Контрольная работа

Контрольная работа Химия.Химическая форма материи

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024



Чувашский государственный педагогический университет им.И.Я.Яковлева

Кафедра философии
Контрольная работа по курсу

«Концепции современного естествознания».


Содержание:

Введение. 3

Предмет и круг проблем химии. Основная проблема химии. 4

Возникновение и основные этапы развития химии. 8

2.1.Алхимия как феномен средневековой культуры 10

2.2. Истоки химии 11

2.3. Лавуазье: революция в химии 12

2.4. Победа атомно-молекулярного учения 13

3.Взаимодействие физики и химии. 14

4.Роль химии в формировании общей научной картины мира. 20

Заключение. 23

Литература. 24

Введение.


Формирование современного естествознания - это процесс очень сложный и многоплановый, включающий рассмотрение систем наук о природе, или естественных наук, взятых в их взаимной связи, в развитии этих наук в различные исторические эпохи. Одной из важнейших таких систем естествознания, на мой взгляд, является химическая наука. Современная химия развивается стремительными темпами, плодотворно сотрудничая с физикой, математикой, биологией и другими науками.

Истоки химических знаний лежат в глубокой древности. В их основе - потребность человека получить необходимые вещества, объяснить взаимодействие веществ для своей жизнедеятельности.

Химия очень тесно связана с производством материальных ценностей и является больше практической наукой. Современные достижения химии в ее практической деятельности вносят большой вклад в общее миропонимание, в развитие естественнонаучных знаний, существенно отражаются на состоянии взаимодействия общества с природой. Добавляемые химией и химической производственной практикой знания о природе, о вещах и превращениях веществ, являются основой для формирования мировоззрения человека, развития общих представлений о мире, о природе человека, его деятельности.

Еще с древних времен и вплоть до наших дней в развитии научной, в том числе и химической мысли, почти по всем направлениям можно констатировать позитивный и безостановочный прогресс. Научные знания продолжают постоянно углубляться и совершенствоваться.

Для формирования у современного человека естественнонаучного способа мышления, целостного мировоззрения необходимы и знания основных положений химии, как одной из важнейших наук, ее исторического развития и современного понимания роли химии для жизни и деятельности человека.

Предмет и круг проблем химии. Основная проблема химии.


Современный период развития химии длится с 60-х годов XIX века до наших дней. Это наиболее плодотворный период развития химии, так как в течение немногим более 100 лет были разработаны периодическая классификация элементов, теория валентности, теория ароматических соединений и стереохимия, теория электролитической диссоциации Аррениуса, электронная теория материи и другие. Вместе с тем, значительно расширился диапазон химических исследований. Такие составные части химии, как неорганическая химия, органическая химия, физическая химия, фармацевтическая химия, химия пищевых продуктов, агрохимия, геохимия, биохимия приобрели статус самостоятельных наук и собственную теоретическую базу.

Химия, в отличие от многих других наук (например, биологии), сама создает свой предмет исследования. Как никакая другая наука, она является одновременно и наукой, и производством. Химия всегда была нужна человечеству в основном для того, чтобы получать из веществ природы по возможности все необходимые металлы и керамику, известь и цемент, стекло и бетон, красители и фармацевтические препараты, взрывчатые вещества и горюче-смазочные материалы, каучук и пластмассы, химические волокна и материалы с заданными электрофизическими свойствами. Поэтому все химические знания», приобретенные за многие столетия и представленные в виде теорий, законов, методов, технологий, объединяет одна-единственная непреходящая, главная задача химии. Это задача получения веществ с необходимыми свойствами. Но это - производственная задача, и, чтобы ее реализовать, надо уметь из одних веществ производить другие, то есть осуществлять качественные превращения вещества. А поскольку качество - это совокупность свойств вещества, надо знать, от чего зависят свойства. Иначе говоря, чтобы решить названную производственную задачу, химия должна решить теоретическую задачу генезиса (происхождения) свойств вещества.

Таким образом, основанием современной химии выступает двуединая проблема - получение веществ с заданными свойствами (на достижение чего направлена производственная деятельность человека) и выявление способов управления свойствами вещества (на реализацию чего направлена научно-исследовательская деятельность).

Это и есть основная проблема химии. Она же является системообразующим началом данной науки. Эта проблема возникла в древности и не теряет своего значения в наши дни. Естественно, что в разные исторические эпохи она решалась по-разному, так как способы ее решения зависят от уровня материальной и духовной культуры общества, а также от внутренних закономерностей, присущих ходу научного познания. Достаточно сказать, что изготовление таких материалов, как, например, стекло и керамика, краски и душистые вещества, в древности осуществлялось совершенно иначе, чем в XVIII веке и позже.

Вся история химии, все ее развитие является закономерным процессом смены способов решения ее основной проблемы.

Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения. Речь идет при этом не о частных методах изучения и превращения вещества - их множество, а о самых общих способах решения вопроса: от чего, от каких факторов зависят свойства вещества. А они зависят от четырех факторов:

1) от его элементного и молекулярного состава;

2) от структуры его молекул;

3) от термодинамических и кинетических (наличие катализаторов, воздействие материала стенок сосудов и т.д.) условий, в которых вещество находится в процессе химической реакции;

4) от высоты химической организации вещества.

Первый по-настоящему действенный способ решения проблемы происхождения свойств вещества появился во второй половине XVII века в работах английского ученого Роберта Бойля. Его исследования показали, что качества и свойства тела не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены. С этого момента стали считать, что наименьшей частицей простого тела является молекула. В период с середины XVII века до первой половины XIX века учение о составе вещества представляло собой всю тогдашнюю химию. Оно существует и сегодня, представляя собой часть химии.

Монопольное положение учения о составе вещества сохранялось до 1830-х годов. К этому времени мануфактурное производство сменилось фабричным, опирающимся на машинную технику и широкую сырьевую базу. В химическом производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения, их качественное разнообразие потрясающе велико - сотни тысяч химических соединений, а состав их крайне однообразен - лишь несколько элементов-органогенов (углерод, водород, кислород, сера, азот, фосфор), из которых эти соединения состоят. Объяснение необычайно широкому разнообразию органических соединений при столь бедном их элементном составе было найдено в явлениях, получивших названия «изомерия» и «полимерия». Стало совершенно ясно, что свойства веществ, а следовательно, и их качественное разнообразие обусловливаются не только составом, но еще и структурой молекул. Появилось новое решение проблемы генезиса свойств, а также отграничились сами понятия «свойство» и «функция» или реакционная способность. В понятие «реакционная способность» включались представления о химической активности отдельных фрагментов молекулы - атомов, атомных групп и даже отдельных химических связей.

Так было положено начало второму уровню развития химических знаний, который получил название структурной химии. Она стала более высоким уровнем по отношению к учению о составе, включая его в себя.

На втором уровне своего развития химия превратилась из науки преимущественно аналитической в науку главным образом синтетическую. Этот период связан с развитием химии органического синтеза. В это время появились всевозможные азокрасители для текстильной промышленности, различные препараты для фармации, искусственный шелк и т.д. Для этого все материалы добывались в ограниченных масштабах и с огромными затратами низкопроизводительного, преимущественно сельскохозяйственного труда.

Интенсивное развитие автомобилестроения, авиации, энергетики, приборостроения в первой половине XX века выдвинуло новые требования к производству материалов. Необходимо было получать высокооктановое моторное топливо, специальные синтетические каучуки, пластмассы, высокостойкие изоляторы, жаропрочные органические и неорганические полимеры, полупроводники. Для получения этих материалов способ решения основной проблемы химии, основанный на учении о составе и структурных теориях, был явно недостаточен. Он не учитывал резкие изменения свойств вещества в результате влияния температуры, давления, растворителей и многих других факторов, воздействующих на направление и скорость химических процессов.

Под влиянием новых требований производства возник третий способ решения проблемы генезиса свойств, учитывающий всю сложность организации химических процессов в реакторах и обеспечивающий их экономически приемлемую производительность. После этого химия становится наукой уже не только и не столько о веществах как законченных предметах, но наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила многотоннажное производство синтетических материалов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучуков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений - на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы.

Так, еще в 1935 году все 100 процентов таких материалов, как кожа, меха, резина, волокна, моющие средства, олифа, лаки, уксусная кислота, этиловый спирт, производились всецело из животного и растительного сырья, в том числе из пищевого. На это расходовались десятки миллионов тонн зерна, картофеля, жиров, сырой кожи и т.д. А уже в 1960-е годы 100% технического спирта, 80% моющих средств, 90% олифы и лаков, 40% волокон, 70% каучука и около 25% кожевенных материалов изготовлялись на основе газового и нефтяного сырья.

1. Но и эти возможности еще далеко не предел. В 60 - 70-е годы появился четвертый способ решения основной проблемы химии, открывающий пути использования в производстве материалов самые высокоорганизованные химические системы, какие только возможны в настоящее время. В основе этого способа лежит принцип использования в процессах получения целевых продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, то есть к самоорганизации химических систем. В сущности, речь идет об использовании химического опыта живой природы. Это своеобразная биологизация химии.

Возникновение и основные этапы развития химии.




При изучении истории развития химии возможны два взаимно дополняющих подхода: хронологический и содержательный.

При хронологическом подходе историю химии принято подразделять на несколько периодов. Следует учитывать, что периодизация истории химии, будучи достаточно условной и относительной, имеет скорее дидактический смысл.

При этом на поздних этапах развития науки в связи с её дифференциацией неизбежны отступления от хронологического порядка изложения, поскольку приходится отдельно рассматривать развитие каждого из основных разделов науки.

Как правило, большинство историков химии выделяют следующие основные этапы её развития:1

1. Предалхимический период: до III в. н.э.

В предалхимическом периоде теоретический и практический аспекты знаний о веществе развиваются относительно независимо друг от друга. Происхождение свойств вещества рассматривает античная натурфилософия, практические операции с веществом являются прерогативой ремесленной химии.

2. Алхимический период: III – XVI вв.

Алхимический период, в свою очередь, разделяется на три подпериода:2

  • александрийскую,

  • арабскую

  • европейскую алхимию.

Алхимический период – это время поисков философского камня, считавшегося необходимым для осуществления трансмутации металлов.

В этом периоде происходит зарождение экспериментальной химии и накопление запаса знаний о веществе; алхимическая теория, основанная на античных философских представлениях об элементах, тесно связана с астрологией и мистикой. Наряду с химико-техническим "златоделием" алхимический период примечателен также и созданием уникальной системы мистической философии.

3. Период становления (объединения): XVII – XVIII вв.

В период становления химии как науки происходит её полная рационализация. Химия освобождается от натурфилософских и алхимических взглядов на элементы как на носители определённых качеств. Наряду с расширением практических знаний о веществе начинает вырабатываться единый взгляд на химические процессы и в полной мере использоваться

экспериментальный метод. Завершающая этот период химическая революция окончательно придаёт химии вид самостоятельной науки, занимающейся экспериментальным изучением состава тел.

4. Период количественных законов (атомно-молекулярной теории): 1789 – 1860 гг.

Период количественных законов, ознаменовавшийся открытием главных количественных закономерностей химии – стехиометрических законов, и формированием атомно-молекулярной теории, окончательно завершает превращение химии в точную науку, основанную не только на наблюдении, но и на измерении.

5. Период классической химии: 1860 г. – конец XIX в.

Период классической химии характеризуется стремительным развитием науки: создаётся периодическая система элементов, теория валентности и химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигают прикладная неорганическая химия и органический синтез.  В связи с ростом объёма знаний о веществе и его свойствах начинается дифференциация химии – выделение её отдельных ветвей, приобретающих черты самостоятельных наук.

2.1.Алхимия как феномен средневековой культуры


Алхимия складывалась в эпоху эллинизма на основе слияния прикладной химии египтян с греческой натурфилософией, мистикой и астрологией (золото соотносили с Солнцем, серебро - с Луной, медь - с Венерой, и т.д.) (II-VI вв.) в александрийской культурной традиции, представляя собой форму ритуально-магического искусства. 3

Алхимия - это самозабвенная попытка найти способ получения благородных металлов. Алхимики считали, что ртуть и сера разной чистоты, соединяясь в различных пропорциях, дают начало металлам, в том числе и благородным. В реализации алхимического рецепта предполагалось участие священных или мистических сил, а средством обращения к этим силам было слово - необходимая сторона ритуала. Поэтому алхимический рецепт выступал одновременно и как действие, и как священнодействие.4

В средневековой алхимии выделялись две тенденции.

Первая - это мистифицированная алхимия, ориентированная на химические превращения (в частности, ртути в золото) и, в конечном счете, на доказательство возможности человеческими усилиями осуществлять космические превращения. В русле этой тенденции арабские алхимики сформулировали идею «философского камня» - гипотетического вещества, ускорявшего «созревание» золота в недрах земли; это вещество заодно трактовалось и как эликсир жизни, исцеляющий болезни и дающий бессмертие.

Вторая тенденция была больше ориентирована на конкретную практическую технохимию. В этой области достижения алхимии несомненны. К ним следует отнести: открытие способов получения серной, соляной, азотной кислот, селитры, сплавов ртути с металлами, многих лекарственных веществ, создание химической посуды и др.

2.2. Истоки химии


Химия древности. Химия, наука о составе веществ и их превращениях, начинается с открытия человеком способности огня изменять природные материалы. По-видимому, люди умели выплавлять медь и бронзу, обжигать глиняные изделия, получать стекло еще за 4000 лет до н.э.5 К 7 в. до н.э. Египет и Месопотамия стали центрами производства красителей; там же получали в чистом виде золото, серебро и другие металлы. Примерно с 1500 до 350 до н.э. для производства красителей использовали перегонку, а металлы выплавляли из руд, смешивая их с древесным углем и продувая через горящую смесь воздух. Самим процедурам превращения природных материалов придавали мистический смысл.

Греческая натурфилософия. Эти мифологические идеи проникли в Грецию через Фалеса Милетского, который возводил все многообразие явлений и вещей к единой первостихии – воде. Однако греческих философов интересовали не способы получения веществ и их практическое использование, а главным образом суть происходящих в мире процессов. Так, древнегреческий философ Анаксимен утверждал, что первооснова Вселенной – воздух: при разрежении воздух превращается в огонь, а по мере сгущения становится водой, затем землей и, наконец, камнем. Гераклит Эфесский пытался объяснить явления природы, постулируя в качестве первоэлемента огонь.

Четыре первоэлемента. Эти представления были объединены в натурфилософии Эмпедокла из Агригента – создателя теории четырех начал мироздания.6 В различных вариантах его теория властвовала над умами людей более двух тысячелетий. Согласно Эмпедоклу, все материальные объекты образуются при соединении вечных и неизменных элементов-стихий – воды, воздуха, земли и огня – под действием космических сил любви и ненависти. Теорию элементов Эмпедокла приняли и развили сначала Платон, уточнивший, что нематериальные силы добра и зла могут превращать эти элементы один в другой, а затем Аристотель.

Согласно Аристотелю, элементы-стихии – это не материальные субстанции, а носители определенных качеств – тепла, холода, сухости и влажности. Этот взгляд трансформировался в идею четырех «соков» Галена и господствовал в науке вплоть до 17 в.

Другим важным вопросом, занимавшим греческих натурфилософов, был вопрос о делимости материи. Родоначальниками концепции, получившей впоследствии название «атомистической», были Левкипп, его ученик Демокрит и Эпикур.

Согласно их учению, существуют только пустота и атомы – неделимые материальные элементы, вечные, неразрушимые, непроницаемые, различающиеся формой, положением в пустоте и величиной; из их «вихря» образуются все тела.

Атомистическая теория оставалась непопулярной в течение двух тысячелетий после Демокрита, но не исчезла полностью. Одним из ее приверженцев стал древнегреческий поэт Тит Лукреций Кар , изложивший взгляды Демокрита и Эпикура в поэме «О природе вещей» (De Rerum Natura).7

2.3. Лавуазье: революция в химии


Центральная проблема химии XVIII в. - проблема горения. Вопрос состоял в следующем: что случается с горючими веществами, когда они сгорают в воздухе? Для объяснения процессов горения немецкими химиками И. Бехером и его учеником Г. Э. Шталем была предложена теория флогистона. Флогистон - это некоторая невесомая субстанция, которую содержат все горючие тела и которую они утрачивают при горении. Тела, содержащие большое количество флогистона, горят хорошо; тела, которые не загораются, являются дефлогистированными. Эта теория позволяла объяснять многие химические процессы и предсказывать новые химические явления. В течение почти всего XVIII в. она прочно удерживала свои позиции, пока французский химик А. Л. Лавуазье в конце XVIII в. не разработал кислородную теорию горения.

Лавуазье показал, что все явления в химии, прежде считавшиеся хаотическими, могут быть систематизированы и сведены в закон сочетания элементов, старых и новых. К уже установленному до него списку элементов он добавил новые - кислород, который вместе с водородом входит в состав воды, а также и другой компонент воздуха - азот. В соответствии с новой системой химические соединения делились в основном на три категории: кислоты, основания, соли. Лавуазье рационализировал химию и объяснил причину большого разнообразия химических явлений: она заключается в различии химических элементов и их соединений.

2.4. Победа атомно-молекулярного учения


Следующий важный шаг в развитии научной химии был сделан Дж. Дальтоном, ткачом и школьным учителем из Манчестера. Изучая химический состав газов, он исследовал весовые количества кислорода, приходящиеся на одно и то же весовое количество вещества в различных по количественному составу окислах, и установил кратность этих количеств. Например, в пяти окислах азота количество кислорода относится на одно и то же весовое количество азота как 1 : 2 : 3 : 4 : 5. 8Так был открыт закон кратных отношений.

Дальтон правильно объяснил этот закон атомным строением вещества и способностью атомов одного вещества соединяться с различным количеством атомов другого вещества. При этом он ввел в химию понятие атомного веса.

И, тем не менее, в начале XIX в. атомно-молекулярное учение в химии с трудом пробивало себе дорогу. Понадобилось еще полстолетия для его окончательной победы. На этом пути был сформулирован ряд количественных законов, которые получали объяснение с позиций атомно-молекулярных представлений. Для экспериментального обоснования атомистики и ее внедрения в химию много усилий приложил Й.Я. Берцелиус. Окончательную победу атомно-молекулярное учение одержало на 1-м Международном конгрессе химиков.

В 1850-1870-е гг. на основе учения о валентности химической связи была разработана теория химического строения, которая обусловила огромный успех органического синтеза и возникновение новых отраслей химической промышленности, а в теоретическом плане открыла путь теории пространственного строения органических соединений - стереохимии.

Во второй половине XIX в. складываются физическая химия, химическая кинетика - учение о скоростях химических реакций, теория электролитической диссоциации, химическая термодинамика. Таким образом, в химии XIX в. сложился новый общий теоретический подход - определение свойств химических веществ в зависимости не только от состава, но и от структуры.9

Развитие атомно-молекулярного учения привело к идее о сложном строении не только молекулы, но и атома. В начале ХГХ в. эту мысль высказал английский ученый У. Праут на основе результатов измерений, показывавших, что атомные веса элементов кратны атомному весу водорода. Праут предложил гипотезу, согласно которой атомы всех элементов состоят из атомов водорода. Новый толчок для развития идеи о сложном строении атома дало великое открытие Д. И. Менделеевым периодической системы элементов, которая наталкивала на мысль о том, что атомы не являются неделимыми, что они обладают структурой и их нельзя считать первичными материальными образованиями.

3.Взаимодействие физики и химии.


Наряду с процессами дифференциации самой химической науки, в настоящее время идут в интеграционные процессы химии с другими отраслями естествознания. Особенно интенсивно развиваются взаимосвязи между физикой и химией. Этот процесс сопровождается возникновением все новых и новых смежных физико-химических отраслей знания.

Вся история взаимодействия химии я физики полна примеров обмена идеями, объектами и методами исследования. На разных этапах своего развития физика снабжала химию понятиями в теоретическими концепциями, оказавшими сильное воздействие на развитие химии. При этом, чем больше усложнялись химические исследования, тем больше аппаратура и методы расчетов физики проникали в химию. Необходимость измерения тепловых эффектов реакции, развитие спектрального и рентгеноструктурного анализа, изучение изотопов и радиоактивных химических элементов, кристаллических решеток вещества, молекулярных структур по-требовали создания и привели к использованию сложнейших физических приборов эспектроскопов, масс-спектрографов, дифракционных решеток, электронных микроскопов и т.д.

Развитие современной науки подтвердило глубокую связь между физикой и химией. Связь эта носит генетический характер, то есть образование атомов химических элементов, соединение их в молекулы вещества произошло на определенном этапе развития неорганического мира. Также эта связь основывается на общности строения конкретных видов материи, в том числе и молекул веществ, состоящих в конечном итоге из одних и тех же химических элементов, атомов и элементарных частиц. Возникновение химической формы движения в природе вызвало дальнейшее развитие представлений об электромагнитном взаимодействии, изучаемом физикой. На основе периодического закона ныне осуществляется прогресс не только в химии, но и в ядерной физике, на границе которой возникли такие смешанные физико-хими-ческие теории, как химия изотопов, радиационная химия.

Химия и физика изучают практически одни и те же объекты, но только каждая из них видит в этих объектах свою сторону, свой предмет изучения. Так, молекула является предметом изучения не только химии, но и молекулярной физики. Если первая изучает ее с точки зрения закономерностей образования, состава, химических свойств, связей, условий ее диссоциации на составляющие атомы, то последняя статистически изучает поведение масс молекул, обусловливающее тепловые явления, различные агрегатные состояния, переходы из газообразной в жидкую и твердую фазы и обратно, явления, не связанные с изменением состава молекул и их внутреннего химического строения. Сопровождение каждой химической реакции механическим перемещением масс молекул реагентов, выделение или поглощение тепла за счет разрыва или образования связей в новых молекулах убедительно свидетельствуют о тесной связи химических и физических явлений. Так, энергетика химических процессов тесно связана с законами термодинамики. Химические реак-ции, протекающие с выделением энергии обычно в виде тепла и света, называются экзотермическими. Существуют так-же эндотермические реакции, протекающие с поглощением энергии. Все сказанное не противоречит законам термодинамики: в случае горения энергия высвобождается одновременно с уменьшением внутренней энергии системы. В эндотермических реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы. Он измеряется в килоджоулях на моль (кДж/моль).

Еще один пример. Частным случаем первого начала термодинамики является закон Гесса. Он гласит, что тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. Закон Гесса позволяет вычислить тепловой эффект реакции в тех случаях, когда его непосредственное измерение почему-либо неосуществимо.

С возникновением теории относительности, квантовой механики и учения об элементарных частицах раскрылись еще более глубокие связи между физикой и химией. Оказалось, что разгадка объяснения существа свойств химических соединений, самого механизма превращения веществ лежит в строении атомов, в квантово-механических процессах его элементарных частиц и особенно электронов внешней оболочки, Именно новейшая физика сумела решить такие вопросы химии, как природа химической связи, особенности химического строения молекул органических и неорганических соединений и т.д.

В сфере соприкосновения физики и химии возник и успешно развивается такой сравнительно молодой раздел из числа основных разделов химии как физическая химия, которая оформилась в конце XIX в. в результате успешных попыток количественного изучения физических свойств химических веществ и смесей, теоретического объяснения молекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева (открытие Периодического закона), Вант-Гоффа (термодинамика химических процессов), С. Аррениуса (теория электролитической диссоциации) и т.д. Предметом ее изучения стали общетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физическими свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Сейчас физхимия -- это разносторонне разветвленная наука, тесно связывающая физику и химию.

В самой физической химии к настоящему времени выделились и вполне сложились в качестве самостоятельных разделов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. выделилась также в самостоятельную науку выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с интенсивной разработкой проблем ядерной энергии возникли и получили большое развитие новейшие отрасли физической Химии -- химия высоких энергий, радиационная химия (предметом ее изучения являются реакции, протекающие под действием ионизирующего излучения), химия изотопов.

Физическая химия рассматривается сейчас как наиболее широкий общетеоретический фундамент всей химической науки. Многие ее учения и теории имеют большое значение для развития неорганической и особенно органической хи-мии. С возникновением физической химии изучение вещества стало осуществляться не только традиционными химическими методами исследования, не только с точки зрения его состава и свойств, но и со стороны структуры, термодинамики и кинетики химического процесса, а также со стороны связи и зависимости последнего от воздействия явлений, присущих другим формам движения (световое и радиационное облучение, световое и тепловое воздействие и т.д.).

Примечательно, что в первой половине XX в. сложилась пограничная между химией и новыми разделами физики (квантовая механика, электронная теория атомов и молекул) наука, которую стали позднее называть химической физикой. Она широко применила теоретические и экспериментальные методы новейшей физики к исследованию строения химических элементов и соединений и особенно механизма реакций. Химическая физика изучает взаимосвязь и взаимопереход химической и субатомной форм движения материи.

В иерархии основных наук, данной Ф. Энгельсом, химия непосредственно соседствует с физикой. Это соседство и обеспечило ту быстроту и глубину, с которой многие разделы физики плодотворно вклиниваются в химию. Химия граничит, с одной стороны, с макроскопической физикой -- термо-динамикой, физикой сплошных сред, а с другой -- с микро-физикой -- статической физикой, квантовой механикой.

Общеизвестно, сколь плодотворными эти контакты оказались для химии. Термодинамика породила химическую термодинамику -- учение о химических равновесиях. Статическая физика легла в основу химической кинетики -- учения о скоростях химических превращений. Квантовая механика вскрыла сущность Периодического закона Менделеева. Современная теория химического строения и реакционной способности -- это квантовая химия, т.е. приложение принципов квантовой механики к исследованию молекул и «X превращений.

Еще одним свидетельством плодотворности влияния физики на химическую науку является все расширяющееся применение физических методов в химических исследованиях. Поразительный прогресс в этой области особенно отчет-диво виден на примере спектроскопических методов. Еще совсем недавно из бесконечного диапазона электромагнитных излучений химики использовали лишь узкую область видимого и примыкающего к нему участков инфракрасного и ультрафиолетового диапазонов. Открытие физиками явления магнитного резонансного поглощения привело к появлению спектроскопии ядерного магнитного резонанса, наиболее ин-формативного современного аналитического метода и метода изучения электронного строения молекул, и спектроскопии электронного парамагнитного резонанса, уникального метода изучения нестабильных промежуточных частиц - свободных радикалов. В коротковолновой области электромагнитных излучений возникла рентгеновская и гамма-резонансная спектроскопия, обязанная своим появлением открытию Мессбауэра. Освоение синхротронного излучения открыло новые перспективы развития этого высокоэнергетического раздела спектроскопии.

Казалось бы, освоен весь электромагнитный диапазон, и в этой области трудно ждать дальнейшего прогресса. Однако появились лазеры -- уникальные по своей спектральной интенсивности источники -- и вместе с ними принципиально новые аналитические возможности. Среди них можно назвать лазерный магнитный резонанс -- быстро развивающийся высокочувствительный метод регистрации радикалов в газе. Другая, поистине фантастическая возможность -- это штучная регистрация атомов с помощью лазера -- методика, основная на селективном возбуждении, позволяющая зарегистрировать в кювете всего несколько атомов посторонней при-Л0еи. Поразительные возможности для изучения механизмов радикальных реакций дало открытие явления химической поляризации ядер.

Сейчас трудно назвать область современной физики, которая бы прямо или косвенно не оказывала влияние на химию. Взять, например, далекую от мира молекул, построенного из ядер и электронов, физику нестабильных элементарных частиц. Может показаться удивительным, что на специальных международных конференциях обсуждается химическое поведение атомов, имеющих в своем составе позитрон или мюон, которые, в принципе, не могут дать устойчивых соединений. Однако уникальная информация о сверхбыстрых реакциях, Которую такие атомы позволяют получать, полностью оправдывает этот интерес.

Оглядываясь на историю взаимоотношений физики и химии, мы видим, что физика играла важную, подчас решающую роль в развитии теоретических концепций и методов исследования в химии. Степень признания этой роли можно оценить, просмотрев, например, список лауреатов Нобелевской премии по химии. Не менее трети в этом списке -- авторы крупнейших достижений в области физической химии. Среди них -- те, кто открыл радиоактивность и изотопы (Резерфорд, М. Кюри, Содди, Астон, Жолио-Кюри и др.), заложил основы квантовой химии (Полинг и Малликен) и современной химической кинетики (Хиншелвуд и Семенов), развил новые физические методы (Дебай, Гейеровский, Эйген, Норриш и Портер, Герцберг).

Наконец, следует иметь в виду и то решающее значение, которое начинает играть в развитии науки производительность труда ученого. Физические методы сыграли и продолжают играть в этом отношении в химии революционизирующую роль. Достаточно сравнить, например, время, которое затрачивал химик-органик на установление строения синтезированного соединения химическими средствами и которое он затрачивает теперь, владея арсеналом физических методов. Несомненно, что этот резерв применения достижений физики используется далеко не достаточно.

Подведем некоторые итоги. Мы видим, что физика во все большем масштабе и все более плодотворно вторгается в химию. Физика вскрывает сущность качественных химических закономерностей, снабжает химию совершенными инструментами исследования. Растет относительный объем физической химии, и не видно причин, которые могут замедлить этот рост.

4.Роль химии в формировании общей научной картины мира.


Формирование философского мышления, диалектического взгляда на мир

философских школ и направлений в процесс непростой, многоплановый. Процесс

этот очень сложный, так как формирование своего взгляда на мир невозможно

без рассмотрений мировоззрений различных различные исторические эпохи. Для

решения этих задач можно использовать одну из важнейших отраслей науки и

естествознания - химическую науку. В последние годы интерес к философским

проблемам химии заметно возрос и это не удивительно. Современная химия

развивается стремительными темпами, плодотворно сотрудничая с физикой,

математикой, биологией и другими науками. Роль химии в жизни и развитии

общества очень велика. Химия очень тесно связана с производством

материальных ценностей. Естествознание, в том числе и химическая наука,

начиная с давно известных положений и законов, и кончая современными

сложными теориями, взаимосвязана с философией. Бурный поток

доставляемых химией новых знаний о вещах, вызывающий ломки прежних понятий,

теорий обращает внимание исследователей и на природу химических знаний.

Колоссальные достижения химической практики столь весомо и зримо ощутимые в

повседневной жизни вносят немало нового в общее миропонимание, существенно

отражаются на состоянии взаимодействий общества с природой и тоже ставят

целый ряд вопросов философского характера. Возникновение этих вопросов и

их значение для развития химии и философии связаны прежде всего, с самим

предметом, объектом химии и его ролью в жизни человеческого общества, в

практических и познавательных отношениях людей с природой, в формировании

мировоззрения.

Роль вещества и знаний о веществе в жизни общества, в трудовой

деятельности людей, в их отношениях с окружающей природной средой, природа

химических знаний, пути и средства их формирования - вот та основа, на

которой в конечном счете, и вырастают философские вопросы химии; вопросы,

для решения которых приходится выходить за рамки химии, ее понятий и

методов в сферу вопросов об отношении материи и сознания, природы и

человека, в сферу общих представлений о мире, о законах его познания.

Вместе с тем добавляемые химией и химической производственной практикой

знания о природе, о вещах и растущая на этой основе власть людей над

природой всегда были богатейшим источником, питающим развитие философского

мировоззрения, развитие общих представлений о мире, о природе человека, его

деятельности, его мышлении, о законах познания, отражения

действительности.

Начиная еще с древних времен и вплоть до наших дней в развитии научной,

в том числе и химической, и философской мысли почти по всем направлениям

бесспорно можно констатировать позитивный и безостановочный прогресс.

Наука, включающая философию, и доныне продолжает повседневно углубляться и

совершенствоваться. Теории и факты химической науки предоставляют нам

конкретные доказательства научности основных положений диалектики, и

поэтому основной целью этого реферата является задача показать с помощью

примеров основных положений науки (химии) и философии диалектики как наука

практически подтверждает или опровергает принципы философии, а также

продемонстрировать роль философии в руководстве и направлении в научных

исследованиях во избежание практических ошибок и теоретических заблуждений.

Заключение.


Роль развития химии как науки, в развитии естественнонаучных знаний - одна из ключевых ролей. Будучи составной частью в истории формирования общей естественнонаучной картины мира, история познания химических свойств вещества, история практического овладения им, тесно переплеталась с историей развития отношения человека с окружающим миром.

Люди всегда проявляли интерес к практической стороне развития химии, затем, на более поздних этапах становления химических знаний - к методологической стороне.

Развитие химической науки, физики и биологии, оказывало влияние на формирование общих мировоззренческих и естественнонаучных знаний, на характер и вопросы законов познания.

Химической науке в ее современном развитии и связи с современным естествознанием предстоит выяснить процессы образования минералов земной коры, химических соединений на других планетах и звездах, проникнуть в самые тайники биохимических превращений, вооружить промышленность, сельское хозяйство, здравоохранение новыми синтетическими препаратами, защитить окружающую среду. Те успехи, которые одерживала химия в познании природы, явились результатом тесного единства в развитии химической теории и практики, а также взаимодействия развития химических знаний со знаниями в областях других наук

В заключение можно сказать, что роль химической науки в формировании, становлении естествознания, его научных основ, является одной из основополагающих. Достижения химии, химические законы выступают как одна из важнейших составных частей концепции современного естествознания.

Литература.



  1. Азимов А. Краткая история химии. Развитие идей и представлений в химии. – М., 1983. 

  2. Джуа М. История химии. – М., 1996.

  3. Рабинович В.Л. Алхимия как феномен средневековой культуры.- М., 1979.

  4. Соловьев Ю.И. История химии. Развитие химии с древнейших времён до конца XIX века. – М., 1983.

  5. Соловьев Ю.И., Трифонов Д.Н., Шамин А.Н. История химии. Развитие основных направлений современной химии. – М., 1984.

  6. Фигуровский Н.А. История химии. – М., 1979.




1


2


3


4


5


6


7


8


9


1. Реферат на тему Napolean
2. Реферат на тему African Americans Versus The Social Sciences Essay
3. Реферат Виды транспорта общего пользования и их удельный вес в общем объеме перевозок грузов. Значение и
4. Реферат на тему Hamlet Essay Research Paper HamletEssay submitted by
5. Реферат на тему Werner Heisenberg And The Heisenberg Uncertainty P
6. Реферат на тему A Prose Analysis On Milton
7. Реферат Влияние учреждений культуры на уровень и качество жизни населения
8. Диплом Особенности мотивации граждан, поступающих на военную службу по контракту
9. Реферат на тему Collaborative Processes Essay Research Paper Working with
10. Реферат на тему Capital Punishment Research Essay Research Paper Whenever