Контрольная работа Основы теории и основные понятия процесса хроматографического разделения
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Основы теории и основные понятия процесса хроматографического разделения
Процесс хроматографического разделения очень сложен, тем не менее, его отдельные стадии могут быть смоделированы и представлены в виде уравнений, достаточно точно и верно отражающих реальный процесс. Без знания того, что такое удерживание, эффективность, селективность, нагрузочная емкость, невозможно подойти к решению практических задач по ВЭЖХ, постоянно возникающих перед исследователем независимо от того, в какой области он работает.
1.1 ЭФФЕКТИВНОСТЬ И СЕЛЕКТИВНОСТЬ
Хроматография — это метод разделения компонентов смеси, основанный на различии в равновесном распределении их между двумя несмешивающимися фазами, одна из которых неподвижна, а другая подвижна. Компоненты образца движутся по колонке, когда они находятся в подвижной фазе, и остаются на месте, когда находятся в неподвижной фазе. Чем больше сродство компонента к неподвижной фазе и чем меньше — к подвижной, тем медленнее он движется по колонке и тем дольше в ней удерживается. За счет различия в сродстве компонентов смеси к неподвижной и подвижной фазам достигается основная цель хроматографии — разделение за приемлемый промежуток времени смеси на отдельные полосы (пики) компонентов по мере их продвижения по колонке с подвижной фазой.
Из этих общих представлений ясно, что хроматографическое разделение возможно только в том случае, если компоненты образца, попадая в колонку при вводе пробы, во-первых, будут растворены в подвижной фазе и, во-вторых, будут взаимодействовать (удерживаться) с неподвижной фазой. Если при вводе пробы какие-то компоненты находятся не в виде раствора, они будут отфильтрованы и не будут участвовать в хроматографическом процессе. Точно так же компоненты, не взаимодействующие с неподвижной фазой, пройдут через колонку с подвижной фазой, не разделяясь на компоненты.
Примем условие, что какие-то два компонента растворимы в подвижной фазе и взаимодействуют с неподвижной фазой, т.е. хроматографический процесс может протекать без нарушений. В этом случае после прохождения смеси через колонку можно получить хроматограммы вида а, б или в (рис. 1.1). Эти хроматограммы иллюстрируют хроматографические разделения, отличающиеся эффективностью (а и б) при равной селективности и селективностью (б и в) при равной эффективности.
Эффективность колонки тем выше, чем уже пик получается при том же времени удерживания. Эффективность колонки измеряется числом теоретических тарелок (ЧТТ) N: чем выше эффективность, тем больше ЧТТ, тем меньше расширение пика
Рис. 1.1. Вид хроматограммы в зависимости от эффективности и селективности колонки: а — обычная селективность, пониженная эффективность (меньше теоретических тарелок), б — обычные селективность и эффек-тивность; в — обычная эффективность, повышенная селективность (больше отношение времен удерживания компонентов)
Рис. 1.2. Параметры хроматографического пика и расчет числа теоретических тарелок:
tR — время удерживания пика; h — высота пика; W1/2 — ширина пика на половине его высоты
первоначально узкой полосы по мере прохождения ее через колонку, тем уже шик на выходе из колонки. ЧТТ характеризует число ступеней установления равновесия между подвижной и неподвижной фазами. ЧТТ легко определить по хроматограмме (рис. 1.2) последующей формуле:
N = 5,54(tR / W1/2)2
Зная число теоретических тарелок, приходящееся на колонку, и длину колонки L (мкм), а также средний диаметр зерна сорбента dc (мкм), легко получить значения высоты, эквивалентной теоретической тарелке (ВЭТТ), а также приведенной высоты, эквивалентной теоретической тарелке (ПВЭТТ):
ВЭТТ = L / N ПВЭТТ = BЭTT / dс
Имея значения ЧТТ, ВЭТТ и ПВЭТТ, можно легко сравнивать эффективность колонок разных типов, разной длины, заполненных разными по природе и зернению сорбентами. Сравнивая ЧТТ двух колонок одной длины, сравнивают их эффективность. При сравнении ВЭТТ сравнивают колонки с сорбентами одинакового зернения, имеющими разную длину. Наконец, величина ПВЭТТ позволяет для двух любых колонок оценить качество сорбента, во-первых, и качество заполнения колонок, во-вторых, независимо от длины колонок, зернения сорбента и его природы.
Селективность колонки играет большую роль в достижении хромато-графического разделения. Селективность колонки α определяется отношением приведенных времен удерживания двух пиков по следующему уравнению:
α = (tR2-t0) / (tR1-t0)
где t0 - время удерживания несорбируемого компонента; tR1 и tR2 - времена удерживания компонентов 1 и 2.
Селективность колонки зависит от очень многих факторов, и искусство экспериментатора в большой мере определяется умением воздействовать на селективность разделения. Для этого в руках хроматографиста находятся три очень важных фактора: выбор химической природы сорбента, выбор состава растворителя и его модификаторов и учет химической структуры и свойств разделяемых компонентов. Иногда заметное влияние на селективность оказывает изменение температуры колонки, меняющее коэффициенты распределения веществ между подвижной и неподвижной фазами.
При рассмотрении разделения двух компонентов на хроматограмме и его оценке важным параметром является разрешение Rs, которое связывает времена выхода и ширину пиков обоих разделяемых компонентов (рис. 1.3):
RS = 2 (tR2- tR1) / (W1+W2)
Разрешение как параметр, характеризующий разделение пиков, увеличивается по мере возрастания селективности, отражаемой ростом числителя, и роста эффективности, отражаемой снижением значения знаменателя из-за уменьшения ширины пиков. Поэтому быстрый прогресс жидкостной хроматографии привел к изменению понятия «жидкостная хроматография высокого давления» — оно было заменено на «жидкостную хроматографию высокого разрешения» (при этом сокращенная запись термина на английском языке сохранилась HPLC как наиболее правильно характеризующее направление развития современной жидкостной хроматографии). Сокращение, принятое в отечественной литературе, — ВЭЖХ, расшифровываемое как «высокоэффектиная жидкостная хроматография», для современной жидкостной хроматографии несколько менее удачно, так как не учитывается важнейший фактор разделения — селективность.
Рис. 1.2. Разрешение пиков и параметры удерживания
Важным параметром удерживания в жидкостной хроматографии является коэффициент емкости k’, определяемый как частное от деления массы вещества в неподвижной фазе на массу вещества в подвижной фазе:
k’ = mн / mп
Важное уравнение в жидкостной хроматографии, связывающее основные хроматографические параметры разделения следующее:
RS = ј [(a- 1) /a][k2’ / (1 + k2’)]VN2
Разрешение, таким образом, определяется произведением трехсомножителей, первый из которых выражает зависимость от селективности колонки, второй — от коэффициента емкости колонки и третий — от эффективности колонки (ЧТТ).
Рассмотрим это важнейшее уравнение более подробно. Если, α=1, то разрешение равно 0, т.е. разделения нет независима от числа теоретических тарелок в колонке. Однако из характера функции α в уравнении видно, что небольшие изменения могут привести к заметному увеличению разрешения, особенно для тех случаев, когда значения α близки к 1. Если за счет подбора условий разделения удается изменить α с 1,1 до 1,2, это приводит к улучшению разрешения в два раза. Таким образом, на фактор селективности следует обращать основное внимание при подборе условий разделения, учитывая различие во взаимодействии разделяемых компонентов как в неподвижной, так и в подвижной фазе. В отличие от газовой хроматографии, в которой взаимодействия в подвижной (газовой) фазе незначительны и селективность системы в основном определяется только взаимодействиями веществ с неподвижной фазой, в жидкостной хроматографии подвижная (жидкая) фаза не является инертной, а может играть главную роль в процессе термодинамического распределения между неподвижной и подвижной фазами вследствие селективного взаимодействия разделяемых веществ с подвижной фазой. Поэтому в выборе условий для высокоселективного разделения как выбор сорбента, так и выбор растворителя играют одинаково важную роль, а искусство хроматографиста в ВЭЖХ более многогранно и требует учета большего числа взаимодействий между молекулами, чем в ГХ.
Второй сомножитель в уравнении принимает значение, равное 0 (при этом разрешение также равно 0, т.е. разделение отсутствует) в том случае, когда коэффициент емкости для второго компонента равен 0, т.е. оба разделяемых компонента элюируются как несорбируемые вещества (взаимодействие с неподвижной фазой отсутствует). С ростом значения k' разрешение увеличивается, при этом скорость анализа падает.
Наконец, из третьего сомножителя видно, что достигаемое разрешение пропорционально корню квадратному из числа теоретических тарелок, т.е. для увеличения разрешения вдвое нужно увеличить эффективность колонки в 4 раза (например, использовать колонку в 4 раза длиннее). Удлинение колонки в 4 раза приводит к увеличению продолжительности анализа также вчетверо, т. е. скорость анализа падает. Как правило, если эффективность колонки недостаточна, а скорость анализа является важным фактором, идут по другому пути для повышения эффективности — используют колонку с более мелким по зернению сорбентом. Однако в этом случае платой за большую эффективность при той же скорости анализа является повышение давления на колонке.
Следует отметить, что, хотя из уравнения и очевидно, что эффективность колонки меньше влияет на разрешение, чем ее селективность и коэффициент емкости, так как разрешение пропорционально корню квадратному из эффективности, тем не менее повышению эффективности колонок придается большое значение и уделяется огромное внимание как производителями колонок, так и их потребителями. Это связано с тем, что для сложных многокомпонентных смесей, особенно смесей неизвестного состава, часто не удается подобрать условия так, чтобы селективность была высокой для всех компонентов. В этом случае высокая эффективность колонки позволяет добиться разделения для пар веществ с небольшим значением α.
1.2 РАЗМЫВАНИЕ В КОЛОНКЕ И ВНЕ ЕЕ
Вещества вводятся в колонку в виде узкой зоны, которая по мере ее движения с подвижной фазой по колонке становится все шире, т. е. размывается в результате диффузионных процессов. Мерой этого размывания в колонке является высота, эквивалентная теоретической тарелке (ВЭТТ). Установлено, что размывание полосы в хроматографической колонке обусловлено тремя причинами: наличием вихревой диффузии, молекулярной диффузии и сопротивления массопередаче. Общая ВЭТТ (H) колонки получается путем суммирования вкладов всех этих факторов, вызывающих размывание хроматографической зоны:
H = Hp + Hd + Hs + Hm,
где Нр — вклад в размывание вихревой диффузии; На — вклад в размывание молекулярной диффузии; Hs — вклад, связанный с сопротивлением массопередаче в неподвижной фазе; Нт — вклад, связанный с сопротивлением массопередаче в подвижной фазе.
Не вдаваясь в подробное рассмотрение этих вкладов в ВЭТТ, тем не менее следует заметить, что чем меньше каждое из четырех слагаемых, тем меньше будет и суммарное значение ВЭТТ и, следовательно, эффективнее колонка. Величина Нр пропорциональна диаметру частиц сорбента и уменьшается с улучшением равномерности заполнения
Рис. 1.4. Зависимость ВЭТТ от скорости подачи растворителя (V, мл/мин).
Вклад в размывание пика разных факторов колонки сорбентом. Величина Hd растет при использовании очень малых скоростей потока, при обычно используемых высоких скоростях Hd настолько мала, что ею можно пренебречь. Величина Нm уменьшается при ускорении процессов адсорбции — десорбции в неподвижной фазе, т. е. при использовании частиц малого размера и тонких пленок неподвижной фазы, при уменьшении скорости потока. Величина Нm уменьшается при уменьшении размера частиц (пропорционально квадрату диаметра частиц), более равномерном и плотном заполнении колонки сорбентом, менее вязком растворителе, меньших скоростях потока.
Если изобразить графически зависимость ВЭТТ от скорости подачи растворителя, то она будет иметь вид, изображенный на рис.1.4. На нем можно видеть и оценить вклад каждой из составляющих в значение ВЭТТ.
Таким образом, размывание в колонке уменьшается и эффективность повышается, когда используют более мелкий сорбент, более равномерный по составу (узкая фракция), более плотно и равномерно упакованный в колонке, при использовании более тонких слоев привитой фазы, менее вязких растворителей и оптимальных скоростей потока.
Однако наряду с размыванием полосы хроматографической зоны в процессе разделения в колонке может происходить также и размывание ее в устройстве для ввода пробы, в соединительных капиллярах инжектор — колонка и колонка — детектор, в ячейке детектора и в некоторых вспомогательных устройствах (микрофильтры для улавливания механических частиц из пробы, устанавливаемые после инжектора, пред-колонки, реакторы-змеевики и др.). Размывание при этом тем больше, чем больше внеколоночный объем по сравнению с удерживаемым объемом пика. Имеет также значение и то, в каком месте находится мертвый объем: чем уже хроматографическая зона, тем большее размывание даст мертвый объем. Поэтому особое внимание следует уделять конструированию той части хроматографа, где хроматографическая зона наиболее узкая (инжектор и устройства от инжектора до колонки) — здесь внеколоночное размывание наиболее опасно и сказывается наиболее сильно. Хотя считается, что в хорошо сконструированных хроматографах источники дополнительного внеколоночного размывания должны быть сведены до минимума, тем не менее каждый новый прибор, каждая переделка хроматографа должны обязательно заканчиваться тестированием на колонке и сравнением полученной хроматограммы с паспортной. Если наблюдается искажение пика, резкое снижение эффективности, следует тщательно проинспектировать вновь введенные в систему капилляры и другие устройства. Размывание вне колонки и его неправильная оценка могут привести к значительной (более 50%) потере эффективности, особенно в тех случаях, когда относительно давно сконструированные хроматографы пытаются использовать для высокоскоростной ВЭЖХ, микроколоночной ВЭЖХ и других вариантов современной ВЭЖХ, требующих микроинжекторов, соединительных капилляров с внутренним диаметром 0,05-0,15 мм минимальной длины, колонок вместимостью 10-1000 мкл, детекторов с микрокюветами емкостью 0,03-1 мкл и с высоким быстродействием, высокоскоростных самописцев и интеграторов.
1.3 УДЕРЖИВАНИЕ И СИЛА РАСТВОРИТЕЛЯ
Для того чтобы анализируемые вещества разделялись на колонке, как уже упоминалось выше, коэффициент емкости k' должен быть больше 0, т.е. вещества должны удерживаться неподвижной фазой, сорбентом. Однако коэффициент емкости не должен быть и слишком большим, чтобы получить приемлемое время элюирования. Если для данной смеси веществ выбрана неподвижная фаза, которая их удерживает, то дальнейшая работа по разработке методики анализа заключается в выборе такого растворителя, который обеспечил бы в идеальном случае различные для всех компонентов, но приемлемо не очень большие k'. Этого добиваются, меняя элюирующую силу растворителя.
В случае адсорбционной хроматографии на силикагеле или оксиде алюминия, как правило, силу двухкомпонентного растворителя (например, гексана с добавкой изопропанола) увеличивают, увеличивая в нем содержание полярного компонента (изопропанола), или же уменьшают, уменьшая содержание изопропанола. Если содержание полярного компонента становится слишком малым (менее 0,1%), следует заменить его более слабым по элюирующей силе. Так же поступают, заменяя на другие либо полярную, либо неполярную составляющую и в том случае, если данная система не обеспечивает желаемой селективности по отношению к интересующим компонентам смеси. При подборе систем растворителей принимают во внимание как растворимости компонентов смеси, так и элюотропные ряды растворителей, составленные разными авторами.
Примерно так же подбирают силу растворителя в случае использования привитых полярных фаз (нитрил, амино, диол, нитро и др.), учитывая возможные химические реакции и исключая опасные для фазы растворители (например, альдегиды и кетоны для аминофазы).
В случае обращенно-фазной хроматографии силу растворителя увеличивают, повышая содержание в элюенте органической составляющей (метанола, ацетонитрила или ТГФ) и уменьшают, добавляя больше воды. Если не удается добиться желаемой селективности, используют другую органическую составляющую либо пытаются изменить ее с помощью разных добавок (кислот, ион-парных реагентов и др.).
При разделениях методом ионообменной хроматографии силу растворителя меняют, увеличивая или уменьшая концентрацию буферного раствора или меняя рН, в некоторых случаях используют модификацию органическими веществами.
Однако, особенно в случае сложных природных и биологических смесей, зачастую не удается подобрать силу растворителя таким образом, чтобы все компоненты пробы элюировались за приемлемый срок. Тогда приходится прибегать к градиентному элюированию, т.е. использовать растворитель, элюирующая сила которого в процессе анализа изменяется так, что она постоянно увеличивается по заранее заданной программе. Таким приемом удается добиться элюирования всех компонентов сложных смесей за относительно короткий промежуток времени и их разделения на компоненты в виде узких пиков.
1.4 РАЗМЕР ЧАСТИЦ СОРБЕНТА, ПРОНИЦАЕМОСТЬ И ЭФФЕКТИВНОСТЬ
Рассматривая размывание в колонке, мы указывали, что эффективность колонки (ВЭТТ) зависит от размера частиц сорбента. В большой степени бурное развитие ВЭЖХ за передние 10-12 лет было обусловлено, во-первых, разработкой способов получения сорбентов с размером частиц от 3 до 10 мкм и с узким фракционным составом, обеспечивающих высокую эффективность при хорошей проницаемости, во-вторых, разработкой способов заполнения этими сорбентами колонок и, в-третьих, разработкой и серийным выпуском жидкостных хроматографов, имеющих рассчитанные на высокие давления насосы, инжекторы и детекторы с кюветами малого объема, способные регистрировать пики малого объема.
Для хорошо упакованных суспензионным способом колонок приведен-ная высота, эквивалентная теоретической тарелке (ПВЭТТ), может составлять 2 независимо от того, использовали ли для упаковки частицы с размером 3, 5, 10 или 20 мкм. В этом случае мы получим соответственно колонки (при стандартной длине их 250 мм) эффективностью 41670, 25000, 12500 и 6250 т.т. Кажется естественным выбрать наиболее эффективную колонку, заполненную частицами размером 3 мкм. Однако за эту эффективность придется заплатить использованием при работе очень высокого давления и относительно невысокой скоростью разделения, так как имеющийся насос, скорее всего, будет неспособен прокачивать через такую колонку растворитель с высокой объемной скоростью. Здесь мы как раз и сталкиваемся с вопросом о связи размера частиц сорбента, эффективности и проницаемости колонок.
Уравнение, которое связывает давление, размер частиц и другие важные хроматографические параметры, имеет следующий вид:
u = K0p / ηL = pdc2 / ϕηL
где u — линейная скорость потока, определяемая из уравнения to = L / u ; К0 — проницаемость колонки ; р — давление; η — вязкость; L — длина колонки ; ϕ — фактор сопротивления колонки.
Если выразить отсюда фактор сопротивления колонки — безразмерную величину, получим следующее уравнение:
ϕ = pdc2 to / ηL2
Фактор сопротивления для колонок, упакованных микрочастицами одного вида по одному и тому же способу, меняется незначительно и составляет следующие значения:
Вид частиц .Неправильная форма Сферическая форма
Сухая упаковка 1000—2000 800—1200
Суспензионная упаковка 700—1500 500—700
Давление на входе в колонку пропорционально линейной скорости потока, фактору сопротивления колонки, вязкости растворителя и длине колонки и обратно пропорционально квадрату диаметра частиц.
Применив эту зависимость для вышеописанных колонок с частицами диаметром 3, 5, 10 и 20 мкм и предположив постоянными линейную скорость потока, фактор сопротивления колонки и вязкость растворителя, получим для колонок равной длины соотношение давлений на входе 44:16:4:1. Таким образом, если для обращенно-фазного сорбента с размером частиц 10 мкм при использовании систем растворителей метанол — вода (70:30) обычно на стандартной колонке при расходе растворителя 1 мл/мин давление на входе в колонку составляет 5 МПа, то для частиц 5 мкм — 20 МПа и для 3 мкм — 55 МПа. При использовании силикагеля и менее вязкой системы растворителей гексан — изопропанол (100:2) значения будут существенно ниже: соответственно 1, 4 и 11 МПа. Если в случае обращенно-фазного сорбента применение частиц размером З мкм очень проблематично, а 5 мкм возможно, но не на всех приборах, то для нормально-фазного проблем с давлением не возникает. Следует отметить, что для современной скоростной ВЭЖХ характерно использование более высокого расхода растворителей, чем в выше рассмотренном примере, поэтому требования к давлению возрастают еще больше.
Однако в тех случаях, когда для разделения требуется определенное число теоретических тарелок и желательно осуществить скоростной анализ, картина несколько меняется. Так как длины колонок с сорбентами зернением 3, 5, 10. мкм при равной
эффективности будут соответственно 7,5 , 12,5 и 25 см, то и соотношение давлений на входе в колонки изменится до 3,3:2:1. Соответственно продолжительность анализа на таких колонках равной эффективности будет соотноситься как 0,3:0,5:1, т. е при переходе от 10 к 5 и 3 мкм продолжительность анализа сократится в 2 и 3,3 раза. За это ускорение анализа приходится расплачиваться пропорционально более высоким давлением на входе в колонку.
Приведенные данные справедливы для тех случаев, когда сорбенты разного зернения имеют одинаковые кривые распределения частиц по размеру, колонки набиты одинаковым способом и имеют одинаковый фактор сопротивления колонки. Следует иметь в виду, что трудность получения узких фракций сорбента возрастает по мере уменьшения размера частиц и что фракции от разных производителей имеют разный фракционный состав. Поэтому фактор сопротивления колонок будет меняться в зависимости от зернения, типа сорбента, способа упаковки колонок и др.
Литература:
Цвет М. С.//Труды Варшавского общества естествоиспытателей, отд.
биологии, 1903, т. 14, с. 20—32. 2 Snyder L К Kirkland J. J. Introduction to Modern Liquid Chromato-graphy. 2-nd edition. J. Wiley, N. Y., 1979. 863 p.
Parris N. A. Instrumental Liquid Chromatography. 2-nd ed. Elsevier, Oxford, 1984. 270 p.
Bristow P. A. LC in Practice, hetp, Handforth, 1976. 267 p.
Киселев А. В., Яшин Я- И. Адсорбционная газовая и жидкостная хроматография. М., Химия, 1979. 288 с.