Контрольная работа

Контрольная_работа на тему Роль обмена веществ и энергии в жизни живых существ

Работа добавлена на сайт bukvasha.net: 2015-06-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024


1. Химический состав плодов и овощей

Плоды и овощи ценят за содержание крахмала и небольшого количества сахара – источник витаминов и минералов. Жира практически нет (0,5%) кроме орехов, белок до 1% и много воды, энергетическая ценность невысокая за счет воды.

Бобовые культуры содержат белков в зерне значительно больше, чем зерновые, но уступают им по количеству крахмала.

Белки – это органические высокомолекулярные соединения, состоящие из аминокислот. В молекуле белка аминокислоты соединены между собой пептидными связями. Разнообразие белков определяется последовательностью размещения остатков аминокислот в полипептидной цепи (первичная структура белка). Кроме того, существуют вторичная структура белка, характеризующая тип укладки полипептидных цепей (правая α-спираль, α-структура и β-изгиб), третичная структура белка, характеризующая расположение его полипептидной цепи в пространстве, и четвертичная структура, характеризующая белки, в состав которых входит несколько полипептидных цепей, связанных между собой нековалентными связями.

Масличные культуры (подсолнечник и лен) оцениваются по содержанию жиров в семенах. Следует отметить, что качество растительных жиров (масел) определяется соотношением в, них насыщенных и ненасыщенных жирных кислот.

Жиры являются сложными эфирами глицерина и высших жирных кислот. В состав жиров входят главным образом жидкие ненасыщенные кислоты (олеиновая, линолевая и линоленовая).

В зависимости от того, какой именно фрукт или овощ, количество воды колеблется от 40% до 95%.

2. Роль обмена веществ и энергии в жизни живых существ. Биологическое значение цикла Кребса

Обязательным условием существования любого организма является постоянный приток питательных веществ и постоянное выделение конечных продуктов химических реакций, происходящих в клетках организма.

Поступившие в организм в ходе питания органические вещества (или синтезированные в ходе фотосинтеза) расщепляются ферментами на строительные блоки – мономеры и направляются во все клетки организма. Часть молекул этих; веществ расходуется на синтез специфических органических веществ, присущих данному организму. В клетках синтезируются белки, липиды, углеводы, нуклеиновые кислоты и другие вещества, которые выполняют различные функции (строительную, каталитическую, регуляторную, защитную и т.д.).

Другая часть низкомолекулярных органических соединений, поступивших в клетки, идет на образование АТФ, в молекулах которой заключена энергия, доступная непосредственно для выполнения работы.

В ходе превращения веществ в клетках организма образуются конечные продукты обмена, которые могут быть токсичными для организма и поэтому выводятся из него (например, аммиак). Таким образом, все живые организмы постоянно потребляют из окружающей среды определенные вещества, преобразуют их и выделяют в среду конечные продукты.

Катаболизм (диссимиляция) – совокупность реакций, приводящих к образованию простых соединений из более сложных. К катаболическим относят, например, реакции гидролиза сложных полимеров до простых мономеров и расщепление последних до углекислого газа, воды, аммиака. К катаболичееким относят реакции энергетического обмена, в ходе которого происходит окисление органических веществ и синтез АТФ.

Анаболизм (ассимиляция) – совокупность реакций синтеза сложных органических веществ из более простых. Например, фиксация азота и биосинтез белка, синтез углеводов из углекислого газа и воды в ходе фотосинтеза, синтез полисахаридов, липидов, нуклеотидов, ДНК, РНК и других веществ. Синтез веществ в клетках живых организмов часто обозначают понятием пластический обмен, а расщепление веществ и их окисление с целью синтеза АТФ – энергетический обмен. Пластический и энергетический обмены составляют основу жизнедеятельности любой клетки, а, следовательно, и любого организма, и тесно связаны между собой1.

Энергетический обмен – неотъемлемая и составная часть обмена веществ и энергии в живом организме, включающая процессы поглощения, запасания, передачи, трансформации, использования и выделения энергии. Любая живая клетка представляет собой активную, динамичную систему. Энергия необходима для осуществления любых проявлений жизнедеятельности. Она требуется для процессов химического синтеза, для всех видов движения (в том числе и мышечного), для передачи нервных импульсов. Энергия тратится и на процесс активного переноса веществ через плазматическую мембрану (в клетку и из клетки), причем на это расходуется весьма значительная часть энергетических ресурсов клетки. Энергия требуется также для образования тепла и поддержания постоянной температуры тела у птиц и млекопитающих и т.д. В организм энергия поступает из окружающей среды. Первичным источником ее для всего живого служит та часть солнечной радиации, которая называется видимым светом, улавливается зелеными растениями и в процессе фотосинтеза превращается сначала в электрохимическую, а затем в химическую энергию, запасаемую в органических продуктах фотосинтеза. Животные организмы, грибы, большинство бактерий и простейших не способны к фотосинтезу и поэтому целиком зависят (в смысле снабжения энергией) от веществ, синтезируемых растениями. Эта зависимость может быть прямой, как у травоядных, или непрямой, как у плотоядных, которые питаются другими животными, в том числе травоядными. Далее запасенная энергия переводится в форму, в которой она может использоваться растительными и животными клетками, клетками других организмов для выполнения какой-либо работы, например для синтеза необходимых клетке веществ, для обеспечения механических, электрических, осмотических и иных процессов. В конечном счете, сущность энергетического обмена в клетке (и организме в целом) сводится к покрытию ее энергетических потребностей за счет осуществления в ней широкого спектра химических, физических и физико-химических реакций и преобразований веществ.

Единый процесс энергетического обмена можно условно разделить на три последовательных этапа. Первый из них – подготовительный. На этом этапе высокомолекулярные органические вещества в цитоплазме под действием соответствующих ферментов расщепляются на мелкие молекулы: белки – на аминокислоты, полисахариды (крахмал, гликоген) – на моносахариды (глюкозу), жиры – на глицерин и жирные кислоты, нуклеиновые кислоты – на нуклеотиды и т.д. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде тепла.

Второй этап – бескислородный, или неполный. Образовавшиеся на подготовительном этапе вещества подвергаются дальнейшему ферментативному расщеплению без участия кислорода. Примером может служить гликолиз.

Продукт гликолиза – пировиноградная кислота – заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Этот процесс также можно разделить на три основные стадии: 1) окислительное декарбоксилирование пировиноградной кислоты, 2) цикл трикарбоновых кислот (цикл Кребса – далее); 3) заключительная стадам окисления – электронтранспортная цепь.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т.п.). Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Кислородный этап, таким образом, дает энергии в 18 больше, чем ее запасается в результате гликолиза2.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А (сокращенно его обозначают КоА), в результате чего образуется; ацетилкофермент А с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула СО2 (первая) и атомы водорода, которые запасаются в форме НАД • Н + Н+.

Вторая стадия – цикл Кребса (названный так в честь открывшего его английского ученого Ганса Кребса).

В цикл Кребса вступает ацетил-КоА, образованный на предыдущей стадии. Ацетил-КоА взаимодействует со щавелево-уксусной кислотой (четырехуглеродное соединение), в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил-КоА. Далее превращение идет через образование ряда органических кислот, в результате чего ацетильные группы, поступающие в цикл при гидролизе ацетил-КоА, дегидрируются с высвобождением четырех пар атомов водорода и декарбоксилируются с образованием двух молекул СО2. При декарбоксилированни для окисления атомов углерода до СО2 используется кислород, отщепляемый от молекул воды. В конце цикла щавелево-уксусная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. В процессе цикла используются три молекулы воды, выделяются две молекулы СО2 и четыре пары атомов водорода, которые восстанавливают соответствующие коферменты (ФАД – флавинадениндинуклеотид и НАД). Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + ЗН2О + ЗНАД+ + ФАД + АДФ + Н3РО4 → КоА + 2СО2 + ЗНАД • Н + Н* + ФАД • Н2 + АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется ЗСО2, 4НАД • Н + Н+, ФАД • Н2.

Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

С6Н,2Об + 6Н20 + 10НАД + 2ФАД → 6СО2 + 4АТФ + 10НАД • Н + Н+ + 2ФАД • Н2.

Третья стадия – электронтранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов, окисляются молекулярным кислородом до Н2О с одновременным, фосфорилированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД • Н2 и ФАД • Н2, передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2Н+ + 2е - Именно в таком виде они и передаются по цепи переносчиков. Путь переноса водорода и электронов от одной молекулы переносчика к другой представляет собой окислительно-восстановительный процесс. При этом молекула, отдающая электрон или атом водорода, окисляется, а молекула, воспринимающая электрон или атом водорода, восстанавливается. Движущей силой транспорта атомов водорода в дыхательной цепи является разность потенциалов.

С помощью переносчиков ионы водорода Н+ переносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство3.

При переносе пары электронов от НАД на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе электроны переносятся на внутреннюю сторону мембраны и акцептируются кислородом.

Процесс образования АТФ в результате переноса ионов Н* через мембрану митохондрии получил название окислительного фосфорилирования. Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов Н+ через мембрану)4.

3. Учение о микроэволюции и видообразовании. Определение макро- и микроэволюции, их соотношение

Микроэволюция – эволюционные преобразования, происходящие в пределах популяций в сравнительно короткие промежутки времени (например, изменение частоты генов5, гомо- и гетерозигот в популяции за несколько поколений). Иными словами, микроэволюция – это совокупность элементарных эволюционных явлений, направленно текущих в популяциях под влиянием различных эволюционных факторов.

Элементарное эволюционное явление – стойкое изменение генотипического состава популяции, т.е. совокупность необратимых генетических изменений, которые меняют эволюционные возможности популяции6.

Такие генетические изменения могут возникнуть в результате действия различных эволюционных факторов и, в конце концов, сведутся либо к возникновению и распространению новых (ранее не существовавших в популяции) наследственных особенностей, либо к возникновению таких сочетаний генов, которые в сумме дадут совершенно новый результат в виде возникновения нового признака.

Микроэволюция, таким образом, – это процесс эволюционного преобразования популяций, приводящий к образованию внутривидовых форм и новых видов как конечного ее результата.

Макроэволюция – это процесс эволюционного преобразования и развития различных групп живых организмов на протяжении десятков и сотен миллионов лет. Иными словами, микроэволюция – это эволюционные преобразования живой природы на уровне выше видового (образование высших таксонов, новых органов и систем, вымирание отдельных групп и т.д.). В общем смысле макроэволюцией можно назвать развитие жизни на Земле в целом, включая и ее происхождение. Макроэволюционным событием считается также возникновение человека, по многим признакам отличающегося от других биологических видов. Между микро- и макроэволюцией нельзя провести резкую грань, потому что процесс микроэволюции, первично вызывающий изменение популяций (вплоть до видообразования), продолжается без какого-либо перерыва и на макроэволюционном уровне внутри вновь возникших форм.

Отсутствие принципиальных различий в протекании микро- и макроэволюционного процесса позволяет рассматривать их как две стороны единого эволюционного процесса, и применять для анализа процесса всей эволюции понятия, разработанные в теории микроэволюции, поскольку макроэволюционные явления (возникновение новых семейств, отрядов и других групп) охватывают десятки миллионов лет и исключают возможность их непосредственного экспериментального исследования.

Макроэволюция может осуществляться несколькими способами. Основной способ осуществления макроэволюции – дивергенция – расхождение признаков у родственных организмов. В основе дивергенции лежит экологическая дифференциация вида (или группы видов) на самостоятельные ветви. Различия между видами одной труппы в процессе эволюции, в силу изменения направления отбора, все более и более углубляются. Но вместе с тем сохраняется и определенная общность признаков морфофизиологической организации. Это свидетельствует о происхождении данной группы от общего родоначального предка. При дивергенции сходство между организмами объясняется общностью их происхождения, а различия – приспособлением к разным условиям среды.

Примером дивергенции форм является возникновение разнообразных по морфофизиологическим особенностям вьюрков от одного или немногих предковых видов на Галапагосских островах. Расхождение внутривидовых форм и видов по разным местообитаниям определяется конкуренцией за одинаковые условия, выход из которых и заключается в расселении их по разным экологическим нишам. Механизм дивергентной эволюции основан на действии элементарных эволюционных факторов, например внешних факторов.

4. Факторы защиты организма.

Важную роль в защите от проникших в организм человека чужеродных веществ играют лейкоциты или белые кровяные тельца. Они обеспечивают иммунитет – распознавание и нейтрализацию (разрушение, обеззараживание, удаление) генетически чужеродных веществ инфекционной и неинфекционной природы. Вещества, при попадании которых в организм человека или животных вызывается иммунная реакция, называются антигенами (бактерии, вирусы, чужеродные клетки, тканевые экстракты, биологические жидкости и др.).

В 1 мм3 крови взрослого человека содержится 6–8 тыс. лейкоцитов. Их подразделяют на две группы: зернистые (гранулоциты) и незернистые (агранулоциты). Зернистые лейкоциты представлены нейтрофилами (50–79% всех лейкоцитов), эозинофилами (1–5%), базофилами (0–0,5%). В группу незернистых лейкоцитов входят лимфоциты (20–40%) и моноциты (2–10%). У здоровых людей соотношение между типами лейкоцитов постоянно, его изменение служит признаком заболевания.

Одной из форм защиты организма является клеточный иммунитет. Он осуществляется путем фагоцитоза – поглощения лейкоцитами чужеродных частиц и их внутриклеточного переваривания. Явление фагоцитоза было открыто И.И. Мечниковым. Наибольшей фагоцитарной активностью обладают нейтрофилы, моноциты, эозинофилы. Другой путь клеточного иммунитета – разрушение чужеродных, злокачественных и клеток организма человека, инфицированных вирусом, осуществляют некоторые виды лимфоцитов (Т-хелперы).

Другой формой иммунитета является гуморальный, осуществляемый вырабатываемыми некоторыми видами лимфоцитов защитными белками – антителами. Лимфоциты образуются из стволовых клеток красного костного мозга и некоторые из них живут 20 и более лет.

В зависимости от происхождения выделяют наследственный и приобретенный иммунитеты.

Наследственный (генотипический) иммунитет передается по наследству в ряду многих поколений. Он устойчивый, однотипный для каждого вида, различается лишь степенью индивидуальной выраженности. У человека он обеспечивает абсолютную невосприимчивость ко многим болезням животных, а у животных – к болезням человека.

Приобретенный (индивидуальный) иммунитет вырабатывается в процессе естественной жизни или вызывается искусственным путем. Пассивной формой естественного приобретенного иммунитета является плацентарный и материнский. Он обеспечивается пассивно переданными антителами от матери плоду через плаценту или младенцу с молоком при грудном вскармливании. После рождения и прекращения вскармливания грудным молоком эта форма иммунитета через 1–1,5 месяца угасает. Активной формой приобретенного в естественных условиях жизни является постинфекционный, возникающий у человека в результате перенесения заболевания. Этот вид иммунитета осуществляется, антителами, вырабатываемыми В-лимфоцитами. Он сохраняется в течение многих лет, а нередко и всю жизнь.

Приобретенный искусственный иммунитет подразделяют также на активный и пассивный. Активный (поствакцинальный) иммунитет создается введением в организм человека вакцин, содержащих ослабленные или убитые возбудители болезни. Он вырабатывается примерно через две недели после вакцинации и сохраняется длительное время. Пассивный искусственный иммунитет создается через несколько часов после введения сывороток с содержащимися в ней антителами против возбудителя какого-либо заболевания (например, противостолбнячная сыворотка, против яда змей и др.). Эта форма иммунитета сохраняется не более месяца. Ею пользуются главным образом в лечебных целях7.

Список литературы

  1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. – М.: Медицина, 1993.

  2. Биология. / Н.П. Соколова, И.И. Андреева и др. – М.: Высшая школа, 1987.

  3. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология. – М.: Айрис-пресс, 2005.

  4. Суворов А.В. Окислительно-восстановительные реакции. – М.: Школа-Пресс, 2003.

  5. Химия в быту и в производстве. / Под ред. Селиванова М.И. – М.: Химия, 2000.

1 Биология. / Н.П.Соколова, И.И.Андреева и др. – М.: Высшая школа, 1987.

2 Суворов А.В. Окислительно-восстановительные реакции. – М.: Школа-Пресс, 2003.

3 Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология. – М.: Айрис-пресс, 2005.

4 Березов Т.Т., Коровкин Б.Ф. Биологическая химия. - М.:Медицина,1993.

5 Ген – это участок молекулы ДНК (у многих вирусов РНК), кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК.

6 Популяция – это совокупность особей данного вида, в течение длительного времени (большого числа поколений) населяющих определенное пространство (часть ареала), внутри которой практически осуществляется свободное скрещивание и которая относительно изолирована от популяций этого же вида.

7 Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология.– М.: Айрис-пресс, 2005.


1. Курсовая Анализ эффективности использования материальных ресурсов 2
2. Курсовая Выбор оптимального стиля управления как проблема менеджмента
3. Курсовая на тему Розвиток психомоторики у дітей молодшого шкільного віку з порушенням мовлення
4. Сочинение на тему Твардовский a. t. - Твардовский.
5. Реферат на тему Нотні колекції бібліотеки Львівської національної музичної академі
6. Реферат на тему Beethoven Essay Research Paper BeethovenThe rise of
7. Сочинение на тему Праблематыка Песні пра зубра Міколы Гусоўскага. Сучаснасць зместу паэмы
8. Реферат на тему A Character Analysis Of The Many Facets
9. Курсовая на тему Архитектура и производительность серверных ЦП
10. Реферат на тему Adam SmithFree Trade Essay Research Paper In