Контрольная работа

Контрольная_работа на тему Общие понятия физиологии Возбуждение

Работа добавлена на сайт bukvasha.net: 2015-06-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024


Физиология как предмет и характеризующие его понятия

Физиология (от греческих слов: физис – природа, логос – учение, наука) наука о функциях и процессах, протекающих в организме или его составляющих системах, органах, тканях, клетках, и механизмах их регуляции, обеспечивающих жизнедеятельность человека и животного в их взаимодействии с окружающей средой.

Под функцией понимают специфическую деятельность системы или органа. Например, функциями желудочно-кишечного тракта являются моторная, секреторная, всасывательная; функцией дыхания обмен О2 и СО2; функцией системы кровообращения движение крови по сосудам; функцией миокарда сокращение и расслабление; функцией нейрона возбуждение и торможение, и т.д.

Процесс определяют как последовательную смену явлений или состояний в развитии какого-либо действия или совокупность последовательных действий, направленных на достижение определенного результата.

Система в физиологии подразумевает совокупность органов или тканей, связанных общей функцией. Например, сердечно-сосудистая система, обеспечивающая с помощью сердца и сосудов доставку тканям питательных, регуляторных, защитных веществ и кислорода, а также отвод продуктов обмена и теплообмена. Речедвигательная система совокупность образований, обеспечивающих в норме реализацию речевой способности человека в виде воспроизведения устной и вокальной речи.

Надежность биологических систем свойство клеток, органов, систем организма выполнять специфические функции, сохраняя характерные для них величины в течение определенного времени. Основной характеристикой надежности систем служит вероятность безотказной работы. Организм повышает свою надежность различными способами:

1) путем усиления регенеративных процессов, восстанавливающих погибшие клетки,

2) парностью органов (почки, доли легкого и др.),

3) использованием клеток и капилляров в работающем и неработающем режиме: по мере нарастания функции включаются ранее не функционирующие,

4) использованием охранительного торможения,

5) достижением одного и того же результата разными поведенческими действиями.

Физиология изучает жизнедеятельность организма в норме. Норма это пределы оптимального функционирования живой системы, трактуется по-разному:

а) как средняя величина, характеризующая какую-либо совокупность событий, явлений, процессов,

б) как среднестатистическая величина,

в) как общепризнанное правило, образец.

Физиологическая норма это биологический оптимум жизнедеятельности; нормальный организм это оптимально функционирующая система. Под оптимальным функционированием живой системы, понимают наиболее согласованное и эффективное сочетание всех ее процессов, лучшее из реально возможных состояний, соответствующее определенным условиям деятельности этой системы.

Механизм способ регулирования процесса или функции. В физиологии принято рассматривать механизмы регуляции; местный (например, растяжение сосудов при повышении артериального давления), гуморальный (влияние на функции и процессы гормонов или гуморальных агентов), нервный (усиление или ослабление процессов при возбуждении или торможении импульсации в первых), центральный (командные посылки из центральной нервной системы).

Под регуляцией понимают минимизацию отклонения функций либо их изменение с целью обеспечения деятельности органов и систем. Этот термин употребляют только в физиологии, а в технических и междисциплинарных науках ему соответствуют понятия «управление» и «регулирование». В этом случае автоматическим регулированием называется либо поддержание постоянства некоторой регулируемой величины, либо ее изменение по заданному закону (программное регулирование), либо в соответствии с некоторым изменяемым внешним процессом (следящее регулирование). Автоматическим управлением называется более обширная совокупность действий, направленных на поддержание или улучшение функционирования управляемого объекта в соответствии с целью управления. Кроме решения задач регулирования, автоматическое управление охватывает механизмы самонастройки (адаптации) систем управления в соответствии с изменением параметров объекта или внешних воздействий, автоматического выбора наилучших режимов из нескольких возможных. В силу этого термин «управление» более точно отражает принципы регулирования в живых системах. В случае программного регулирования регуляция осуществляется «по возмущению», в случае следящего «по отклонению».

Реакцией называют изменения (усиление или ослабление) деятельности организма или его составляющих в ответ на раздражение (внутреннее или внешнее). Реакции могут быть простые (например, сокращение мышцы, выделение секрета железой) или сложные (пищедобывание). Они могут быть пассивными, возникающими в результате внешних механических усилий, либо активными в виде целенаправленного действия, осуществляемого в результате нервных или гуморальных влияний, или под контролем сознания и воли.

Секрет специфический продукт жизнедеятельности клетки, выполняющий определенную функцию и выделяющийся на поверхность эпителия или во внутреннюю среду организма. Процесс выработки и выделения секрета называется секрецией. По характеру секрет делят на белковый (серозный), слизистый (мукоидный), смешанный и липидный.

Раздражение воздействие на живую ткань внешних или внутренних раздражителей. Чем сильнее раздражение, тем сильнее (до определенного предела) и ответная реакция ткани; чем длиннее раздражение, тем сильнее (до определенного предела) и ответная реакция ткани.

Раздражитель факторы внешней и внутренней среды или их изменения, которые оказывают на органы и ткани влияния, выражающиеся в изменении активности последних. В соответствии с физической природой воздействия раздражители делят на механические, электрические, химические, температурные, звуковые и т.д. Раздражитель может быть по величине пороговым, т.е. оказывающим минимальное эффективное воздействие; максимальным, предъявление которого вызывает эффекты, не изменяющиеся при усилении раздражителя; сверхсильным, действие которого может оказывать повреждающий и болевой эффект, или приводить к неадекватным ощущениям.

Рефлекторная реакция ответное действие или процесс в организме (системе, органе, ткани, клетке), вызванные рефлексом.

Рефлекс возникновение, изменение или прекращение функциональной активности органов, тканей или целостного организма, осуществляемое при участии центральной нервной системы в ответ на раздражение нервных окончаний (рецепторов).

Под влиянием различных стимулов, вследствие свойства живой протоплазмы возбудимости, в организме осуществляются процессы возбуждения и торможения. Возбудимость способность живых клеток воспринимать изменения внешней среды и отвечать на эти изменения реакцией возбуждения. Чем ниже пороговая сила раздражителя, тем выше возбудимость, и наоборот. Возбуждение активный физиологический процесс, которым некоторые живые клетки (нервные, мышечные, железистые) отвечают на внешнее воздействие. Возбудимые ткани ткани, способные в ответ на действие раздражителя переходить из состояния физиологического покоя в состояние возбуждения. В принципе, все живые клетки обладают возбудимостью, но в физиологии к этим тканям принято относить преимущественно нервную, мышечную, железистую. Результатом возбуждения является возникновение деятельности организма или его составляющих; следствием торможения является подавление или угнетение деятельности клеток, тканей или органов, т.е. процесс, приводящий к уменьшению или предупреждению возбуждения. Возбуждение и торможение представляют собой взаимопротивоположные и взаимосвязанные процессы. Так, возбуждение может при его усилении переходить в торможение, а торможение способно усиливать последующее возбуждение. Для вызова возбуждения раздражитель должен быть определенной силы, равный или превышающий порог возбуждения, под которым понимают ту минимальную силу раздражения, при которой возникает минимальная по величине реакция раздражаемой ткани.

Автоматия свойство некоторых клеток, тканей и органов возбуждаться под влиянием возникающих в них импульсов, без влияния внешних раздражителей. Например, автоматия сердца способность миокарда ритмически сокращаться под влиянием импульсов, возникающих в нем самом.

Лабильность свойство живой ткани, определяющее ее функциональное состояние. Под лабильностью понимают скорость реакций, лежащих в основе возбуждения, т.е. способность ткани осуществлять единичный процесс возбуждения в определенный промежуток времени. Предельный ритм импульсов, который возбудимая ткань в состоянии воспроизвести в единицу времени, является мерой лабильности, или функциональной подвижности ткани.

Важной особенностью человека и высших животных является постоянство химического состава и физико-химических свойств внутренней среды организма. Для обозначения этого постоянства используется понятие гомеостазис (гомеостаз) совокупность физиологических механизмов, поддерживающих биологические константы организма на оптимальном уровне. Такими константами являются: температура тела, осмотическое давление крови и тканевой жидкости, содержание в них ионов натрия, калия, кальция, хлора и фосфора, а также белков и сахара, концентрация водородных ионов и др. Это постоянство состава, физико-химических и биологических свойств внутренней среды является не абсолютным, а относительным и динамическим; оно постоянно коррелируется в зависимости от изменений внешней среды и в результате жизнедеятельности организма.

Внутренняя среда организма совокупность жидкостей (кровь, лимфа, тканевая жидкость), принимающих непосредственное участие в процессах обмена веществ и поддержания гомеостазиса в организме.

Обмен веществ и энергии состоит в поступлении в организм из внешней среды различных веществ, в их изменении и усвоении с последующим выделением образующихся из них продуктов распада. Обмен веществ (метаболизм) представляет собой совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружающей средой. Процессы обмена веществ разделяют на две группы: ассимиляторные и диссимиляторные. Под ассимиляцией понимают процессы усвоения веществ, поступающих в организм из внешней среды; образования более сложных химических соединений из простых, а также происходящий в организме синтез живой протоплазмы. Диссимиляция это разрушение, распад, расщепление входящих в состав протоплазмы веществ, в частности, белковых соединений.

Компенсаторные механизмы адаптивные реакции, направленные на устранение или ослабление функциональных сдвигов в организме, вызванных неадекватными факторами среды. Это динамичные, быстро возникающие физиологические средства аварийного обеспечения организма. Они мобилизуются, как только организм попадает в неадекватные условия, и постепенно затухают по мере развития адаптационного процесса. (Например, под воздействием холода усиливаются процессы производства и сохранения тепловой энергии, повышается обмен веществ, в результате рефлекторного сужения периферических сосудов (особенно кожи) уменьшается теплоотдача. Компенсаторные механизмы служат составной частью резервных сил организма. Обладая высокой эффективностью, они могут поддерживать относительно стабильный гомеостазис достаточно долго, для развития устойчивых форм адаптационного процесса).

Адаптация процесс приспособления организма к меняющимся условиям среды. В качестве важного компонента адаптивной реакции организма выступает стресс-синдром сумма неспецифических реакций, создающих условия для активации гипоталамо-гипофизарно-надпочечниковой системы, увеличения поступления в кровь и ткани адаптивных гормонов, кортикостероидов и катехоламинов, стимулирующих деятельность гомеостатических систем. Адаптивная роль неспецифических реакций заключается в их способности повышать резистентность (сопротивляемость) организма к различным факторам среды.

Хотя физиология является единой и целостной наукой о функциях организмов животных и человека, ее подразделяют на несколько, в значительной степени самостоятельных, но тесно связанных между собой областей. В этом плане обычно выделяют общую и частную физиологию, сравнительную и эволюционную, а также специальную (или прикладную) физиологию и физиологию человека.

Общая физиология исследует природу процессов, общих для организмов различных видов, а также закономерности реакций организма и его структур на воздействия внешней среды. В связи с этим изучаются такие процессы и свойства, как сократимость, возбудимость, раздражимость, торможение, энергетические и метаболические процессы, общие свойства биологических мембран, клеток, тканей.

Частная физиология изучает функции тканей (мышечной, нервной и др.), органов (мозга, сердца, почек и др.), систем (пищеварения, кровообращения, дыхания и др.).

Сравнительная физиология посвящена изучению сходства и различия каких-либо функций у разных представителей животного мира с целью выявления причин и общих закономерностей изменения функций или появления новых. Особое внимание при этом уделяется выяснению механизмов качественных и количественных изменений физиологических процессов, появившихся в течение видового и индивидуального развития живых существ.

Эволюционная физиология объединяет исследования общебиологических закономерностей и механизмов появления, развития и становления физиологических функций у человека и животных в онто- и филогенезе.

Специальная (прикладная) физиология изучает закономерности изменения функций организма в связи с его специфической деятельностью, практическими задачами или конкретными условиями обитания. В практическом отношении существенное значение имеет физиология сельскохозяйственных животных. К проблемам специальной физиологии иногда относят некоторые разделы физиологии человека (авиационную, космическую, подводную физиологию и др.).

В плане задач физиологии человека выделяются:

1) Авиационная физиология раздел физиологии и авиационной медицины, ориентированный на исследования реакций организма человека при воздействии на него авиационных полетов с целью разработки методов и средств защиты летного состава от неблагоприятных производственных факторов.

2) Военная физиология раздел физиологии и военной медицины, в рамках которого изучаются закономерности регуляции функций организма в условиях учебно-боевой и боевой обстановки.

3) Возрастная физиология исследующая возрастные особенности формирования и угасания функций органов, систем и организма человека от момента зарождения до прекращения его индивидуального (онтогенетического) развития.

4) Клиническая физиология в рамках которой изучаются роль и характер изменений физиологических процессов в организме человека при развитии и установлении патологических состояний в его органах или системах.

5) Космическая физиология раздел физиологии и космической медицины, связанный с изучением реакций организма человека на воздействие факторов космического полета (невесомость, гиподинамия и др.) с целью разработки методов и средств защиты человека от их неблагоприятных влияний.

6) Психофизиология область психологии и физиологии человека, состоящая в изучении объективно регистрируемых сдвигов физиологических функций, сопровождающих психические процессы восприятия, запоминания, мышления, эмоций и др.

7) физиология спорта исследующая функции организма человека при тренировочных и состязательных упражнениях.

8) Физиология труда изучающая физиологические процессы и особенности их регуляции во время трудовой деятельности человека с целью физиологического обоснования путей и средств организации.

Возбудимые ткани и их общие свойства

Возбудимые ткани это нервная, мышечная и железистая структуры, которые способны спонтанно или в ответ на действие раздражителя возбуждаться. Возбуждение это генерация потенциала действия (ПД) + распространение ПД + специфический ответ ткани на этот потенциал, например, сокращение, выделение секрета, выделение кванта медиатора.

Свойства возбудимых тканей и показатели, их характеризующие:

Свойства

1. Возбудимость способность возбуждаться

2. Проводимость способность проводить возбуждение, т.е. проводить ПД

3. Сократимость способность развивать силу или напряжение при возбуждении

4. Лабильность или функциональная подвижность способность к ритмической активности

5. Способность выделять секрет (секреторная активность), медиатор

Показатели

Порог раздражения, реобаза, хронаксия, длительность абсолютной рефракторной фазы, скорость аккомодации.

Скорость проведения ПД, например, у нерва она может достигать 120 м/с (около 600 км/час).

Максимальная величина силы (напряжения), развиваемая при возбуждении.

Максимальное число возбуждений в единицу времени, например, нерв способен в 1с генерировать 1000 ПД.

Электрические явления в возбудимых тканях

Классификация:

Биопотенциалы общее название всех видов электрических процессов в живых системах.

Потенциал повреждения исторически первое понятие об электрической активности живого (демаркационный потенциал). Это разность потенциалов между неповрежденной и поврежденной поверхностями живых возбудимых тканей (мышцы, нервы). Разгадка его природы привела к созданию мембранной теории биопотенциалов.

Мембранный потенциал (МП) это разность потенциалов между наружной и внутренней поверхностями клетки (мышечного волокна) в покое. Обычно МП, или потенциал покоя, составляет 50–80 мВ, со знаком «–» внутри клетки. При возбуждении клетки регистрируется потенциал действия (его фазы: пик, следовая негативность, следовая позитивность) быстрое изменение мембранного потенциала во время возбуждения.

Внеклеточно-регистрируемый потенциал действия, внутриклеточно-регистрируемый потенциал действия это варианты потенциалов действия, форма которых зависит от способа отведения (см. ниже).

Рецепторный (генераторный) потенциал изменение МП рецепторных клеток во время их возбуждения.

Постсинаптические потенциалы (варианты: возбуждающий постсинаптический потенциал ВПСП, тормозной постсинаптический потенциал ТПСП, частный случай возбуждающего постсинаптического потенциала ПКП потенциал концевой пластинки).

Вызванный потенциал это потенциал действия нейрона, возникающий в ответ на возбуждение рецептора, несущего информацию к этому нейрону.

История исследования физиологии возбуждения

Л. Гальвани был первым, кто убедился в существовании «живого электричества». Его первый (балконный) опыт состоял в том, что препарат задних лапок лягушек на медном крючке был подвешен к железному балкону. От ветра он задевал балконные перила, и это вызывало сокращение мышц. По Гальвани, это было результатом замыкания цепи тока, в результате чего «живое электричество» вызывало сокращение. Вольта (итальянский физик) опроверг такое объяснение. Он полагал, что сокращение обусловлено наличием «гальванической пары» железо-медь. В ответ Гальвани поставил второй опыт (опыт без металла), который доказывал идею автора: набрасывался нерв между поврежденной и неповрежденной поверхностями мышцы и в ответсокращение интактной мышцы.

Мембранный потенциал и его происхождение

МП, или потенциал покоя, это разность потенциалов между наружной и внутренней поверхностями мембраны в условиях покоя. В среднем у клеток возбудимых тканей он достигает 50–80 мВ, со знаком «–» внутри клетки. Обусловлен преимущественно ионами калия. Как известно, в клетках возбудимых тканей концентрация ионов калия достигает 150 ммоль/л, в среде – 4–5 ммоль (ионов калия намного больше в клетке, чем в среде). Поэтому по градиенту концентрации калий может выходить из клетки, и это происходит с участием калиевых каналов, часть которых открыта в условиях покоя. В результате из-за того, что мембрана непроницаема для анионов клетки (глутамат, аспартат, органические фосфаты), на внутренней поверхности клетки образуется избыток отрицательно заряженных частиц, а на наружной избыток положительно заряженных частиц. Возникает разность потенциалов. Чем выше концентрация калия в среде тем меньше это отношение, тем меньше величина мембранного потенциала. Однако расчетная величина, как правило, ниже реальной. Например, по расчетам МП должен быть -90 мВ, а реально -70 мВ. Это расхождение обусловлено тем, что ионы натрия и хлора тоже вносят свой вклад в создание МП. В частности, известно, что натрия больше в среде (140 ммоль/л против 14 ммоль/л внутриклеточной). Поэтому натрий может войти в клетку. Но большая часть натриевых каналов в условиях покоя закрыта. Поэтому в клетку входит лишь небольшая часть ионов натрия. Но и этого достаточно, чтобы хотя бы частично компенсировать избыток анионов. Ионы хлора, наоборот, входят в клетку (частично) и вносят отрицательные заряды. В итоге величина мембранного потенциала определяется в основном калием, а также натрием и хлором.

Для того чтобы МП поддерживался на постоянном уровне, необходимо поддержание ионного гетсрогенитета ионной асимметрии. Для этого, в частности, служит калий-натриевый насос (и хлорный), который восстанавливает ионную асимметрию, особенно после акта возбуждения. Доказательством калиевой природы МП является наличие зависимости: чем выше концентрация калия в среде, тем меньше величина МП. Для дальнейшего изложения важно понятие: деполяризация (уменьшение МП, например, от минус 90 мВ до минус 70 мВ) и гиперполяризация противоположное явление.

Потенциал действия

Потенциал действия это кратковременное изменение разности потенциала между наружной и внутренней поверхностями мембраны (или между двумя точками ткани), возникающее в момент возбуждения. При регистрации потенциала действия с помощью микроэлектродной техники наблюдается типичный пикообразный потенциал. В нем выделяют следующие фазы или компоненты:

1. Локальный ответ начальный этап деполяризации.

2. Фазу деполяризации быстрое снижение мембранного потенциала до нуля и перезарядка мембраны (реверсия, или овершут).

3. Фазу реполяризании восстановление исходного уровня мембранного потенциала;

в ней выделяют фазу быстрой реноляризации и фазу медленной реполяризации, в свою очередь, фаза медленной реполяризации представлена следовыми процессами (потенциалами):

следовая негативность (следовая деполяризация) и следовая позитивность (следовая гиперполяризация). Амплитудно-временные характеристики потенциала действия нерва, скелетной мышцы таковы: амплитуда потенциала действия 140–150 мВ; длительность пика потенциала действия (фаза деполяризации + фаза реполяризации) составляет 1–2 мс, длительность следовых потенциалов – 10–50 мс.

Форма потенциала действия (при внутриклеточном отведении) зависит от вида возбудимой ткани: у аксона нейрона, скелетной мышцы пикообразные потенциалы, у гладких мышц в одних случаях пикообразные, в других платообразные (например, потенциал действия гладких мышц матки беременной женщины платообразный, а длительность его составляет почти 1 минуту). У сердечной мышцы потенциал действия имеет платообразную форму.

Природа потенциала действия

При исследовании ПД аксонов и сомы нервной клетки, ПД скелетной мышцы было установлено, что фаза деполяризации обусловлена значительным повышением проницаемости для ионов натрия, которые входят в клетку в начале процесса возбуждения и таким образом уменьшают существующую разность потенциала (деполяризация). При этом чем выше степень деполяризации, тем выше становится проницаемость натриевых каналов, тем больше входит ионов натрия в клетку и тем выше степень деполяризации. В этот период происходит не только снижение разности потенциалов до нуля, но и изменение поляризованности мембраны на высоте пика ПД внутренняя поверхность мембраны заряжена положительно по отношению к наружной (явление реверсии, или овершута). Однако бесконечно этот процесс идти не может: в результате закрытия инактивационных ворот натриевые каналы закрываются, и приток натрия в клетку прекращается. Затем наступает фаза реполяризации. Она связана с увеличением выхода из клетки ионов калия. Это происходит за счет того, что в результате деполяризации большая часть калиевых каналов, которые в условиях покоя были закрыты, открываются и «+» заряды уходят за пределы клетки. Вначале этот процесс идет очень быстро, потом медленно, поэтому фаза реполяризации вначале протекает быстро (нисходящая часть пика ПД), а потом медленно (следовая негативность). Этот же процесс лежит в основе фазы следовой гиперполяризации. На фоне следовых потенциалов происходит активация калий-натриевого насоса. Если он работает в электронейтральном режиме (2 иона натрия выносятся из клетки в обмен на 2 вносимых в клетку иона калия), то на форме ПД этот процесс не отражается. Если же насос работает в электрогенном режиме, когда 3 иона натрия выносятся из клетки в обмен на 2 вносимых в клетку иона калия, то в результате на каждый такт работы насоса в клетку вносится на 1 катион меньше, чем выносится, поэтому в клетке постепенно возрастает избыток анионов, т. с. в таком режиме насос способствует появлению дополнительной разности потенциалов. Это явление может лежать в основе фазы следовой гиперполяризации.

В сердечной мышце природа ПД иная: процесс деполяризации обусловлен ионами натрия и кальция эти ионы входят внутрь клетки в начале фазы деполяризации.

В гладких мышцах сосудов, желудка, кишечника, матки и других образований генерация ПД связана с тем, что в момент возбуждения в клетку входят главным образом не ионы натрия, а ионы кальция.

Законы раздражения возбудимых тканей

Прежде чем рассмотреть эти законы, необходимо представить, каким образом происходит возбуждение, т.е. какие условия должны возникнуть в возбудимой ткани, чтобы она реализовала свою способность возбуждаться. Основное условие это снижение мембранного потенциала до критического уровня деполяризации (КУД). Любой агент, если он способен это сделать, одновременно вызывает и возбуждение ткани. Например, МП -70 мВ. КУД = -50 мВ. Чтобы вызвать возбуждение, надо деполяризовать мембрану до -50 мВ, т. с. на 20 мВ снизить ее исходный потенциал покоя. Как только МП достигнет уровня КУД, то в дальнейшем процесс (в силу регенеративности) будет продолжаться самостоятельно и приведет к открытию всех натриевых каналов, т. с. к генерации полноценного ПД. Если мембранный потенциал не достигнет этого уровня, то в лучшем случае возникнет так называемый местный потенциал (локальный ответ).

Все агенты, которые вызывают гиперполяризацию ткани, в момент воздействия не смогут вызвать возбуждение, т. к. в этом случае МП не достигает критического уровня деполяризации, а наоборот, уходит от него.

Три замечания:

1. В ряде возбудимых тканей величина мембранного потенциала по времени непостоянна она периодически снижается и самостоятельно достигает КУД, в результате чего возникает спонтанное возбуждение (автоматия). Это характерно для водителей ритма сердца, для некоторых гладких мышц, например, мышц матки.

2. Когда на ткань действует раздражитель (в подпороговой силе), то он может вызывать изменение КУД. Например, длительная подпороговая деполяризация приводит к тому, что КУД изменяется: допустим, в исходном состоянии он составляет -50 мВ, а в результате длительной деполяризации он становится равным -40 или -30 мВ. В такой ситуации вызывать возбуждение становится труднее. В целом, это явление получило название аккомодации возбудимой ткани. Оно лежит в основе закона градиента (не путать с понятием «аккомодация глаза»).

3. Для возбуждения ткани необходимо наличие внешнего раздражителя по отношению к этой ткани (исключение ткани, обладающие автоматией). Такими раздражителями в естественных условиях могут быть нервный импульс, выделение медиатора. В целом, в физиологии говорят о двух видах раздражителей адекватных и неадекватных. Адекватные раздражители это такие воздействия, которые «в малых дозах» способны вызвать возбуждение. Например, квант света для фоторецептора, нервный импульс для синапса. Неадекватный раздражитель тоже способен вызывать возбуждение, но для этого он должен быть использован в больших «дозах», в результате чего ткань может повреждаться.

Для того чтобы раздражитель вызвал возбуждение, он должен быть: 1. достаточно сильным (закон силы), 2. достаточно длительным (закон времени), 3. достаточно быстро нарастать (закон градиента). Если эти условия не соблюдаются, то возбуждения не происходит. Рассмотрим подробнее эти законы раздражения и следствия, которые из них вытекают.

Закон силы. Чтобы возникло возбуждение, раздражитель должен быть достаточно сильным пороговым или выше порогового. Обычно под термином «порог» понимается минимальная сила раздражителя, которая способна вызвать возбуждение. Например, чтобы вызвать возбуждение нейрона при МП = -70 мВ и КУД = -50 мВ, пороговая сила должна быть равной -20 мВ. Меньшая сила раздражителя ответа вызывать не будет.

Одно важное следствие этого закона введено понятие «порог раздражения» (минимальная сила раздражителя, способного вызвать возбуждение). Определяя этот показатель,

Закон времени (или зависимость пороговой силы раздражителя от времени его действия). Этот закон утверждает: раздражитель, вызывающий возбуждение, должен быть достаточно длительным, воздействовать на ткань некоторое время, чтобы вызвать возбуждение. Оказалось, что в определенном диапазоне зависимость пороговой силы раздражителя от длительности его действия носит характер обратной зависимости (гипербола) чем меньше по времени действует на ткань раздражитель, тем выше требуется его сила для инициации возбуждения. На кривой (Гоорвега-Вейса-Лапика) выделяют области, которые свидетельствуют о том, что если раздражитель достаточно длительный, то пороговая сила раздражителя не зависит от его длительности. Эта минимальная сила получила название «реобаза». Начиная с некоторой величины длительности импульса, пороговая сила его зависит от длительности чем меньше длительность, тем выше должна быть сила раздражителя. Вводится понятие «полезное время» минимальное время, в течение которого раздражитель данной силы должен воздействовать на ткань, чтобы вызвать возбуждение. Если сила раздражителя равна двум реобазам, то полезное время для такого раздражителя получает еще одно название хронаксия. (Итак, хронаксия это полезное время раздражителя, сила которого равна 2 реобазам).

Кривая силы-времени.

А–порог (реобаза); Б–удвоенная реобаза; а–полезное время действия тока, б – хронаксия.

Закон градиента. Для того чтобы раздражитель вызвал возбуждение, он должен нарастать достаточно быстро. Если раздражитель нарастает медленно, то в силу развития аккомодации (инактивации натриевых каналов), происходит повышение порога раздражения, поэтому для получения возбуждения величина стимула должна быть больше, чем если бы он нарастал мгновенно. Зависимость величины пороговой силы раздражителя от скорости его нарастания тоже носит гиперболический характер (является обратно-пропорциональной зависимостью). Минимальный градиент это минимальная скорость нарастания раздражителя, при которой ткань еще способна ответить возбуждением на данный раздражитель. Этот показатель тоже используется для характеристики возбудимости.

Соотношение фаз потенциала действия и возбудимости

Когда ткань возбуждается генерирует ПД, то временно (соответственно с длительностью ПД) в ней меняется возбудимость: вначале ткань становится совершенно невозбудимой (абсолютная рефрактерность) любой по силе стимул не способен вызвать в ней новый приступ возбуждения. Эта фаза обычно наблюдается во время пика ПД. Затем происходит постепенное восстановление возбудимости до исходного состояния (фаза относительной рефрактерности) в этот момент раздражитель может вызвать возбуждение (генерацию нового ПД), но для этого он должен быть намного больше порогового (исходного). Затем (в фазу следовой негативности) возбудимость повышается (супервозбудимость, или фаза экзальтации). В этот момент подпороговые раздражители могут вызывать возбуждение. Наконец, в тканях, в которых ярко проявляется следовая гиперполяризация, наблюдается еще одна фаза субнормальной возбудимости (сниженной возбудимости).


1. Реферат Вопросы и ответы по курсу политологии
2. Реферат Моделирование процесса обработки сигнала с широтно-импульсной модуляцией и помехи в приемном
3. Реферат на тему Hydrogen Peroxide Essay Research Paper H2O2 a
4. Курсовая на тему Бюджетное финансирование и основные направления его совершенствова
5. Реферат на тему Socrates And His Pursuit Essay Research Paper
6. Реферат на тему Тайны Главного Здания МГУ
7. Курсовая Конкурентные преимущества предприятия
8. Реферат Деловое общение менеджера 2
9. Курсовая Принципы социологии и специфика социологии культуры
10. Реферат Банковский и товарный кредиты