конуса учні одержують у процесі ознайомлення з тілами обертання. Уже під час проведення досліду, який демонструє утворення циліндра, конуса, звертаємо увагу на те, що є їх осьовим перерізом. Під час побудови зображень цих тіл даємо уявлення також про зображення осьового перерізу.
З кулею учні ознайомлені раніше. У 9-му класі доцільно розглянути кулю як тіло, утворене обертанням півкруга навколо діаметра. Перед формулюванням означення кулі пропонуємо учням пригадати означення кола і круга, відомі з курсу планіметрії. Тоді так само, як у випадку з циліндром і конусом, формулюємо означення кулі.
Куля – це геометричне тіло, утворене обертанням півкруга навколо діаметра як осі. Центр півкруга буде центром кулі. Радіус півкруга водночас є і радіусом кулі. Поверхню кулі називають сферою. Доцільно зауважити, що сферу можна дістати обертанням кола навколо діаметра як осі.
Переріз кулі площиною є круг. Цей факт буде доведено в систематичному курсі стереометрії.
Контуром кулі є коло. Якщо, будуючи зображення кулі, зобразити тільки її контур, то таке зображення не буде наочним. Тому рисунок потрібно доповнити деякими лініями і точками, які зображають окремі елементи кулі. Коло одного з великих кругів кулі назвемо екватором; діаметр, перпендикулярний до площини екватора, – віссю; його кінці – полюсами кулі. Якщо зображення контуру кулі доповнити зображеннями екватора і полюсів, рисунок стане об'ємним. Зображенням екватора кулі буде довільний еліпс, центр якого є зображенням центра кулі. Нехай такий еліпс вибрано. Тоді пропонуємо таку послідовність побудови зображення кулі:
1)проводимо вертикальну вісь кулі, вибираємо на ній точку, що зображає центр кулі;
2)сумістивши центр еліпса з вибраною точкою, а малу вісь еліпса з вертикальною віссю кулі, зображаємо екватор кулі;
3)радіусом, що дорівнює великій півосі еліпса, будуємо коло з центром у точці, що є зображенням центра кулі; це коло зображає контур кулі;
4)для зображення полюсів проводимо дотичну до еліпса в одному з кінців його малої осі; відрізок цієї дотичної між точкою дотику і точкою перетину її з контуром кулі відкладаємо на осі кулі по обидві сторони від центра кулі. Одержані точки – зображення полюсів кулі.
За аналогією до дотичної до кола дається уявлення про дотичну площину до кулі.
Учні 9-го класу готові до оволодіння вмінням виконувати такі зображення. Більшість з них правильно зображає прямокутний паралелепіпед, куб, піраміду, циліндр, конус, кулю, хоча поширеною помилкою є неправильне зображення невидимих ліній суцільною лінією.
Під час вивчення питань, пов'язаних із зображенням геометричних тіл, ефективним засобом є комп'ютер. За його допомогою легко виділити най-значиміше, продемонструвати побудову зображення у відповідній послідовності у динаміці.
З обчисленням об'ємів геометричних тіл учні ознайомлені в курсі математики 5–6-х класів. Надалі слід звернути увагу на те, що кожне геометричне тіло має певний об'єм, виражений додатним числом. Обчислюючи об'єми, треба брати до уваги такі властивості.
1. Рівні тіла мають рівні об'єми.
2. Якщо тіло складається з частин, що не мають самоперетинів, то його об'єм дорівнює сумі об'ємів частин, з яких воно складається.
3. Одиницею об'єму вважають об'єм куба, ребро якого дорівнює одиниці довжини.
Зауважимо, що зазначені властивості об'ємів аналогічні до властивостей площ.
Оскільки формула для обчислення об'єму прямокутного паралелепіпеда відома учням ще з 5-го класу, то її необхідно пригадати:
де
Якщо добуток
Після цього дається формула для обчислення об'єму прямої призми:
де
Об'єм циліндра, як і об'єм призми, також дорівнює добутку площі його основи на висоту.
Варто пригадати, що основою циліндра є круг. Якщо його радіус позначити через
Формули для обчислення об'ємів піраміди, конуса, кулі учням також уже відомі. Бажано зауважити, що формула для обчислення об'єму конуса аналогічна до відповідної формули для обчислення об'єму піраміди. Формули об'ємів і площ поверхонь многогранників і тіл обертання відпрацьовуються під час розв'язування відповідних задач.
На завершення потрібно сказати, що названі формули будуть доведені в систематичному курсі стереометрії.
Обсяг, зміст і характер викладу поданого вище стереометричного матеріалу цілком доступні для учнів.
2.2.2 Система вправ для формування початкових стереометричних знань і методика їх розв’язування
Усі психічні процеси, зокрема просторова уява, формуються і удосконалюються в результаті діяльності. Таку діяльність необхідно стимулювати й координувати в процесі навчання математики через розв'язування задач. Запропонована нами система вправ має за мету формувати в учнів просторові уявлення, готувати їх до сприйняття стереометричного матеріалу в 10–11-х класах.
Вона включає вправи трьох типів на формування:
1)просторових уявлень та уяви учнів;
2)вимірювальних та обчислювальних навичок;
3)конструктивних навичок.
Належну увагу необхідно приділити формуванню навичок оперування просторовими уявленнями, одержаними в результаті попередньої діяльності. При цьому як засіб наочності разом з моделями геометричних тіл доцільно використовувати їх зображення. Уміння бачити просторові образи на готовому кресленні є важливим стимулом для розвитку просторових уявлень та уяви. У результаті виконання відповідних вправ образи поступово втрачають індивідуальні ознаки, набувають абстрактнішого характеру.
Мінімальний обсяг матеріалу, що вивчається зі стереометрії в основній школі, визначають обов'язкові результати навчання. Наступному накопиченню та переробці у свідомості учнів геометричних фактів, формуванню та розвитку просторових уявлень, конструктивних здібностей має сприяти подана нижче система задач. Для деяких випадків, де це потрібно, описано методику роботи з ними. Задачі підвищеної складності позначено зірочкою (*).
Учні вже мають уявлення про паралельні та перпендикулярні прямі. На другому етапі ми пропонуємо їх перенести і на простір. У зв'язку з цим доцільним є виконання серії вправ на засвоєння учнями взаємного розміщення прямих і площин у просторі. Спочатку це потрібно робити на різних моделях геометричних тіл, поступово переходячи до їх наочних зображень.
Для формування уявлень про взаємне розміщення прямих у просторі, а також прямої та площини, для більшої наочності доцільно використовувати каркасні та скляні моделі. Розглядаючи поняття про взаємне розміщення площин краще користуватися скляними моделями та моделями, виготовленими з картону.
1.На моделі прямої трикутної призми покажіть ребра, які лежать на мимобіжних прямих.
2.На моделі прямокутного паралелепіпеда покажіть ребра, перпендикулярні до нижньої основи.
3.На моделі піраміди покажіть кілька граней, що перетинаються.
4.На моделі циліндра покажіть паралельні грані.
5.Дано модель прямої призми, основою якої є паралелограм. Покажіть:
а) пари паралельних граней;
б) пари перпендикулярних граней.
6. На рис. 18 зображено чотирикутну піраміду SABCD. Назвіть усі ребра, які лежать на прямих, що не перетинають: а) ребро SC; б) ребро AB.
Рис. 18
7. На рис. 19 зображено пряму трикутну призму ABCA1B1C1. Назвіть:
а) ребра, паралельні ребру AA1;
б) ребра, перпендикулярні до ребра BC.
Рис. 19
8. На зображенні прямокутного паралелепіпеда (рис. 20) назвіть:
а) взаємно перпендикулярні грані;
б) грань, паралельну грані BB1C1C.
Рис. 20
9. Зобразіть будь-які два відрізки куба (які не є його ребрами) з кінцями у вершинах куба (рис. 21) такі, щоб вони були:
а) паралельними;
б) перпендикулярними;
в) мимобіжними.
Рис. 21
У 9 класі продовжується формування в учнів уявлень про геометричні тіла за їх розгортками та зображеннями, зокрема під час обчислення площ поверхонь цих тіл за розмірами, поданими на розгортках та зображеннях.
Наведемо приклади таких задач.
10.Розгорткою бічної поверхні циліндра є прямокутник зі сторонами
11.Обчисліть площу повної поверхні конуса, якщо твірна конуса дорівнює 12см, центральний кут розгортки 120°.
12.За поданими на розгортках призм розмірами (рис. 22) обчисліть площі їх поверхонь. Основи призм – правильні многокутники. (Одиниці вимірювання подано в дециметрах.)
13.Обчисліть площі поверхонь (бічну та повну) прямих призм за розмірами, поданими на рис. 23. Основи призм – правильні многокутники. (Одиниці вимірювання подано в сантиметрах.)
Рис. 22 Рис. 23
Центральне місце на другому етапі відводиться вправам на зображення простіших геометричних тіл. Їх розв'язуванню сприяє попередня підготовча робота, а саме: розпізнавання многогранників і тіл обертання на моделях та їх зображеннях, знаходження плоских фігур на зображеннях геометричних тіл.
Після того як учні ознайомилися з побудовою зображень призми, піраміди, циліндра, конуса, кулі, слід запропонувати їм виконати вправи на закріплення. Зокрема, це можуть бути вправи такого типу.
14. Накресліть прямокутний паралелепіпед і позначте його вершини буквами. Назвіть:
а) ребра, що лежать на паралельних, перпендикулярних, мимобіжних прямих;
б) паралельні, перпендикулярні грані.
15.На зображенні куба проведіть площину так, щоб одержати квадратний переріз куба.
16.На рис. 24 дано зображення куба, на ребрах якого взято три точки. Побудуйте фігуру (переріз), по якій площина, що проходить через дані точки, перетне куб.
17.
Рис. 24
18.На рис. 25 дано зображення прямокутного паралелепіпеда, на ребрах якого взято три точки. Побудуйте переріз паралелепіпеда площиною, що проходить через дані точки. Яка фігура утворилась у перерізі?
Рис. 25
18.Зобразіть прямий паралелепіпед і проведіть його діагоналі.
19.Зобразіть пряму трикутну призму. Проведіть діагональ бічної грані.
20. Побудуйте зображення прямої трикутної призми. Сполучіть кінці сторони нижньої основи та протилежну вершину верхньої основи. Яка фігура утворилася в перерізі?
21.Зобразіть круговий циліндр. Позначте на зображенні радіус нижньої основи.
22.Зобразіть циліндр та побудуйте зображення його осьового перерізу.
23.Побудуйте зображення циліндра. Позначте точку на колі верхньої основи і точку на колі нижньої основи. Сполучіть їх відрізком.
24. Зобразіть конус. Побудуйте на зображенні діаметр основи.
25.На зображенні конуса побудуйте зображення його осьового перерізу.
26.Побудуйте зображення конуса. Позначте на колі основи конуса точку. Зобразіть твірну конуса, яка містить вибрану точку.
Навички будувати зображення геометричних тіл відпрацьовуються під час подальшого ознайомлення учнів з многогранниками та тілами обертання.
Вивчаючи систематичний курс планіметрії, з метою пропедевтики стереометричних знань велику увагу слід приділити задачам на обчислення лінійних елементів геометричних тіл, які є елементами плоских фігур, за даними розмірами інших елементів і мір кутів цих тіл, а також задачам на встановлення залежності між лінійними елементами та площами плоских фігур, поверхнями та об'ємами геометричних тіл. Учні вчаться знаходити на зображеннях геометричних тіл плоскі фігури та, використовуючи відомості з планіметрії, обчислювати необхідні величини.
Така ілюстрація тверджень планіметрії на геометричних тілах, по-перше, розширює знання учнів про ці тіла, по-друге, значно полегшує засвоєння учнями відповідного планіметричного матеріалу, по-третє, досить сприятливо відбивається на розвитку просторових уявлень учнів, дає змогу здійснювати «вихід» за межі площини. Оскільки формування обчислювальних навичок і вмінь на даному етапі навчання вже не є його основною метою, то там, де це необхідно, рекомендуємо користуватися калькулятором.
Наведемо приклади таких задач.
27.У трикутній піраміді РАВС
28.У трикутній піраміді PАВС
29.Основою піраміди PABC є рівнобедрений трикутник АВС (АB=ВС). ЇЇ бічні ребра рівні. Нехай MN – середня лінія основи, паралельна АС. Доведіть рівність трикутників РВМ і РВN.
30.Дано зображення куба. Сполучіть деякі його вершини так, щоб одержати рівносторонній трикутник.
31.Довжина ребра куба дорівнює
Рис. 26
32. У прямокутному паралелепіпеді ABCDA1BlClDl АВ=5 дм, DD1=2 дм, B1C1=1 дм. Знайдіть B1D.
33. Основою прямої призми ABCDA1BlClDl є паралелограм ABCD зі сторонами
34.Знайдіть діагональ прямокутного паралелепіпеда, висота якого дорівнює 12, а сторони основи 8 і 6.
35.Знайдіть діагональ прямокутного паралелепіпеда, сторони основи якого дорівнюють 3 дм і 4 дм, якщо вона утворює з діагоналлю основи кут 60°.
36.За даними стороною основи а=9 см і бічним ребром b=6 см знайдіть висоту піраміди, основою якої є квадрат. Основа висоти піраміди збігається з центром квадрата.
37.Основою піраміди є рівносторонній трикутник зі стороною
38.Основою піраміди SABCD є прямокутник ABCD. O – точка перетину його діагоналей; SO – висота піраміди. Обчисліть довжину бічного ребра піраміди, якщо довжина діагоналі дорівнює
39.Осьовим перерізом циліндра є прямокутник. Обчисліть площу осьового перерізу, якщо діаметр основи циліндра
40.Діагональ осьового перерізу циліндра дорівнює
41.Знайдіть радіус основи прямого кругового конуса, якщо його твірна
42.Твірна конуса дорівнює 3 дм, а площа круга основи
43.Кут при вершині осьового перерізу конуса дорівнює 60°, а твірна дорівнює 2см. Знайдіть площу осьового перерізу.
44.Назвіть і покажіть на каркасній моделі куба його осі симетрії.
45.Скільки осей симетрії має прямокутний паралелепіпед?
46.Що є центром симетрії: а) циліндра; б) кулі?
У 9-му класі пропедевтичне засвоєння знань стереометричних понять завершується розглядом питань на обчислення площ поверхонь та об'ємів многогранників і тіл обертання. У 5–6-х класах учні вже зустрічалися з такими задачами, але під час їх розв'язування вони користувалися готовими формулами.
Після того, як у систематичному курсі планіметрії учні ознайомилися з обчисленням площ плоских фігур, розширили відомості про геометричні тіла, вони набувають чіткіших уявлень про обчислення площ поверхонь та об'ємів многогранників і тіл обертання. Ці уявлення слід закріпити під час розв’язування таких задач.
47.Обчисліть (з точністю до одиниць) радіус основи і висоту циліндра, площа основи якого дорівнює 50 см2, а бічна поверхня 25 см:.
48.Бічна поверхня циліндра дорівнює 200 см2. Чи може довжина кола основи дорівнювати
49.Обчисліть об'єм прямої призми, основою якої є рівносторонній трикутник зі стороною
50.Обчисліть площу повної поверхні прямої призми, основою якої є квадрат зі стороною
51.Скільки квадратних метрів заліза потрібно для виготовлення бака з кришкою, що має форму прямої призми, основою якої є правильний шестикутник зі стороною
52.Залізничний насип довжиною
53.Подвір’я, що має форму прямокутника зі сторонами
54.Обчисліть площу повної поверхні піраміди, основою якої є квадрат зі стороною
55.Довжина діагоналі однієї з граней куба дорівнює
56.Обчисліть площу повної поверхні та об’єм циліндра, якщо діаметр його основи дорівнює
57.Знайдіть масу десятиметрової труби, виготовленої зі стального листа товщиною
58.Посудину, що має форму прямої трикутної призми зі сторонами основи 20см, необхідно замінити рівновеликою посудиною циліндричної форми тієї самої висоти. Знайдіть діаметр основи циліндричної посуди.
59.Що має більшу масу: один вал діаметром
60.Скільки води містить циліндричний паровий котел, що має довжину
61.Обчисліть площі бічної та повної поверхонь конуса, висота якого дорівнює
62.Скільки тонн породи в териконі висотою
Рис. 27
63.Відсортоване зерно жита зібрали в конічну купу, висота якої
64.Довжина кола основи купи щебеню, що має форму конуса,
65.Площа поверхні кулі 215 см2. Обчисліть її діаметр.
66.Знайдіть площу поверхні кулі, в якої довжина кола великого круга дорівнює
67.Скільки потрібно фарби, щоб пофарбувати кулю діаметром
68.Знайдіть масу гранітної кулі діаметром
69.Чому дорівнює маса дубової кулі діаметром
70.Дві металеві кулі діаметром
Виконання під керівництвом учителя геометричного аналізу запропонованих ситуацій, спостереження предметів навколишньої дійсності, моделей геометричних тіл, їх виготовлення, вправи з використанням зображень, на обчислення елементів тіл, площ поверхонь та об'ємів сприяють накопиченню та переробці в свідомості учнів геометричних фактів, формуванню і розвитку в них конструктивних навичок, просторових уявлень, що забезпечить необхідну базу для вивчення систематичного курсу стереометрії.
2.3 Практична реалізація вивчення стереометричного матеріалу у 9 класі з використанням інформаційних технологій
Впровадження в процес навчання інформаційно-комунікаційних технологій значною мірою сприяє реалізації принципів гуманізації освіти та навчального процесу, поглиблення та розширення теоретичної бази знань і надання результатам навчання практичного значення, активізації евристичної навчально-пізнавальної діяльності, створенню умов для повного розкриття творчого потенціалу учнів з урахуванням їх вікових особливостей, індивідуальних схильностей, потреб та здібностей.
У шкільному курсі математики особливе місце займають стереометричні задачі. Щоб розв’язувати їх треба застосовувати знання та вміння не тільки зі стереометрії, а й з інших дисциплін. Ефективність навчанню розв’язувати стереометричні задачі залежить не стільки від розгляду всього різноманіття задач курсу стереометрії, скільки від уміння проводити детальний розбір конкретної ситуації, про яку йде мова в задачі. Необхідно щоб учні варіювали вихідні дані, аналізували, як зміняться елементи фігури при зміні інших її елементів, порівнювали хід розв’язання задачі з її результатом, в чому ефективно допоможуть ІКТ.
Комп’ютерна підтримка при вивченні стереометрії захоплює учнів і полегшує розуміння методів і понять геометрії. Застосування програмних засобів забезпечує наочність основних понять стереометрії, розвиває образне мислення, підштовхує учнів до дослідницької діяльності.
Останнім часом все частіше в навчальному процесі використовують педагогічні програмні засоби.
Доцільно ознайомити учнів з програмою GRAN-3D, яка може використовуватися учнями для перевірки самостійних побудов.
Працюючи один на один з такою програмою, учень отримує зручні умови для відпрацювання вмінь та навичок розв’язування задач, повторює знайомі або засвоює нові методи та стратегії розв’язання, тобто має змогу виховувати в собі оригінальність думки, яка так потрібна для розвитку навиків евристичної діяльності.
У цій програмі простий для вивчення інтерфейс.
1. Початок роботи з програмою. Звернення до послуг програми.
Активація програми.
Програма GRAN-3D призначена для графічного аналізу просторових (тривимірних) об'єктів, звідки й походить її назва (GRaphic Analysis 3-Dimension).
Програма функціонує під управлінням операційної системи Windows9x. Після успішної установки в зазначеному директорії буде створено файл GRAN3D.EXE – основна програма, а також будуть створені допоміжні файли допомоги. Далі після «натискання» кнопки Пуск назва програми GRAN-3D буде з'являтися як пункт меню Програми, при зверненні до якого буде відбуватися запуск ППС GRAN-3D.
Основні елементи інтерфейсу. Звернення до послуг програми.
Після активації ППЗ GRAN-3D на екрані з'явиться головне вікно програми (рис. 28). Зверху під заголовком головного вікна розташовано головне меню – перелік послуг, до яких можна звернутися в процесі роботи з програмою. При зверненні до певного пункту головного меню з'являється перелік пунктів (послуг) відповідного підменю. Тип записів у свою чергу можуть розгалужуватиметься на підпункти, перелік яких з'являється при зверненні до відповідного пункту підменю.
Під час роботи з програмою в деяких ситуаціях використання певних послуг меню не є коректним. Такі пункти меню будуть виділятися блідим кольором, а звернення до них не призведе до будь яких дій. Наприклад, використання послуг пункту головного меню Об'єкт – Змінити або Видалити на початку роботи з програмою, поки ще не створено ні один об'єкт, не є коректним, оскільки ще нічого змінювати або видаляти.
Якщо необхідно відмовитися від роботи з тільки що обраною послугою, слід звернутися до послуги Об'єкт \ Припинити виконання операції, або натиснути клавішу ESC.
Рис. 28
Звернення до окремих послуг програми (без перебирання пунктів головного меню і підпунктів відповідних підменю) при необхідності можна здійснити за допомогою функціональних клавіш або комбінацій клавіш, вказаних праворуч біля назв пунктів головного меню.
Панель інструментів.
Для активації деяких послуг можна скористатися кнопками швидкого виклику операцій на панелі інструментів, яка розташована під головним меню програми. Для цього треба натиснути відповідну кнопку (тобто встановити покажчик миші на позначення кнопки і натиснути ліву клавішу миші). «Кнопки» оснащені системою оперативної підказки, тому під час знаходження покажчика миші над певною «кнопкою» на екрані з'являються короткі відомості про її призначення.
2. Система координат. Картинна площина проекції.
Зображення координатних осей. Масштаб зображення.
Відразу після завантаження програми GRAN-3D в полі Зображення з'являється зображення осей координат, на яких вказані значення поділок, що визначають довжини одиничних відрізків уздовж цих осей. Співвідношення масштабів зображення уздовж будь-якої з осей можна змінити за допомогою послуги Установки \ Параметри на вкладиші Зображення вікна Налаштування. Для збільшення або зменшення масштабу зображення призначені послуги Зображення \ Збільшити і Зображення \ Зменшити. Після звернення до послуги Зображення \ Підібрати розмір буде встановлений передбачений у програмі масштаб зображення.
Поворот системи координат.
За допомогою смуг повороту зображення можна обертати систему координат разом з створеними моделями об'єктів. Центром повороту може бути точка з довільними просторовими координатами (за замовчуванням центром повороту є точка з координатами (0,0,0)). Щоб змінити координати центру повороту, слід скористатися послугою Установки \ Параметри на вкладиші Зображення вікна Налаштування. Для повороту системи навколо осі Oz призначена горизонтальна смуга повороту зображення, а для повороту навколо горизонталі, що проходить через центр повороту, призначена вертикальна смуга повороту зображення. Для повороту системи можна використовувати також клавіші управління курсором.
Виродження простору в площину. Ізомертія.
Для швидкого встановлення системи в положення ізометрії або в положення, при якому зображення однієї з координатних осей вироджується в точку, призначені послуги пункту меню Зображення \ Положення координатних осей – Вироджена вісь Ox, Вироджена вісь Oy, Вироджена вісь Oz і ізометрії.
Означення координат точок
Якщо підвести вказівник мишки до будь-якої лінії довільного об'єкта, зазначена лінія виділяється пунктиром і в полі інформування автоматично виводяться просторові координати точки, яка відповідає сучасному стану покажчика, і назва об'єкта, з яким ця точка належить. У випадку, якщо система розміщена так, що одна з координатних осей вироджується в точку (тобто координатна площина, яка визначається іншими двома осями, розміщена паралельно площині зображення), автоматично обчислюються (і виводяться в поле інформування) координати точки, яка відповідає сучасному стану покажчика миші в площині зображення. Координата вздовж вироджений осі вважається невідомою.
3. Створення моделей просторових об’єктів.
Створення об’єкта типу Многогранник.
Для створення об'єкта типу Многогранник потрібно звернутися до послуги меню Об'єкт \ Створити \ Многогранник, що призведе до появи вікна Конструювання об'єкта з вкладкою Многогранник (рис. 29).
Рис. 29
Засобами ППЗ GRAN-3D можна створити довільний многогранник. Для цього необхідно у відповідних полях вказати кількість вершин многогранника і кількість трикутних граней (не трикутні грані потрібно поділити на трикутники), ввести координати вершин многогранник в таблицю Вершини, а також вказати по три вершини на кожній грані.
Для опуклих многогранників можна не вказувати кількість трикутних граней і номери вершин для кожної грані. Досить спочатку ввести вершини многогранник, а потім скористатися послугою Сформувати межі опуклого об'єкта – кількість граней і відповідні номери вершин для кожної грані будуть встановлені автоматично. Для підтвердження введення даних слід «натиснути» кнопку Виконати.
4. Графічне зображення об’єктів типу Точка, Ламана, Площина.
Об'єкти типу Точка, Ламана і Площина можна задавати «з екрану», вказавши точки, які визначають ці об'єкти, безпосередньо в полі Зображення з допомогою миші. Для створення об'єктів зазначених типів описаним способом слід звернутися до послуги меню Oбьект \ Створити з екрану \ Точка, Oбьект \ Створити з екрану \ Ламана або Oбьект \ Створити з екрану \ Площина, в залежності від того, об'єкт якого типу необхідно створити. На відповідний запит програми, який з'явиться у полі підказки, необхідно в поле Зображення вказати (за допомогою покажчика миші) точки, які будуть визначати об'єкт, після чого з'явиться (після вказівки останньої крапки) вікні Конструювання об'єкта відкоригувати деякі параметри об'єкта (якщо це необхідно) і «натиснути» кнопку Виконати.
Для створення об'єкта типу Точка потрібно вказати лише одну точку.
Для створення об'єкта типу Ламана потрібно вказати стільки точок, скільки вершин має ламана. Вказавши останню вершину ламаної, потрібно натиснути праву клавішу миші.
Для створення об'єкта типу Площина слід вказати три точки, через які має проходити площина.
«Вказати крапку» означає підвести покажчик миші в поле Зображення до зображення будь-якої вершини або лінії (ребра) будь-якого створеного об'єкта так, щоб у полі інформування з'явилися координати точки і назва об'єкта, якому вона належить, і натиснути ліву кнопку миші. Якщо одна з координатних площин розміщена (за допомогою смуг повороту зображення) паралельно площині зображення, тоді можна підвести курсор миші до будь-якої точки площини так, щоб у полі інформування з'явилися координати цієї точки, і натиснути ліву кнопку миші. Координата точки вздовж осі виродження буде вважатися рівна 0.
5. Характеристика об’єктів.
Характеристика поточного об’єкта.
Деякі характеристики об'єктів обчислюються автоматично відразу після створення об'єктів або після їх перетворення (рис. 30). Для об'єктів усіх типів обчислюються (і виводяться в поле Характеристики) мінімальні і максимальні координати точок уздовж кожної з координатних осей. Крім цього, для об'єктів кожного окремого типу виводиться деяка додаткова інформація:
Рис. 30
– для об'єктів типу Ламана обчислюється довжина ламаної, а якщо ламана замкнена і всі її вершини лежать в одній площині, то також обчислюється площа області, обмеженої ламаної;
– для об'єктів типу Площина, незалежно від способу завдання, обчислюються коефіцієнти A, B, C і D рівняння площини виду Ax + By + Cz + D = 0;
– для об'єктів типу Многогранник обчислюється об'єм та площу поверхні, а також площа і периметр окремо кожної грані (ці характеристики наводяться у вікні Перелік граней об'єкта, яке з'явиться при звернення до послуги Обчислення \ Багатогранник \ Площі і периметри граней);
– для об'єктів типу Поверхня можливо обчислення обсягів і площ поверхонь тіл, які ними обмежуються (ці відомості доступні через послугу головного меню Обчислення \ Подвійний інтеграл і площу поверхні);
– для об'єктів типу Поверхня обертання обчислюються площа поверхні, утвореної обертанням графіка деякої функції або ламаного, і об'єм тіла, обмеженого такою поверхнею.
6. Обчислення об’ємів і площ поверхні многогранників.
Обсяги та площі поверхонь об'єктів типу Многогранник (піраміда, призма, паралелепіпед, куб і т.п.) обчислюються автоматично при створенні або перетворення цих об'єктів. Обчислені значення виводяться в поле характеристик поточного об'єкта.
Додаткова інформація про площі та периметри окремих граней поточного многогранника доступна через послугу програми Обчислення \ Многогранник \ Площі і периметри граней. У що з'являється вікні Перелік граней об'єкта наведено перелік граней поточного об'єкта-многогранника та переліки вершин, які лежать на кожній окремій грані, а також площі і периметри цих граней. Під переліком в полі Площа зазначених виводиться сумарна площа граней, зазначених «галочкою» у переліку граней. За допомогою кнопок Позначити всі, Зняти позначки і Інвертувати позначки можна швидко відзначити всі грані, зняти позначки з усіх граней в переліку або змінити стан відміток граней на протилежне. Послугою Обчислення \ Многогранник \ Площі і периметри граней можна скористатися лише тоді, коли поточних об'єктом є об'єкт типу Многогранник.
7. Обчислення об’ємів і площ поверхні тіл обертання.
У програмі передбачено обчислення обсягів і площ поверхонь тіл обертання, що утворюють яких обертаються навколо осі Оx або Oy в прямокутній декартовій системі координат і задаються одним з трьох способів:
1. у вигляді явної залежності між змінними x і y: y = f (x);
2. у вигляді заданої параметрично залежності між змінними x і y: x = f (t), y = g (t), де t – мінлива-параметр;
3. у вигляді ламаної, заданої впорядкованим набором вершин у площині xOy.
Відразу після створення об'єкта типу Поверхня обертання розпочнеться обчислення об'єму та площі поверхні тіла, обмеженого поверхнею, утвореної обертанням графіка заданої функції або ламаного. Цей процес вимагає певного часу, тому під час обчислення з'являється вікно з показником стану виконання обчислень.
Після обчислення результат буде виведено у полі характеристик поточного об'єкта. У програмі передбачено обчислення обсягів і площ поверхонь тіл обертання, що утворюють яких обертаються навколо осі Оx або Oy в прямокутній декартовій системі координат і задаються одним з трьох способів:
1. у вигляді явної залежності між змінними x і y: y = f (x);
2. у вигляді заданої параметрично залежності між змінними x і y: x = f (t), y = g (t), де t – мінлива-параметр;
3. у вигляді ламаної, заданої впорядкованим набором вершин у площині xOy.
Відразу після створення об'єкта типу Поверхня обертання розпочнеться обчислення об'єму та площі поверхні тіла, обмеженого поверхнею, утвореної обертанням графіка заданої функції або ламаного. Цей процес вимагає певного часу, тому під час обчислення з'являється вікно з показником стану виконання обчислень.
Після обчислення результат буде виведено у полі характеристик поточного об'єкта.
8. Обчислення значення вираження.
Під час роботи з програмою іноді виникає необхідність обчислити значення деякого вираження. У таких випадках зручно скористатися послугою Обчислення \ Значення виразу. На вкладці Значення виразу вікна Обчислення, яке з'явиться після звернення до зазначеної послуги, в полі Вираз потрібно ввести вираз, значення якого необхідно обчислити, і «натиснути» кнопку Обчислити, після чого результат буде виведено у полі Результат обчислень. При цьому якщо вираз було введено некоректно, то з'явиться повідомлення про помилку.
Для введення виразів можна використовувати панель калькулятора з цифровими кнопками і кнопками швидкого введення назв стандартних функцій, що дозволяє вводити вирази за допомогою лише миші, без використання клавіатури. Без використання панелі калькулятора всі необхідні символи можна ввести також і з клавіатури.
Покажемо застосування цієї програми.
Головною функціональною можливістю програми, яка заявлена розробниками, є перевірка вірності розв’язання геометричних задач. Користувач (учень) має змогу після вирішення поставленої задачі перевірити результат, використавши програму Gran 3D.
Розглянемо можливості програмного продукту на прикладі задач, поданих в шкільному підручнику. Спочатку проводиться вирішення задачі стандартним способом – за допомогою формул та математичних обчислень, після чого знайдені результати перевіряються на правильність.
Задача 1.
Діаметр кулі дорівнює
Розв'язання стандартним способом:
Перевірка:
Викликаємо команду «Створити базовий просторовий об'єкт». У вікні, що появилось, вибираємо вкладку «Куля» (рис. 29).
Рис. 29
Вводимо діаметр кулі і натискаємо на кнопку «Створити». Програма будує тримірне зображення кулі, що дозволяє користувачу наглядно оцінити параметри кулі, аналіз якої він проводить (рис. 30).
Рис. 30
У вкладеному вікні, що знаходиться з правої сторони, зчитуємо інформацію про об’єкт та площу поверхні (рис. 31).
Рис. 31
Обєм: 523 куб. од.
Площа поверхні: 307 кв. од.
Діленням об’єму на площу можна отримати відношення 3 до 5, що є правильним розв’язком задачі.
Задача 2.
Кульку виготовили із скла, її радіус
Стандартний метод розвязку:
Тоді маса кульки:
3*113,04=339,1 (г)
Перевірка результату. Викликаємо команду побудови базового просторового об’єкту, у вікні вибираємо вкладку «Куля» і вводимо початкові дані (рис. 32).
Рис. 32
Створюємо кулю з вказаними параметрами і у вікні з інформацією про об’єкту отримуємо дані про об’єм кулі (рис. 33) і перемножуємо на густину скла. В результаті отримуємо співпадання даних, добутих двома способами.
Рис. 33
Задача 3. Прямокутний трикутник, катети якого дорівнюють
Розв'язання:
Де R – радіус основи, L – твірна, H – висота.
Розглянемо
Якщо ОА=10,5см, SO=36см, то за теоремою Піфагора SA2=SO2+OA2=1296+110,25=1406,25, SO=37,5см.
Отже,
Якщо ОА=36см, SO=10,5, то за теоремою Піфагора
SA2=SO2+OA2=1296+110,25=1406,25, SO=37,5см.
Отже,
Перевіримо відповідь за допомогою програми Gran 3D. Для цього викличемо команду «Створити просторовий базовий об'єкт», перейдемо на вкладку «Конус» і введемо дані, вказані в умові задачі (рис. 34).
Рис. 34
У вікні параметрів об’єкту читаємо дані про об’єм та повну поверхню утвореного конуса (рис. 35).
Рис. 35
Ділимо отримані дані на Пі і отримуємо результат, відповідний до результату, отриманого стандартним способом розв’язування.
При цьому, разом з перевіркою даних на основі програма будує стереометричну модель об’єкта, що дає можливість побачити його візуально, виконати операції масштабування та обертання для його кращого аналізу (рис. 36).
Рис. 36
Отже, програма дозволяє будувати різноманітні просторові об’єкти за допомогою можливостей програми Gran 3D та отримувати дані, необхідні для перевірки даних. Це дає користувачу змогу перевіряти вірність отриманих в процесі розв’язання даних та ефективно аналізувати візуальний вигляд об’єкту.
Висновки
Математична освіта є важливою складовою загальноосвітньої підготовки. Місце математики в системі шкільної освіти визначається її роллю в інтелектуальному, соціальному та моральному розвитку особистості, розумінні будови і використання сучасної науки і техніки, нових інформаційних технологій, сприйманні наукових і технічних ідей, формуванні наукової картини світу і сучасного світогляду. Математика є опорним предметом при вивченні суміжних дисциплін (фізики, хімії, інформатики, біології, географії, економіки, креслення), тому без належної математичної підготовки неможлива повноцінна освіта сучасної людини.
Вирішальне значення для системи шкільної освіти має формуючий вплив предмета математики на розвиток логічного мислення, просторових уявлень і уяви, алгоритмічної і інформаційної культури, уваги, пам’яті.
Просторове мислення, як відомо, є складовою частиною чуттєво-образного мислення і не є апріорі визначеним, запрограмованим від народження. Воно формується в процесі індивідуального розвитку людини. Просторове мислення виникає в надрах практичної потреби орієнтації на місцевості, серед об'єктів матеріального світу. Однією з основних цілей вивчення стереометрії є усвідомлення учнями структури логічної побудови цього розділу. Обов’язковим завданням є розвиток логічного мислення просторової уяви, абстрактного мислення школярів, а також ілюстрація зв’язку геометрії з реальним життям.
Потреба у вивченні елементів стереометрії в курсі математики основної школи, запропонований нами зміст навчального матеріалу, вікові особливості та індивідуальні відмінності дітей підліткового віку у формуванні мислення (зокрема просторового) дають підставу сформулювати такі методичні вимоги до вивчення стереометричного матеріалу в основній школі.
1. Стереометричний матеріал має вивчатися на наочно-оперативному рівні в контексті з відповідним матеріалом курсу математики 5–6-х класів і планіметрії 7–9-х класів. Це дасть змогу одночасно з формуванням знань, навичок і вмінь про плоскі фігури ознайомлювати учнів з геометричними тілами та певними їх властивостями, формувати просторові уявлення, розвивати просторову уяву.
2. Вивчення елементів стереометрії має здійснюватися систематично, з дотриманням принципів навчання.
3. Метою та засобом навчання учнів елементам стереометрії мають бути різнопланові задачі: на розпізнавання геометричних фігур і їх виготовлення; на зображення, вимірювання та обчислення величин. Значна їх кількість має мати прикладну спрямованість. У ході розв'язування задач в учнів мають формуватися просторові уявлення та уява, практичні навички та вміння.
4. Вивчення елементів стереометрії, як і вивчення інших питань шкільного курсу математики, має проводитися диференційовано. Основними критеріями диференціації мають бути рівень вимог до засвоєння учнями навчального матеріалу та рівень допомоги їх з боку вчителя з урахуванням індивідуальних відмінностей.
5. Основною метою вивчення розділу «Елементи стереометрії» в курсі планіметрії 9-го класу має бути систематизація відомостей зі стереометрії, які учні здобули раніше, формування відповідного обсягу стереометричних знань, необхідних для продовження освіти, надання курсу геометрії основної школи певної завершеності.
Для покращення вивчення задач на побудову можна використовувати програмний засіб Gran-3d, який доступний для вивчення вчителями та учнями. Причому його можна знайти в Інтернеті безкоштовно і з його допомогою можна демонструвати розв’язування задач на побудову у русі, динаміці, що значно сприятиме розвитку просторового мислення школярів. Що в кінцевому випадку і є основним завданням вивчення шкільного курсу геометрії.
Список використаної літератури
1. Геометрія: Підруч. для 9 кл. загальноосвіт. навч. закл./ М.І. Бурда, Н.А. Тарасенкова. – К.: Зодіак-ЕКО;
2. Геометрія: підручник для 9 кл. загальноосвітніх навч. закл./ А.П. Єршова, В.В. Голобородько, О.Ф. Крижановський, С.В. Єршов. – Харків: «Ранок»;
3. Геометрія: підручник для 9 кл. загальноосвітніх навч. закл./ Г. Мерзляк, В.Б. Полонський, М.С. Якір – «Гімназія»
4. О.В. Погорєлов. Геометрія 10 – 11. – К.: Освіта, 2000. – 128 с.
5. Якиманская И.С. Личностно-ориентированное обучение в современной школе. – М. «Сентябрь», 1996.
6. Гальперин П.Я. Методы обучения и умственное развитие ребенка. – М.: Изд. Московского ун-та, 1985.
7. Якиманская И.С. Розвитие пространственного мышления школьников. – М.:Педагогіка, 1980.
8. Вітюк О.В. GRAN-2D і GRAN-3D – програмні засоби для підтримки курсу геометрії // Інформатика та комп'ютерно-орієнтовані технології навчання: Зб.наук. праць Всеукраїнської науково-практичної конференції (м. Хмельницький, 16–18 травня 2001 року)/ Редкол.-К: Педагогічна думка. 2001.
9. Малкова Наталія «Навчання учнів розв'язувати стереометричні задачі в умовах застосування ІКТ»
10.«Живая геометрия» www.localhost.ru
11.А.В. Прус «Про прикладну спрямованість шкільного курсу стереометрії»
12.І.А. Сверчевська «Еволюція вивчення геометричних тіл у шкільному курсі стереометрії»
13.Вітюк О.В. Розвиток образного мислення учнів при вивченні геометрії з використанням ППЗ GRAN-3D. Комп'ютерно-орієнтовані системи навчання: 36. наук. праць/К.:НПУ ім. Драгоманова.-Випуск 3. 2001