Контрольная работа

Контрольная работа на тему Изобарно изотермический потенциал

Работа добавлена на сайт bukvasha.net: 2014-07-02

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024


9. Определить изменение изобарно-изотермического потенциала реакции N2(г) + 2Н2О(ж) = NH4NO2 (ж) и дать заключение о направлении ее протекания при стандартных условиях, если  для Н2О(ж) равна – 237,4 кДж/моль, а для NH4NO2(ж) равна – 115,8 кДж/моль.
Решение.
Изобарно-изотермический потенциал реакции рассчитывается так же, как и тепловой эффект реакции – по стандартным теплотам образования веществ:

Следовательно, реакция может идти в обратном направлении.
17. При температуре 298 К реакция заканчивается через 2,5 ч. Рассчитать, при какой температуре она закончится через 20 мин., если температурный коэффициент реакции равен 3.
Решение.

Ответ: 297 К.

25. Уравнение изотермы химической реакции Вант-Гоффа.
В соответствии с законом действующих масс для произвольной реакции
а A + b B = c C + d D
уравнение скорости прямой реакции можно записать:
,
а для скорости обратной реакции: .
По мере протекания реакции слева направо концентрации веществ А и В будут уменьшаться и скорость прямой реакции будет падать. С другой стороны, по мере накопления продуктов реакции C и D скорость реакции справа налево будет расти. Наступает момент, когда скорости υ 1 и υ 2 становятся одинаковыми, концентрации всех веществ остаются неизменными, следовательно,
,
Откуда Kc = k1 / k2 = .
Постоянная величина Кс, равная отношению констант скоростей прямой и обратной реакций, количественно описывает состояние равновесия через равновесные концентрации исходных веществ и продуктов их взаимодействия (в степени их стехиометрических коэффициентов) и называется константой равновесия. Константа равновесия является постоянной только для данной температуры, т.е.
Кс = f (Т). Константу равновесия химической реакции принято выражать отношением, в числителе которого стоит произведение равновесных молярных концентраций продуктов реакции, а в знаменателе – произведение концентраций исходных веществ.
Если компоненты реакции представляют собой смесь идеальных газов, то константа равновесия (Кр) выражается через парциальные давления компонентов:
Kp = .
Для перехода от Кр к Кс воспользуемся уравнением состояния P · V = n·R·T. Поскольку
,      то      P = C·R·T.
Тогда .
Из уравнения следует, что Кр = Кс при условии, если реакция идет без изменения числа моль в газовой фазе, т.е. когда (с + d) = (a + b).
Если реакция (1.33) протекает самопроизвольно при постоянных Р и Т или V и Т, то значения G и F этой реакции можно получить из уравнений:
,
где С А, С В, С С, С D – неравновесные концентрации исходных веществ и продуктов реакции.
,
где Р А, Р В, Р С, Р D – парциальные давления исходных веществ и продуктов реакции.
Два последних уравнения называются уравнениями изотермы химической реакции Вант-Гоффа. Это соотношение позволяет рассчитать значения G и F реакции, определить ее направление при различных концентрациях исходных веществ.
Необходимо отметить, что как для газовых систем, так и для растворов, при участии в реакции твердых тел (т.е. для гетерогенных систем) концентрация твердой фазы не входит в выражение для константы равновесия, поскольку эта концентрация практически постоянна. Так, для реакции
2 СО (г) = СО 2 (г)  + С (т)
константа равновесия записывается в виде
.
Зависимость константы равновесия от температуры (для температуры Т2 относительно температуры Т1) выражается следующим уравнением Вант-Гоффа:
,
где Н0 – тепловой эффект реакции.
Для эндотермической реакции (реакция идет с поглощением тепла) константа равновесия увеличивается с повышением температуры, система как бы сопротивляется нагреванию.
33. Эбулиоскопическая константа воды равна 0,512. Рассчитать, при какой температуре кипит 5 %-ный раствор сахарозы в воде.
Решение.
Повышение температуры кипения раствора

г/моль

Температура кипения Т = То +Ткип=373 К+78К=451К

59. Свойства дисперсных систем и растворов ВМС, их сходство и отличие. Пояснить, какими путями можно перейти от истинного раствора ВМС к дисперсной системе.
Основными отличительными особенностями дисперсных систем являются:
а) способность к рассеиванию ими света;
б) медленная диффузия частиц дисперсной фазы в дисперсионной среде;
в) способность к диализу;
г) агрегативная неустойчивость дисперсной фазы, которая определяется выделением частиц из дисперсионной среды при добавлении к системе электролитов или под влиянием других внешних воздействий.
Понятие агрегатного состояния не применимо к ВМС, применяется понятие фазового (в структурном смысле) состояния. По сути, понятие фазового состояния характеризует порядок взаимного расположения молекул: ВМС могут находиться в кристаллическом, аморфном и, чрезвычайно редко, в газообразном фазовом состояниях, причем наиболее типичным является аморфное состояние. Последнее дополнительно подразделяется на стеклообразное, высокоэластическое и вязкотекучее. Переход из одного состояния в другое всегда протекает не резко, а в некотором интервале температур.
При помещении ВМС в растворитель происходит поглощение растворителя и соответствующее увеличение объема и массы полимера, идет процесс набухания.
Если каким-либо способом воспрепятствовать увеличению объема ВМС при его набухании, то со стороны ВМС может проявляться чрезвычайно высокое давление набухания, достигающее нескольких атмосфер (пример – дробление скал древесными клиньями, заливаемыми водой).
Процесс набухания высокомолекулярного вещества связан с взаимодействием макромолекул с молекулами растворителя, и степень набухания ВМС зависит как от природы ВМС, так и от природы растворителя. Набухание полярного ВМС протекает только в полярном растворителе, а неполярного – только в неполярном (полезно вспомнить эмпирическое правило: подобное растворяется в подобном).
Добавление к истинному раствору ВМС электролитов уменьшает сольватирующую способность растворителя – в итоге система может быть нарушена, т.е. может произойти выделение высокомолекулярного вещества из раствора, и полимер как бы отделится от растворителя (появляются волокна, хлопья, творожистые осадки). Этот процесс называется высаливанием.
Механизм высаливания состоит в том, что сольватирующие ВМС молекулы растворителя начинают взаимодействовать с электролитом, сольватная оболочка около макромолекулы разрушается, происходит десольватация макромолекулы и, как следствие, резко снижается растворимость ВМС, т.е. происходит его высаливание. Способность  ВМС высаливаться из растворителя резко возрастает с увеличением молярной массы полимера. На этом основано фракционирование полидисперсного ВМС по молярной массе (используется, в частности, для разделения смеси белков различной молярной массы).
Процесс высаливания может приводить к появлению в системе другой жидкой студнеобразной фазы в виде мельчайших капель, концентрация ВМС в которых выше, чем в исходном растворе.
Растворам ВМС свойственно осмотическое давление, которое, однако, значительно выше, чем рассчитываемое по уравнению Вант-Гоффа Это связано с тем, что роль кинетического элемента могут играть в одной макромолекуле сразу несколько ее сегментов. Поэтому значение осмотического давления будет повышаться с увеличением гибкости макромолекулы. На использовании этого явления разработан метод определения молярных масс высокополимеров в разбавленных растворах путем измерения в растворе осмотического давления.
Макромолекулы ВМС обладают диффузионной способностью, близкой к диффузии компонентов в дисперсных системах.
Многие ВМС содержат ионогенные (т.е. способные образовывать ионы) группы, поэтому представляют собой полиэлектролиты (полимерные электролиты), склонные к ионизации в растворе. Так, растворимый крахмал содержит в макромолекуле кислотные – СООН-группы, а агар-агар –SО3Н-группы, которые в растворе могут диссоциировать с отщеплением иона водорода. Некоторые ВМС имеют в своем составе основные –NН2 или (при присоединении молекулы воды) –NН3ОН-группы. Таким образом, длинная молекула высокомолекулярного электролита, продиссоциировавшая в воде, представляет собой один полиион с жестко закрепленными фиксированными –СОО ¯, –NН3+– или другими ионами, а около этой полимерной цепочки располагаются подвижные противоионы, заряды которых эквивалентны заряду полииона. Обычно на одно элементарное звено макромолекулы ионогенного полимера приходится одна ионогенная группа. Две ионогенные группы (–СООН и –NН3ОН) в своем составе имеют белки, причем в большинстве белков соотношение этих групп неодинаково. Так, в растворах глиадина пшеницы, протамина и других превалируют основные группы, а в таких белках, как казеин, коллаген, альбумин и других преобладают ионогенные группы кислотной природы. Молекулу белка можно схематично изобразить:
НОН3N – R – СООН,
где R – длинная углеводородная цепочка, содержащая также группы – СОNН–.
Ионогенные группы кислотной и основной природы могут располагаться не только по краям, но и внутри молекулы белка. Полипептидная цепь белков состоит из многих десятков и даже сотен аминокислот в различных сочетаниях, что обусловливает многообразие белков. Амино- и карбоксильные группы полипептидных цепей могут взаимодействовать между собой, образуя водородные связи. Эти связи образуются как между отдельными молекулами, так и внутри одной молекулы, а также и с молекулами растворителя. Глобулярные белки (макромолекулы шаровидной или эллипсоидной формы) – это альбумин, глобулины яичного белка, молока, сыворотки крови, пепсин желудочного сока. Молекулы коллагена и желатина (составная часть тканей кожи и сухожилий) имеют форму тонких вытянутых нитей.
В зависимости от рН раствора кислотная и основная группы проявляют различную склонность к диссоциации. В кислых растворах больше диссоциирована основная группа, в щелочной среде – кислотная. Когда в молекуле белка диссоциированы в основном кислотные группы, макромолекула имеет отрицательный заряд и в постоянном электрическом поле при электрофорезе будет передвигаться в сторону анода. Диссоциация основных и кислотных групп происходит в одинаковой степени в белке только при определенном значении рН раствора, это значение рН (обычно ниже 7) называется изоэлектрической точкой (ИЭТ). Такое изоэлектрическое состояние белка с ионизированными ионогенными группами можно изобразить следующим образом:
ОН- + Н3N+ – R – СОО- + Н+.
Разделение белков по фракциям методом высаливания проводят обычно вблизи изоэлектрической точки, т.е. при определенных значениях рН в растворе. По достижении изоэлектрической точки, когда кулоновское взаимодействие групп разного заряда происходит уже по всей длине цепи, молекула белка сворачивается в клубок.
Денатурация – необратимая коагуляция белка, вызываемая, например, его нагреванием, добавлением спирта, действием световой энергии и др. Этот вид коагуляции характерен (из лиофильных коллоидов) только для белковых веществ. Так, необратимое изменение свойств яичного белка при его термической обработке (достаточно 60 – 65 оС) происходит только в присутствии воды, тогда как сухой яичный белок не денатурируется при температуре 100 оС и даже выше.
Процесс термической денатурации белка, который характерен для белков глобулярного типа, обусловлен разрывом слабых водородных связей внутри глобулы и последующим распрямлением и вытягиванием макромолекулы. При этом вследствие изменения структуры белка изменяются и его свойства, в частности повышается вязкость раствора и понижается  растворимость полимера.
Несмотря на схожесть процессов денатурации и высаливания белков, у них имеется и важное отличие: денатурация необратима, а высаливание обратимо.
Свойства дисперсных систем и ВМС имеют сходства и отличия.
Сходства: как и дисперсные системы, ВМС присущи явления осмоса, диффузии и коагуляции (обратимой и необратимой).
Различия: явления высаливания и денатурации присущи только ВМС.
Процессом образования дисперсных систем из ВМС можно считать процесс высаливания.
67. Определить частичную концентрацию гидрозоля Al2O3, если его массовая концентрация 0,3 г/л, коэффициент диффузии сферических частиц золя 2·10-6 м2/сут., плотность гидрозоля 4 г/см3, вязкость дисперсионной среды 10-3 н·с/м2 и температура 293 К.
Из уравнения Эйнштейна радиус частицы:
где NА – число Авогадро, 6 10 23 молекул/моль;
h – вязкость дисперсионной среды, Н с/м2(Па с);
r – радиус частицы, м;
R – универсальная газовая постоянная, 8,314 Дж/моль · К;
T – абсолютная температура, К;
число 3,14.

Находим массу  частицы:

Находим концентрацию частицы:

Ответ: 0,053 г/см3
75. Адсорбция на поверхности раздела Ж/Г. Адсорбционное уравнение Гиббса, его анализ и область использования. Адсорбция – процесс самопроизвольного поглощения вещества (адсорбтива) поверхностью адсорбента. Уравнение Гиббса устанавливает взаимосвязь величины адсорбции (Г,кмоль/кг или кмоль/м2) с изменением поверхностного натяжения (Дж/м2 от концентрации раствора (С, кмоль/л).
,
где С – концентрация раствора, кмоль/л;
R – универсальная газовая постоянная;
T – температура;
d/dС – производная, являющаяся мерой поверхностной активности; может быть определена графически по зависимости поверхностного натяжения от концентрации (при 0).
Адсорбция на жидкой поверхности может приводить как к уменьшению поверхностного натяжения (например, при адсорбции малорастворимых, дифильных поверхностно-активных веществ), так и к его увеличению (в частности, при адсорбции поверхностно-инактивных веществ, т. е. хорошо растворимых в воде неорганических электролитов) или не изменять его (растворы сахаров в воде). В последнем случае вещество распределяется равномерно между поверхностным слоем и объемом раствора.
83. Написать формулы мицелл: Al(OH)3, стабилизированной AlCl3; SiO2, стабилизированной H2SiO3. Для какой из указанных мицелл лучшим коагулятором является FeCl3, Na2SO4?
[m (SiO2) n Si4+ (n -x) 2-]х+ x
[m (AlCl3) n Cl · (n -x) Al3+]х– x Al3+) Лучшим коагулятором будет FeCl3.
94. Защита коллоидных частиц с использованием ВМС. Механизм защитного действия. Белки, углеводы, пектины как коллоидная защита.
Коллоидная защита – стабилизация дисперсной системы путем образования адсорбционной защитной оболочки вокруг частиц дисперсной фазы. Белки, пектины и углеводы выступают как стабилизаторы дисперсных систем, предохраняющих системы от дальнейшей коагуляции или седиментации.
103. Студни как эластичные гели. Механизм их образования и факторы, определяющие скорость студнеобразования. Процессы студнеобразования в пищевой технологии.
Студни – это ограниченно набухшие полимеры, их можно рассматривать как частную форму эластичных гелей. Студни – гомогенные системы, они нетиксотропны. Жидкость, заполняющая сетку студня, называется интермицеллярной жидкостью.
Растворы ВМС в некоторых условиях (изменение температуры, концентрирование раствора или при добавлении небольшого количества электролита) могут самопроизвольно терять свою текучесть и переходить в студни, т.е. в систему с некоторыми свойствами твердого тела. Причина такого перехода – возникновение связей между макромолекулами ВМС за счет целого спектра молекулярных контактов. Структура студней образована за счет дисперсионных сил и водородных связей, также в ее создании принимают участие и обычные химические связи. Первоначально в растворе образуются кратковременные ассоциаты из макромолекул как за счет взаимодействия гидрофильных участков макромолекул, так и за счет молекулярных контактов между гидрофобными частями разных молекул. Когда время существования ассоциатов становится весьма продолжительным, то система с созданной пространственной сеткой начинает  проявлять свойства твердой фазы.
Студни образуются также в результате ограниченного набухания или вследствие охлаждения раствора ВМС. При нагревании каркас студня разрушается и система снова разжижается. Этот же эффект достигается и путем механического воздействия на систему – перемешиванием или встряхиванием.
Если в студень, содержащий в свободной воде низкомолекулярное вещество, диффундирует другое, способное образовывать с первым нерастворимое соединение, то реакция осаждения идет только в определенных зонах структуры студня. В результате в студне наблюдаются слои или кольца, образованные этим осадком.
Электропроводность студней близка к электропроводности растворов, из которых эти студни были получены, то есть трехмерная сетка, образующаяся в студне, не мешает движению сравнительно маленьких ионов через его раствор.
Старение студней, как и гелей, проявляется в виде явления, которое носит название синерезис. Явление синерезиса характерно как для студней, так и для эластичных гелей (например, отделение сыворотки при свертывании молока, «слеза» в сыре и др.).
Синерезис – это самопроизвольное выделение жидкости из геля, т.е. это явление, обратное набуханию. Многие гели, особенно тиксотропные, с низким содержанием дисперсной фазы со временем сжимаются и выделяют часть интермицеллярной жидкости. В результате процесса синерезиса, являющегося отображением непрочного состояния жидкости в гелях, образуются 2 фазы – жидкая (раствор ВМС в растворителе) и студнеобразная (раствор растворителя в ВМС). Например, жидкость, выделяющаяся после образования простокваши, является слабоконцентрированным золем.
В процессе синерезиса происходит сближение частиц, сжатие каркаса геля и выдавливание из него в первую очередь свободной воды. Явлению синерезиса благоприятствуют все факторы, которые способствуют коагуляции. Это, в частности, повышение числа частиц в растворе, добавление к нему спирта, повышение температуры и др.

ЛИТЕРАТУРА
1.Ахметов Б. В. Задачи и упражнения по физической и коллоидной химии. – Л.: Химия, 1989.
2.Гамеева О. С. Физическая и коллоидная химия. – М.: Высшая школа, 1983.
3.Евстратова К. И., Купина Н. А., Малахова Е. М. Физическая и коллоидная химия. – М.: Высшая школа, 1990.
4.Зимон А. Д., Лещенко Н. Ф. Коллоидная химия. – М.: Химия, 2001.
5.Зимон А. Д., Лещенко Н. Ф. Физическая химия. – М.: Химия, 2000.
6.Киселев Е. В. Сборник примеров и задач по физической химии. – М.: Высшая школа, 1983.
7.Кнорре Д. Г. Физическая химия. – М.: Высшая школа, 1990.
8.Стромберг А. Г. Физическая химия. – М.: Высшая школа, 2001.
9.Степин Б. Д. Международные системы единиц физических величин в химии. – М.: Высшая школа, 1990.
10.           Фридрихсберг Д. А. Курс коллоидной химии. – Л.: Химия, 1995.
11.           Хмельницкий Р. А. Физическая и коллоидная химиия. – М.: Высшая школа, 1988.

1. Реферат на тему The Birth Narrative Through The Gospels Of
2. Реферат на тему Lovely People Do Stupid Things Essay Research
3. Биография Дойль Артур Конан
4. Курсовая Характеристика гражданско-правовых способов и форм защиты прав потребителей в сфере услуг и торг
5. Реферат на тему Образ Англии в творчестве Е Замятина
6. Сочинение В Россию можно только верить
7. Реферат Жеты Жаргы
8. Сочинение на тему Толстой л. н. - Персонажи романа л. н. толстого
9. Реферат на тему Poetry Assignment Essay Research Paper Poetry AssignmentIn
10. Курсовая на тему Комплексное тестирование силовых способностей детей школьного возраста