Контрольная работа

Контрольная работа Метод скінчених різниць в обчислювальній математиці

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024


МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

кафедра інформатики

КОНТРОЛЬНА РОБОТА

ПО КУРСУ: Чисельні методи

на тему: «Метод скінчених різниць в обчислювальній математиці»

Зміст

Постановка задачі

Вступ

1 Теоретична частина

2 Програмна реалізація

Список використаної літератури

Постановка задачі

Використовуючи метод кінцевих різниць , розв’язати крайову задачу для звичайного диференціального рівняння

Вступ

Нехай потрібно чисельно розвязати задачу Коші для звича-йного диференціального рівняння першого порядку, тобто знайти наближений розвязок диференціального рівняння y=F(x,y), що задовольняє початковій умові y(x)=y.Чисельне розвязання задачі полягає в побудові таблиці наближених значень y,y,y,...,y-розвязку рівняння y=(x ) у точках x,x,x,...,x - вузлах сітки .


y

yn *

y3 *

y2 *

y1 *

y0 *

O x0 x1 x2 x3 xn x

На рисунку * позначені точки, що відповідають наближено-му розвязку задачі Коші. Треба зазначити, що частіше використо-вують систему рівновіддалених вузлів x =x + ih (i=1,2,..,n) , де h - крок сітки

( h > 0 ) .

1 Теоретична частина

Методи Рунге-Кутта

Різні представники цієї категорії методів потребують більшого чи меншого об’єму обчислень і відповідно забезпечують більшу чи меншу точність. При розвязанні конкретної задачі виникають питання, якою із формул Рунге-Кутта доцільно скористатися і як вибрати крок сітки.

Якщо неперервна й обмежена разом із своїми четвертими похідними, то гарні результати дає метод четвертого порядку. Він описується системою наступних п'яти співвідношень:

  1. ();

Якщо функція не має зазначених похідних, порядок точності вищенаведеного методу не може бути реалізований. Тоді необхідно користуватися методами меншого порядку точності, що відповідає порядку наявних похідних.

Одним з найбільш простих і досить ефективних методів

оцінки похибки й уточнення отриманих результатів є правило Рунге. Для оцінки похибки за правилом Рунге порівнюють наближені розвязки, отримані при різних кроках сітки. При цьому використовується наступне припущення: глобальна похибка методу порядку p у точці хi подається у вигляді

.

За формулою Рунге

Таким чином, із точністю до (величина більш високого порядку малості) при h→0 похибка методу має вигляд:

де yi – наближене значення, отримане в точці з кроком h; y2i – із кроком h/2; p - порядок методу; y(x2i) - точний розвязок задачі.

Метод прогнозу і корекції

Підправивши схему Эйлера , одержимо схему прогнозу

,

де наближене значення . Цю формулу використовувати не можна ,оскільки схема прогнозу нестійка . Тому використовує-мо схему корекції

Оцінюючи похибки прогнозу і корекції, одержимо

- похибка корекції,

- похибка прогнозу .

Істинне значення лежить між прогнозом і корекцією .На будь-якому кроці можна оцінити точність рішення . При заданому =0,0000001, наприклад, .

Віднімаючи з співвідношення , маємо

.

Уточнюємо розвязання, виходячи з формули :

Ця формула завершає схеми прогнозу і корекції .

Метод кінцевих різниць для розвязання лінійних крайових задач

Маємо відрізок [a,b]. Потрібно знайти розвязок лінійного диференціального рівняння другого порядку

,

що задовольняє такі крайові умови:

Виберемо рівномірну сітку: x = a + ih, i = 0,1,2,…,n... Нехай Апроксимуємо і у кожному внутрішньому вузлі (i = 1, 2, …, n-1) центральними різницями , і на кінцях відрізка – односторонніми скінченнорізницевими апроксимаціями , .

Використовуючи ці формули, одержуємо різницеву апроксимацію вихідного крайового завдання:

Коефіцієнти різницевих рівнянь залежать від кроку сітки.

Введемо позначення:

Перепишемо систему з урахуванням введених позначень:

Маємо різницеву схему крайового завдання. Запишемо систему рівнянь у розгорнутій матричній формі:

Таким чином, завдання зводиться до розвязання системи лінійних алгебраїчних рівнянь, що можна записати у вигляді Ay=d.

2 Програмна реалізація

Реалізація пакетом Maple

> ss:=diff(diff(y(x),x),x)+diff(y(x),x)/x+2*y(x)-x;

  • dsolve[interactive]( ss );

Список використаної літератури

  1. Б. П. Демидович и И. А. Марон. “Основы вычислительной математики”, Москва, 1963г.

  2. Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. “Численные методы”, Москва, 1987г.

  3. Мусіяка В. Г. Основи чисельних методів механіки: підручник. – К.: Вища освіта, 2004. – 240 с.: іл.

  4. Л. Д. Назаренко Чисельні методи. Дистанційний курс.


1. Сочинение на тему Сочинения на свободную тему - Урок литературы
2. Реферат на тему Macbeth Essay Research Paper I almost forgot
3. Реферат на тему Reptiles 2 Essay Research Paper Reptiles are
4. Реферат на тему The Graduate Essay Research Paper Veronica CombsThis
5. Сочинение на тему Личность Бориса Годунова
6. Реферат на тему The Drug Industry Essay Research Paper The
7. Доклад Ананас
8. Реферат История Таганского района
9. Реферат на тему John Adams Essay Research Paper JOHN ADAMSAdams
10. Курсовая Выборочный метод изучения производственных и финансовых показателей