Реферат

Реферат на тему Основные химические законы и их использование в химической промышленности

Работа добавлена на сайт bukvasha.net: 2014-07-31

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024


Министерство науки и образования Украины
Национальный Технический Университет Украины «КПИ»
Факультет менеджмента и маркетинга
ДОМАШНЯЯ КОНТРОЛЬНАЯ РАБОТА
по  курсу физико-химических основ технологических процессов
на тему:
«Основные химические законы и их использование в химической промышленности
Выполнила:
студентка I курса; гр. УЗ-72
Павловская Е. Л.
Проверил:
Малафеев Ю. М.
Киев 2007

  Введение. 3
Закон Авогадро. 4
Закон Бойля-Мариотта. 6
Закон Гей-Люссака. 6
Закон объемных отношений. 6
Закон действующих масс. 7
Зависимость скорости реакции. 8
Закон Кюри. 9
Закон постоянства состава вещества. 9
Закон сохранения массы вещества. 10
Периодический закон и периодическая система Д.И. Менднлеева на основе
представления о строении атома. 11
Формулировка периодического закона Менделеева в свете теории строения атома  11
Связь периодического закона и периодической системы со строением атомов. ………….. 12
Структура периодической системы Д.И.Менделеева. 15 
  Периодическая законность химических элементов. ….……………………………………….. 17
Закон постоянства состава (продолжение) 44
Закон кратных отношений (Д.Дальтон, 1803г.) 45
Закон объемных отношений (Гей-Люссак, 1808г.; продолжение) 45
Закон Авогадро ди Кваренья (1811г.) 46
Уравнение Клайперона-Менделеева. 46
Планетарная модель строения атома (Э.Резерфорд, 1911г.) 47
Ядро аиома. 47
Изотопы.. 47
Радиоактивность. 48
Оснрвные виды радиоактивного распада. 48
Ядерные реакции. 49
Законы сохранения в ядерных реакциях. 49
Деление ядер урана. 50
Синтез легких ядер. 51
Заключение. 53
Список использованной литературы.. 55

Введение
Когда впервые обнаруживается, что некоторая идея объясняет или коррелирует многие факты, то такую идею называют гипотезой. Гипотезу можно подвергнуть дальнейшей проверке и экспериментально подтвердить выводы, которые из нее следуют. Если гипотеза при этом согласуется с результатами эксперимента, то ее называют теорией или законом.
Теория, например атомная теория, обычно включает некоторые представления о строении той или иной части Вселенной, тогда как закон может быть просто обобщением положений, относящихся к экспериментально выявленным фактам. Так, существует закон постоянства углов между гранями в кристаллах. Этот закон утверждает, что при изменении углов между  соответствующими гранями нескольких кристаллов одного и того же чистого вещества оказывается, что величины этих углов одинаковы. Закон просто выражает тот факт, что углы между соответствующими гранями кристалла чистого вещества одинаково независимо от того, большой это кристалл или маленький; какого либо объяснения самому этому факту закон не дает. Объяснение дает атомная теория кристаллов теория, которая исходит из того, что атомы кристаллов расположены в определенном порядке.

Закон Авогадро
Амадео Авогадро в 1811г. выдвинул гипотезу, которая в дальнейшем была подтверждена опытными данными и потому стала называться законом Авогадро:4
Одинаковые объемы различных газов при одинаковых условиях (температуре и давлении) содержат одинаковое число молекул.
Таким образом, Авогадро указал, что противоречие между законом объемных отношений Гей-Люссака и учением Дальтона легко устраняется, если ввести представление о молекуле и атоме как о различных формах материи. Закон Гей-Люссака есть закон о числе молекул, а не атомов, находящихся в объеме газа.
Авогадро предположил, что молекулы простых газов состоят из двух одинаковых атомов. Таким образом, при соединени водорода с хлором их молекулы хлористого водорода. Из одной молекулы водорода и одной молекулы хлора образуются  две молекулы хлористого водорода.
H2+Cl2=2HCl
Из закона Авогадро вытекает важное следствие: при одинаковых условиях 1 моль газа занимает одинаковый объем. Этот объем легко вычислить, если известна масса 1л газа.
Экспериментально установлено, что масса 1л кислорода при нормальных условиях (при температуре 273ºК (0ºС) и давлении 1 атм.) равна 1,429г. Следовательно, объем, занимаемый 1 молем при этих условиях, равен:

При нормальных условиях 1 моль любого газа занимает объем, равный 22.4л. Этот объем называется молярным объемом газа.
Молярный объем газа – это отношение объема вещества к количеству этого вещества:
, где
Vm – молярный объем газа (м³/моль или л/моль);
V – объем вещества,
n – количество вещества системы.
Точное значение молярного объема газа 22.4135±0.0006 л/моль.
На основе закона Авогадро определяют молекулярные массы газообразных веществ по их плотности.
По закону Авогадро массы m1 и m2 л каждого из двух разных газов равняются произведению молярной массы М1 и М2 на число - постоянная (число) Авогадро: число частиц (атомов, молекул или ионов) в моле вещества.
= моль ˜¹

или , где
D-относительная плотность газа.
Отношение массы определенного объема одного газа к массе такого же другого газа, взятого при тех же условиях (объем, температура, давление), называется плотностью первого газа по второму.
Обычно плотности газов определяют по отношению к самому легкому газу – водороду (обозначают Dh2). Молярная масса водорода равна 2.016 г/моль или приближенно 2 г/моль, следовательно:

Молекулярная масса вещества в газообразном состоянии равна удвоенной плотности по водороду.
Если плотность определяют по воздуху, то исходят из средней молярной массы, равной 29 г/моль).

Молярную массу газа можно определить, исходя из его молярного объема при нормальных условиях в соответствии с формулами n=m/M, n=V/Vm. Если в этих формулах n для одного и того же газа имеет одинаковое значение, то , и .
При нормальных условиях л/моль, тогда

В условиях, отличных от нормальных, для приведения объема газа к нормальным условиям пользуются газовыми законами.

 

Закон Бойля-Мариотта

При постоянной температуре объем данного количества газа обратно пропорционально давлению, под которым он находится.
, где
p-давление;
V-объем газа
Закон Бойля-Мариотта выполняется при очень малых давлениях

 

Закон Гей-Люссака

При постоянном давлении изменение объема газа прямо пропорционально температуре.
, где
T – абсолютная температура (К)

Закон объемных отношений

Первые количественные исследования реакций между газами принадлежат французскому ученому Ж. Г. Гей-Люссаку (1778-1850). Гей-Люссак, изучая взаимодействие газообразных веществ, вывел закон простых объемных отношений:
При одинаковых условиях (при неизменной температуре и давлении) объемы газов, вступающих, в реакцию, относятся друг к другу, а так же к объемам газообразных продуктов, как небольшие целые числа.
Так, 1 объем водорода и 1 объем хлора дают 2 объема хлористого водорода. 2 объема водорода и 1 объем кислорода – 2 объема водяного пара, 3 объема водорода и 1 объем азота – 2 объема аммиака.
Одним из первых признал закон кратных отношений Гей-Люссака шведский химик Й. Я. Берцелиус (1779-1848), предположивший, что основное свойство газов заключается в том, что равные объемы газов при одинаковых условиях содержат одинаковое число атомов.
Закономерность, установленную Гей-Люссаком, невозможно было объяснить, руководствуясь учением Дальтона о том, что простые вещества состоят из атомов. В самом деле, если в равных объемах газов, например водорода и хлора, содержится одинаковое число атомов, то при их взаимодействии должен получиться один объем хлористого водорода, а не два, как показывал опыт.
Закон Гей-Люссака был объяснен итальянским физиком А. Авогадро (1776-1856).

Закон действующих масс

Скорость химической реакции пропорциональна концентрации регулирующих веществ.
Для реакции
A+B=C+D
Закон действующих масс запишется следующим образом:
, где CA и CB  - концентрации вещества А и В (моль/л),
k – коэффициент пропорциональности, константа скорости реакции, зависящая от природы реагирующих веществ и от температуры.
k=v, когда концентрации каждого их реагирующих равны 1 моль/л или их произведение равно единице.
Данное уравнение носит название кинетического уравнения реакции.
Концентрация твердого вещества в процессе химического превращения не меняется), процесс идет на поверхности), поэтому скорость в реакциях с участием твердого тела определяется только концентрацией газов или растворенных веществ.
В сложных (многостадийных реакциях) скорость всего процесса зависит от скорости наиболее медленной реакции.
Зависимость скорости реакции
Согласно правилу Фант-Гоффа, при повышении температуры на каждые 10°С скорость большинства реакций увеличивается в 2-4 раза. Число, показывающее, во сколько раз увеличивается скорость данной реакции при повышении температуры на 10°С, называется температурным коэффициентом реакции. Это правило является приближенным.
В 1889г. шведский ученый С. Аррениус предложил уравнение зависимости константы скорости реакции от температуры:
, где
k- константа скорости
A- постоянный коэффициент, характерный для каждой реакции,
R- универсальная газовая постоянная,
T- абсолютная температура,
Ea- энергия, названная Аррениусом энергией активации. Энергия активации измеряется в кДж/моль.
Реакционно-способными являются не все  молекулы, а только активные, энергия которых в момент контакта составляет величину не меньшую Ea. В результате сообщения неактивным частицам вещества необходимой дополнительной энергии они превращаются в активные. Такой процесс носит название активации.
Энергия активации - это энергия, которую необходимо сообщить частицам реагентов для того, чтобы превратить их в активные. Энергия активации – это энергетический барьер реакции.
Затраченная на активацию молекул энергия выделяется полностью или частично при образовании продуктов реакции. Если при образовании продуктов реакции выделяется больше энергии, чем было необходимо для активации выделяется больше энергии, чем было необходимо для активации молекул, то такая реакция называется экзотермической, если меньше – то эндотермической. Для протекания эндотермических реакций необходимо подводить энергию из вне.
Закон Кюри
Пьер Кюри в 1895г. показал, что парамагнитная восприимчивость сильно зависит от температуры и для многих веществ обратно пропорциональна абсолютной температуре. Уравнение, выражающее эту зависимость,
,
называют законом Кюри, а входящую в него величину           называют мольной константой Кюри; D выражает диамагнитный вклад (он обычно отрицателен).
Первый член этого уравнения можно рассчитать на основе принципа Больцмана при допущении, что данное вещество содержит постоянные магнитные дипольные моменты, способные ориентироваться в магнитном поле. Такой теоретический расчет был выполнен французским ученым Полем Ланжевеном в 1905г. Он вывел уравнение
, где
-                      величина дипольного магнитного момента в расчете на один атом или молекулу.
Это уравнение позволяет рассчитать значения магнитных моментов по экспериментальной магнитной восприимчивости парамагнитных веществ, измеренной в некотором интервале температур. На основании полученных значений можно определить число не спаренных электронов в молекулах веществ.
Закон постоянства состава вещества
Закон постоянства состава был впервые сформулирован французским ученым Ж.  Прустом в 1808г.
Современная формулировка закона такова:
Всякое чистое вещество независимо от способа его получения имеет постоянный качественный и количественный состав.
Закон постоянства состава вещества вытекает из атомно-молекулярного учения. Вещества с молекулярной структурой состоят из одинаковых молекул, потому и состав таких веществ постоянен. При образовании из двух элементов нескольких соединений атомы этих элементов соединяются друг с другом в молекулы различного, но определенного состава. Например, азот с кислородом образует шесть соединений.
В начале ХХ  века выяснилось, что соединения переменного состава встречаются не только среди соединений металлов друг с другом, но и среди других твердых тел, например оксидов, сульфидов, нитридов, карбидов и других неорганических веществ, имеющих кристаллическую структуру.
Для многих соединений переменного состава установлены пределы, в которых может изменяться их состав. Например, оксид урана (IV) имеет состав UO2.5 до  UO3, оксид ванадия (II) – от VO0.9 до VO1.3
Таким образом, в формулировку закона постоянства состава вносится уточнение:
Состав молекулярной структуры, т. е. состоящих из молекул является постоянным независимо от способа получения. Состав соединений с молекулярной структурой (с атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения.

Закон сохранения массы вещества

М. В. Ломоносов впервые сформулировал закон сохранения массы вещества в 1748г., а экспериментально подтвердил его на примере обжига металлов в запаянных сосудах в 1756г. Современная формулировка закона такова:
Масса веществ, вступивших в химическую реакцию, равна массе веществ, образующихся в результате реакции.
Независимо от Ломоносова это закон был установлен в 1789г. французским химиком Лавуазье, который показал, что при химических реакциях сохраняется не только общая масса веществ, но и масса каждого из элементов, входящих в состав взаимодействующих веществ.
Закон сохранения массы веществ М. В. Ломоносов связывал с законом сохранения энергии (количества движения). Он рассматривал эти законы в единстве как все общий закон природы. Ломоносов писал:
«Все перемены в натуре случающиеся такого суть состояния, что, сколько чего у одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте. Сей всеобщий естественный закон простирается и в самые правила движения: ибо тело, движущее своей силою другое, столько же оные у себя теряет, сколько сообщает другому, которое от него движение получает».
Взгляды Ломоносова были подтверждены современной наукой. В 1905г. А. Эйнштейн показал, что между массой тела (m) и его энергией (E) существует связь, выражаемая уравнением:
,где
с – скорость света в вакууме.
Закон сохранения массы дает материальную основу для составления уравнений химических реакций.

Периодический закон и периодическая система химических элементов Д. И. Менделеева на основе представлений о строении атома
1. Формулировка периодического закона Д. И. Менделеева в свете теории строения атома.
Открытие периодического закона и разработка периодической системы химических элементов Д. И. Менделеевым явились вершиной развития химии в XIX веке. Обширная сумма знаний о свойствах 63 элементов, известных к тому времени, была приведена в стройный порядок.
Д. И. Менделеев считал, что основной характеристикой элементов являются их атомные веса, и в 1869 г. впервые сформулировал периодический закон.
Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.
Весь ряд элементов, расположенных в порядке возрастания атомных масс, Менделеев разбил на периоды, внутри которых свойства элементов изменяются последовательно, разместив периоды так, чтобы выделить сходные элементы.
Однако, несмотря на огромную значимость такого вывода, периодический закон и система Менделеева представляли лишь гениальное обобщение фактов, а их физический смысл долгое время оставался непонятным. Лишь в результате развития физики XX века – открытия электрона, радиоактивности, разработки теории строения атома – молодой, талантливый английский физик Г. Мозле установил, что величина зарядов ядер атомов последовательно возрастает от элемента к элементу на единицу. Этим открытием Мозле подтвердил гениальную догадку Менделеева, который в трех местах периодической таблицы отошел от возрастающей последовательности атомных весов.
Так, при ее составлении Менделеев поставил 27Со перед 28Ni, 52Ti перед 5 J, 18Аг перед 19К, несмотря на то, что это противоречило формулировке периодического закона, то есть расположению элементов в порядке увеличения их атомных весов.
Согласно закону Мозле заряды ядер данных элементов соответствовали положению их в таблице.
В связи с открытием закона Мозле современная формулировка периодического закона следующая: свойство элементов, а так же формы и свойства их соединений находятся в периодической зависимости от заряда ядра их атомов.
2. Связь периодического закона и периодической системы со строением атомов.
Итак, главной характеристикой атома является не атомная масса, а величина положительного заряда ядра. Это более общая точная характеристика атома, а значит, и элемента. От величины положительного заряда ядра атома зависят все свойства Элемента и его положение в периодической системе. Таким образом, порядковый номер химического элемента численно совпадает с зарядом ядра его атома. Периодическая система элементов является графическим изображением периодического закона и отражает строение атомов элементов.
Теория строения атома объясняет периодическое изменение свойств элементов. Возрастание положительного заряда атомных ядер от 1-до 110 приводит к периодическому повторению у атомов элементов строения внешнего энергетического уровня. А поскольку от числа электронов на внешнем уровне в основном зависят свойства элементов; то и они периодически повторяются. В этом физический смысл периодического закона.
В качестве примера рассмотрим изменение свойств у первых и последних элементов периодов. Каждый период в периодической системе начинается элементами атомы, которых на внешнем уровне имеют один s-электрон (незавершенные внешние уровни) и потому проявляют сходные свойства – легко отдают валентные электроны, что обуславливает их металлический характер. Это щелочные металлы – Li, Na, К, Rb, Cs.
Заканчивается период элементами, атомы которых на внешнем уровне содержат 2 (s2) электрона (в первом периоде) или 8 (s1p6) электронов (во всех последующих), то есть имеют завершенный внешний уровень. Это благородные газы Не, Ne, Ar, Kr, Xe, имеющие инертные свойства.
Именно вследствие сходства строения внешнего энергетического уровня похожи их физические и химические свойства.
В каждом периоде с возрастанием порядкового номера элементов металлические свойства постепенно ослабева­ют и возрастают неметаллические, заканчивается период инертным газом. В каждом периоде с возрастанием порядкового номера элементов металлические свойства постепенно ослабева­ют и возрастают неметаллические, заканчивается период инертным газом.
В свете учения о строении атома становится понятным разделение всех элементов на семь периодов, сделанное Д. И. Менделеевым. Номер периода соответствует числу энергетических уровней атома, то есть положение элементов в периодической системе обусловлено строением их атомов. В зависимости от того, какой подуровень заполняется электронами, все элементы делят на четыре типа.
1. s-элементы. Заполняется s-подуровень внешнего уровня (s1 – s2). Сюда относятся первые два элемента каждого периода.
2. р-элементы. Заполняется р-подуровень внешнего уровня (р1 – p6)- Сюда относятся последние шесть элементов каждого периода, начиная со второго.
3. d-элементы. Заполняется d-подуровень последнего уровня (d1 – d10), а на последнем (внешнем) уровне остается 1 или 2 электрона. К ним относятся элементы вставных декад (10) больших периодов, начиная с 4-го, расположенные между s- и p-элементами (их также называют переходными элементами).
4. f-элементы. Заполняется f-подуровень глубинного (треть его снаружи) уровня (f1 – f14), а строение внешнего электронного уровня остается неизменным. Это лантаноиды и актиноиды, находящиеся в шестом и седьмом периодах.
Таким образом, число элементов в периодах (2-8-18-32) соответствует максимально возможному числу электронов на соответствующих энергетических уровнях: на первом – два, на втором – восемь, на третьем – восемнадцать, а на четвертом – тридцать два электрона. Деление групп на подгруппы (главную и побочную) основано на различии в заполнении электронами энергетических уровней. Главную подгруппу составляют s- и p-элементы, а побочную подгруппу – d-элементы. В каждой группе объединены элементы, атомы которых имеют сходное строение внешнего энергетического уровня. При этом атомы элементов главных подгрупп содержат на внешних (последних) уровнях число электронов, равное номеру группы. Это так называемые валентные электроны.
У элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних (вто­рых снаружи) уровней, в чем и состоит основное различие в свойствах элементов главных и побочных подгрупп.
Отсюда следует, что номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом заключается физический смысл номера группы.
С позиций теории строения атома легко объясняется возрастание металлических свойств элементов в каждой группе с ростом заряда ядра атома. Сравнивая, например, распределение электронов по уровням в атомах 9F (1s2 2s2 5) и 53J (1s2 2s26 3s2 Зр6 3d10 4s2 4р6 4d10 5s2 5p5) можно отметить, что у них по 7 электронов на внешнем уровне, что указывает на сходство свойств. Однако внешние электроны в атоме йода находятся дальше от ядра и поэтому слабее удерживаются. По этой причине атомы йода могут отдавать электроны или, иными словами, проявлять металлические свойства, что нехарактерно для фтора.
Итак, строение атомов обуславливает две закономерности:
а) изменение свойств элементов по горизонтали – в периоде слева направо ослабляются металлические и усиливаются неметаллические свойства;
б) изменение свойств элементов по вертикали – в группе с ростом порядкового номера усиливаются металлические свойства и ослабевают неметаллические.
Таким образом:   по мере возрастания заряда ядра атомов химических элементов периодически изменяется строение их электронных оболочек, что является причиной периодического изменения их свойств.
3.    Структура периодической Системы Д. И. Менделеева.
Периодическая система  Д. И. Менделеева  подразделяется на семь периодов – горизонтальных последовательностей элементов, расположенных по возрастанию порядкового номера, и восемь групп – последовательностей элементов обладающих однотипной электронной конфигурацией атомов и сходными химическими свойствами.
Первые три периода называются малыми, остальные – большими. Первый период включает два элемента, второй и третий периоды – по восемь, четвёртый и пятый – по восемнадцать, шестой – тридцать два, седьмой (незавершённый) – двадцать один элемент.
Каждый период (исключая первый) начинается щелочным металлом и заканчивается благородным газом.
Элементы 2 и 3 периодов называются типическими.
Малые периоды состоят из одного ряда, большие – из двух рядов: чётного (верхнего) и нечётного (нижнего). В чётных рядах больших периодов расположены металлы, и свойства элементов слева направо изменяются слабо. В нечётных рядах больших периодов свойства элементов изменяются слева направо, как у элементов 2 и 3 периодов.
В периодической системе для каждого элемента указывается его символ и порядковый номер, название элемента и его относительная атомная масса. Координатами положения элемента в системе является номер периода и номер группы.
Элементы с порядковыми номерами 58-71, именуемыми лантаноидами, и элементы с номерами 90-103 - актиноиды – помещаются отдельно внизу таблицы.
Группы элементов, обозначаемые римскими цифрами, делятся на главные и побочные подгруппы. Главные подгруппы содержат 5 элементов (или более). В побочные подгруппы входят элементы периодов, начиная с четвёртого.
Химические свойства элементов обуславливаются строением их атома, а точнее строением электронной оболочки атомов.    Сопоставление строения электронных оболочек с положением элементов в периодической системе позволяет установить ряд важных закономерностей:
1. Номер периода равен общему числу энергетических уровней, заполняемых электронами, у атомов данного элемента.
2.   В малых периодах и нечётных рядах больших периодов с ростом положительного заряда ядер возрастает число электронов на внешнем энергетическом уровне. С этим связано ослабление металлических и усиление неметаллических свойств элементов слева направо.
Номер группы, указывает число электронов, которые могут участвовать в образовании химических связей (валентных электронов).
В подгруппах с ростом положительного заряда ядер атомов элементов усиливаются их металлические и ослабляются неметаллические свойства.
Периодическая законность химических элементов.
После открытий Лавуазье понятие о химических элементах и простых телах так укрепилось, что их изучение положено в основу всех химических представлений, а вследствие того взошло и во все естествознание. Пришлось признать, что все вещества, доступные исследованию, содержат очень ограниченное число материально разнородных элементов, друг в друга не превращающихся и обладающих самостоятельною весомою сущностью и что все разнообразие веществ природы определяется лишь сочетанием этих немногих элементов и различием или их самих, или их относительного количества, или при одинаковости качества и количества элементов – различием их взаимного положения, соотношения или распределения. «Простыми» телами должно при этом назвать вещества, содержания лишь один какой-либо элемент, «сложными» – два или более. Но для данного элемента могут существовать многие видоизменения простых тел, ему отвечающих, зависящие от распределения («строения») его частей или атомов, т.е. от того вида изомерии, который называется «аллотропией». Так углерод, как элемент, является в состоянии угля, графита и алмаза, которые (взятые в чистом виде) дают при сжигании один и тот же углекислый газ и в том же количестве. Для самих же «элементов» ничего подобного не известно. Они видоизменениям и взаимным превращениям не подвергаются и представляют, по современным воззрениям, неизменную сущность изменяющегося (химически, физически и механически) вещества, входящую как в простые, так и в сложные тела.
Весьма, в древности и до ныне, распространенное представление о «единой или первичной» материи, из которой слагается все разнообразие веществ, опытом не подтверждено, и все попытки, к сему направленные, оказались его опровергающими. Алхимики верили в превращение металлов друг в друга, доказывали это разными способами, но при поверке все оказалось или обманом (особенно в отношении к производству золота из других металлов), или ошибкой и неполнотой опытного исследования. Однако, нельзя не заметить, что если бы завтра оказалось, что металл А превращается целиком или отчасти в другой металл В, то из этого вовсе не будет еще следовать, что простые тела способны друг в друга превращаться вообще, как, например, из того, что долгое время закись урана считали за простое тело, а она оказалась содержащей кислород и действительный металлический уран – вовсе не следует делать никакого общего заключения, а можно только в частности судить о бывшей и современной степенях знакомства с ураном, как самостоятельным элементом. С этой точки зрения должно взглянуть и на оповещенное Емменсом (Stephen – Н. Emmeus) превращение мексиканского серебра отчасти в золото (май–июнь 1897 г.), если справедливость наблюдений оправдается и Argentaurum не окажется подобным алхимистическим оповещением подобного же рода, не раз бывшим и также прикрывавшемся покровом секрета и денежного интереса. Что холод и давление могут содействовать перемене строения и свойств – давно известно, хотя бы по примеру олова Фрицше, но нет фактов, позволяющих предполагать, что изменения эти идут столь глубоко и доходят не до строения частиц, а до того, что ныне считается атомами и элементами, а потому утверждаемое Емменсом превращение (хотя бы и постепенно) серебра в золото будет оставаться сомнительным и мaлозначущим даже в отношении к серебру и золоту, пока, во-первых, «секрет» не будет на столько раскрыт, что опыт может быть всеми воспроизведен, и во-вторых, пока обратный переход (при накаливании и уменьшении давления?) золота в серебро не будет установлен, или пока не будет установлена фактическая его невозможность или трудность. Легко понять, что переход спирта углекислоты в сахар труден, хотя обратный идет легко, потому что сахар бесспорно сложнее спирта и углекислоты. И мне кажется очень мало вероятным переход серебра в золото, если обратно – золото не будет переходить в серебро, потому что атомный вес и плотность золота чуть не в два раза более, чем серебра, из чего должно, по всему известному в химии, заключить, что если серебро и золото произошли из одного материала, то золото сложнее серебра и должно превращаться в серебро легче, чем обратно. Поэтому я думаю, что г. Емменсу для убедительности не только следовало бы раскрыть «секрет», но и попробовать, да и показать, если можно, превращение золота в серебро, тем более, что при получении из дорогого металла другого, в 30 раз более дешевого, денежные интересы будут, очевидно, на далеком плане, а интересы правды и истины окажутся явно на первом, теперь же дело представляется, на мой взгляд, с обратной стороны.
Д. Менделеев (окт. 1897).
При таком представлении о химических элементах – они оказываются чем-то отвлеченным, так как в отдельности мы их не видим и не знаем. К такому почти идеалистическому представлению столь реалистическое знание, как химия, пришло по совокупности всего доныне наблюденного, и если это представление можно отстаивать, то лишь как предмет глубоко укоренившегося убеждения, доныне оказавшегося совершенно согласным с опытом и наблюдением. В этом смысле понятие о химических элементах имеет глубоко реальное основание во всей науке о природе, так как, например, углерод нигде, никогда, никем и нисколько не превращен в какой-либо другой элемент, тогда как простое тело – уголь превращено в графит и алмаз и, быть может, когда-нибудь можно будет превратить его и в вещество жидкое или газообразное, если удастся найти условия упрощения сложнейших частиц угля. Главное понятие, с которым возможно приступить к объяснению П. законности, состоит именно в коренном различии представлений об элементах и о простых телах. Углерод – элемент, нечто неизменное, содержащееся, как в угле, так и в углекислом газе или в светильном, как в алмазе, так и в массе изменчивых органических веществ, как в известняке, так и в дереве. Это – не конкретное тело, а весомое (материальное) вещество с суммой свойств. Как в парах воды или в снеге нет конкретного тела – жидкой воды, а есть то же весомое вещество с суммой ему одному принадлежащих свойств, так во всем углеродистом содержится материально-однородный углерод: не уголь, а именно углерод. Простые тела суть вещества, содержащие только один какой-либо элемент, и понятие о них становится прозрачно-ясным только тогда, когда признается укрепившееся представление об атомах и частицах или молекулах, из которых слагаются однородные вещества; причем понятию об элементе отвечает атом, а простому телу – частица. Простые тела, как и все тела природы, составлены из частиц: вся их разница от сложных тел состоит лишь в том, что частицы сложных тел содержат разнородные атомы двух или многих элементов, а частицы простых тел – однородные атомы данного элемента. Все, что излагается далее, должно относить именно к элементам, т.е. напр. к углероду, водороду и кислороду, как составным частям сахара, дерева, воды, угля, кислородного газа, озона и т.п., но не простым телам, элементами образуемыми. При этом, очевидно, является вопрос: как же можно находить какую-либо реальную законность в отношении к таким предметам, как элементы, существующие лишь как представления современных химиков, и что же реально осуществимое можно ожидать, как следствие из расследования каких-то отвлеченностей? Действительность отвечает на подобные вопросы с полною ясностью: отвлечения, если они правдивы (содержат элементы истины) и соответствуют реальности, могут служить предметом точно такого же исследования, как и чисто материальные конкретности. Так химические элементы, хотя суть отвлеченности, подлежат расследованию совершенно такому же, как простые или сложные тела, которые можно накалить, взвесить и вообще подвергать прямому наблюдению. Сущность дела здесь в том, что у химических элементов, на основании опытного исследования простых и сложных тел, ими образуемых, открываются свои индивидуальные свойства и признаки, совокупность которых и составляет предмет исследования. Мы и обратимся теперь к перечислению некоторых из особенностей, принадлежащих химическим элементам, чтобы затем показать П. законность химических элементов.
Свойства химических элементов должно разделить на качественные и количественные, хотя бы первые из них и сами по себе подлежали измерению. К числу качественных прежде всего принадлежит свойство образовать кислоты и основания. Хлор может служить образцом первых, так как и с водородом, и кислородом образует явные кислоты, способные с металлами и основаниями давать соли, начиная с первообраза солей – поваренной соли. Натрий же поваренной соли NaCl может служить образцом элементов, дающих только основания, так как кислотных окислов с кислородом он не дает, образуя или основание (окись натрия), или перекись, обладающую характерными признаками типической перекиси водорода. Все элементы суть более или менее кислотные или основные, с явными переходами от первых ко вторым. Это качественное свойство элементов электрохимики (с Берцелиусом во главе) выразили, отличив сходных с натрием, на основании того, что первые при разложении током являются на аноде, а вторые на катоде. Тоже качественное различие элементов выражается отчасти и в различении металлов и металлоидов, так как основные элементы относятся к числу таких, которые в виде простых тел дают настоящие металлы, а кислотные элементы образуют в виде простых тел металлоиды, не имеющие вида и механических свойств настоящих металлов. Но во всех этих отношениях не только невозможно прямое измерение, позволяющее устанавливать последовательность перехода от одних свойств к другим, но и нет резких различий, так что есть элементы в том или ином отношении переходные или такие, которые можно отнести и в тот, и в другой разряд. Так алюминий, по внешнему виду явный металл, отлично проводящий гальв. ток, в своем единственном окисле Аl2O3 (глинозем) играет роль то основную, то кислотную, так как соединяется и с основаниями (напр. Na2O, MgO и др.), и с кислотными окислами, например образуя серноглиноземную соль A12(SO4)3=Al2O33O3; и в том, и в другом случае он обладает слабо выраженными свойствами. Сера, образуя несомненный металлоид, во множестве химических отношений сходна с теллуром, который по внешним качествам простого тела всегда относился к металлам. Такие случаи, очень многочисленные, придают всем качественным признакам элементов некоторую степень шаткости, хотя и служат к облегчению и, так сказать, оживлению всей системы знакомства с элементами, указывая в них признаки индивидуальности, позволяющей предугадывать еще не наблюденные свойства простых и сложных тел, образующихся из элементов. Эти сложные индивидуальные особенности элементов придавали чрезвычайный интерес открытию новых элементов, не позволяя никоим образом сколько-нибудь предвидеть сумму физических и химических признаков, свойственных веществам, ими образуемым. Все, чего можно было достигать при изучении элементов, ограничивалось сближением в одну группу наиболее сходных, что уподобляло все это знакомство с систематикою растений или животных, т.е. изучение было рабским, описательным и не позволяющим делать какие-либо предсказания по отношению к элементам, еще не бывшим в руках исследователей. Ряд иных свойств, которые мы назовем количественными, выступил в надлежащем виде для химических элементов только со времени Лорана и Жерара, т.е. с 50-х годов текущего столетия, когда была подвергнута исследованию и обобщению способность взаимного реагирования со стороны состава частиц и укрепилось представление о двуобъемных частицах, т.е. о том, что в парообразном состоянии, пока нет разложения, всякие частицы (т.е. количества веществ, вступающие в химическое взаимодействие между собою) всех тел занимают такой же объем, какой занимают два объема водорода при той же температуре и том же давлении. Не входя здесь в изложение и развитие начал, укрепившихся при этом, ныне общепринятом представлении, достаточно сказать, что с развитием унитарной или частичной химии в последние 40 или 50 лет получилась твердость, прежде не существовавшая, как в определении атомных весов элементов, так и в определении состава частиц простых и сложных тел, ими образуемых, и стала очевидною причина различия свойств и реакций обыкновенного кислорода О2 и озона O3, хотя оба содержат только кислород, как и разность маслородного газа (этилена) C2H4 от жидкого цетена С16Н32, хотя оба содержат на 12 весовых частей углерода по 2 весовых части водорода. В эту многознаменательную эпоху химии выступило в ней для каждого хорошо обследованного элемента два более или менее точных количественных признака или свойства: вес атома и тип (форма) состава частиц соединений, им образуемых, хотя ничто не указывало еще ни на взаимную связь этих признаков, ни на соотношение их с другими, особенно качественными, свойствами элементов. Вес атома, свойственный элементу, т.е. неделимое, наименьшее относительное количество его, входящее в состав частиц всех его соединений, особенно был важен для изучения элементов и составлял их индивидуальную характеристику, пока чисто эмпирического свойства, так как для определения атомного веса элемента надобно узнать не только эквивалент или относительный весовой состав некоторых его соединений с элементами, вес атома которых известен из иных определений, или условно принят известным, но и определить (по реакциям, плотностям паров и т.п.) частичный вес и состав хоть одного, а лучше многих из соединений, им образуемых. Этот путь опыта столь сложен, длинен и требует такого совершенно очищенного и тщательно изученного материла из числа соединений элемента, что для многих, особенно для редких в природе элементов, при отсутствии особо понудительных причин, оставалось много сомнений относительно истинной величины атомного веса, хотя весовой состав (эквивалент) некоторых соединений их и был установлен; таковы, напр., были уран, ванадий, торий, бериллий, церий и др. При чисто эмпирическом значении веса атома не было и особого интереса углубляться в этот предмет для элементов, редко подвергаемых исследованию, тем не менее для большой массы обыкновеннейших элементов величины атомных весов можно было уже в начале 60-х годов считать твердо установленными, особенно после того, как Канницаро твердо установил для многих металлов, напр. Са, Ва, Zn, Fe, Сu и т.п. явное их отличие от К, Na, Ag и т.п., показав, что частицы напр. хлористых соединений первых из них содержат вдвое более хлора, чем вторых, т.е. что Са, Ва, Zn и т.д. дают CaCI2, BaCI2 и т.д., т.е. двуатомны (двуэквивалентны или двувалентны), тогда как K, Na и т.п. одноатомны (одноаквивалентны), т.е. образуют KCI, NaCI и т.п. В эпоху около середины текущего столетия вес атома элементов послужил уже одним из признаков, по которым стали сличать сходственные элементы групп.
Другой из важнейших количественных признаков элементов представляет состав частиц высших соединений, им образуемых. Здесь более простоты и ясности, потому что Дальтонов закон кратных отношений (или простоты и цельности числа атомов, входящих в состав частиц) уже заставляет ждать только немногих чисел и разобраться в них было легче. Обобщение выразилось в учении об атомности элементов или их валентности. Водород есть элемент одноатомный, ибо дает по одному соединению HX с другими одноатомными же элементами, представителем которых считался хлор, образуя НСl. Кислород двуатомен, потому что дает H2O или соединяется вообще с двумя X, если под Х подразумевать одноатомные элементы. Так получают НСlO, Сl2О и т.д. В этом смысле азот считается трехатомным, так как дает NH3, NCl3; углерод четырехатомным, потому что образует СН4, СО2 и т.д. Сходные элементы одной группы, напр. галоиды, дают и сходные частицы соединений, т.е. имеют одну и ту же атомность. Через все это изучение элементов очень сильно двинулось вперед. Но было немало трудностей разного рода. Особую трудность представили соединения кислорода, как элемента двуатомного, способного замещать и удерживать X2, в силу чего совершенно понятно образование Cl2O, HClO и т.п. соединений с одноатомными элементами. Однако, тот же кислород дает не только НСlO, но и HClO2, НСlO3 и НСlO4 (хлорная кислота), точно также как не только H2O, но и H2O2 (перекись водорода). Для объяснения пришлось признать, что кислород, в силу своей двуатомности, обладая двумя сродствами (как говорят), способен втиснуться в каждую частицу и встать между всякими двумя атомами, в нее входящими. Трудностей при этом получилось много, но остановимся на двух, по-моему, важнейших. Во-первых, оказалась как бы грань О4 для числа кислородных атомов, входящих в частицу, а этой грани нельзя ждать на основании допущенного. При том, приближаясь к грани, получались часто соединения не менее, а более прочные, чего уже вовсе нельзя допустить при представлении о втиснутых атомах кислорода, так как чем более их взойдет, тем вероятнее было иметь непрочность связей. А между тем НСlO4 прочнее НСlO3, эта последняя прочнее НСlO2 и НСlO, тогда как НСl опять тело химически очень прочное. Грань же О4 выступает в том, что водородным соединениям разной атомности:
НСl, H2S, Н3Р и H4Si
отвечают высшие кислородные кислоты:
НСlO4, H2SO4, Н3РО4 и H4SiO4,
в которых одинаково содержатся четыре атома кислорода. Из этого даже выходит тот неожиданный вывод, что считая Н – одно-, а О – двуатомными элементами, по кислороду способность к соединению выходит обратная, чем по водороду, т.е. по мере того как у элементов увеличивается свойство удерживать атомы водорода или возрастать в атомности, уменьшается способность удерживать кислород; хлор, так сказать, одноатомен по водороду и семиатомен по кислороду, а фосфор или аналогический с ним азот трехатомен в первом смысле, а во втором – пятиатомен, что видно и по другим соединениям, например NH4CI, POCl3, РСl5 и т.п. Во-вторых, все, что знаем, явно указывает на глубочайшее различие в присоединении кислорода (втискивании его, судя по представлению об атомности элементов) в том случае, когда образуется перекись водорода, от того, когда происходит напр. из H2SO4 (сернистая кисл.) серная кислота H2SO4, хотя H2O2 отличается от Н2O точно также атомом кислорода, как H2SO4 от H2SO3, и хотя раскислители в обоих случаях переводят высшую степень окисления в низшую. Разность в отношении к реакциям, свойственным H2O2 и H2SO4, особенно выступает по той причине, что серной кислоте отвечает своя перекись (надсерная кислота, аналог которой надхромовая недавно изучена Wiede и содержит, по его данным, H2CrO5), обладающая совокупностью свойств перекиси водорода. Значит, есть существенная разность в способе присоединения кислорода в «солеобразных» окислах и настоящих перекисях и, значит, простым втискиванием атомов кислорода между другими выражать все случаи присоединения кислорода недостаточно, а если выражать, то скорее всего это следует применять к перекисям, а не к образованию, так сказать, нормальных соединений кислорода, приближающихся к RHnО4, где n, число атомов водорода, не бывает более 4, как и число атомов кислорода в кислотах, содержащих один атом элементов R. Приняв сказанное во внимание и означая вообще через R атом элементов, вся совокупность сведений о солеобразных окислах приводится к тому выводу, что число самостоятельных форм или видов окислов очень не велико и ограничивается следующими восемью:
R2O, напр. K2O, Ag2O.
R2O2 или RO, напр. CaO, FeO.
R2O3, напр. Al2O3, N2O3.
R2O4 или RO2, напр. CO2, SiO2.
R2O5, напр. N2O5, P2O5.
R2O6 или RO3, напр. SO3, CrO3.
R2O7, напр. Cl2O7, Mn2O7.
R2O8 или RO4, напр. OsO4, RuO4.
Эта стройность и простота форм окисления вовсе не вытекает из учения об атомности элементов в его обычной форме (при определении атомности по соединению с Н или Сl) и есть дело прямого сличения кислородных соединений самих по себе. Вообще учение о постоянной и неизменной атомности элементов заключает в себе трудности и несовершенства (не насыщенные соединения, подобные СО, пересыщенные, подобные JCl3, соед. с кристаллизационною водою и т.п.), но оно в двух отношениях имеет и поныне важное значение, а именно с ним достигнута простота и стройность выражения состава и строения сложных органических соединений, и в отношении к выражению аналогии сродственных элементов, так как атомность, по чему бы ее не считали (или состав частиц сходственных соединений), в таком случае оказывается одинаковою. Так напр. сходные между собою во многом ином галоиды или же металлы данной группы (щелочные, напр.) оказываются всегда обладающими одинаковою атомностью и образующими целые ряды сходных соединений, так что существование этого признака есть уже до некоторой степени указатель аналогии.
Чтобы не усложнять изложения, мы оставим перечисление других качественных и количественных свойств элементов (напр. изоморфизма, теплот соед., показ, преломления и т.п.) и прямо обратимся к изложению П. закона, для чего остановимся: 1) на сущности закона, 2) на его истории и приложении к изучению химии, 3) на его оправдании при помощи вновь открытых элементов, 4) на приложении его к определению величины атомных весов и 5) на некоторой неполноте существующих сведений.
Сущность П. законности. Так как из всех свойств химических элементов атомный их вес наиболее доступен для численной точности определения и для полной убедительности, то исходом для нахождения законности химических элементов всего естественнее положить веса атомов, тем более, что в весе (по закону сохранения масс) мы имеем дело с неуничтожаемым и важнейшим свойством всякой материи. Закон есть всегда соответствие переменных, как в алгебре функциональная их зависимость. Следовательно, имея для элементов атомный вес как одну переменную, для отыскания закона элементов следует брать иные свойства элементов, как другую переменную величину, и искать функциональной зависимости. Взяв многие свойства элементов, напр. их кислотность и основность, их способность соединяться с водородом или кислородом, их атомность или состав их соответственных соединений, теплоту, выделяемую при образовании соответственных, напр. хлористых соединений, даже их физические свойства в виде простых или сложных тел сходного состава и т.п., можно подметить периодическую последовательность в зависимости от величины атомного веса. Для того, чтобы это выяснить, приведем сперва простой список всех, хорошо ныне известных определений атомного веса элементов, руководясь недавним сводом, сделанным F.W. Clarke («Smithsonian Miscellaneous Collections», 1075: «A recalculation of the atomic weights», Вашингтон, 1897, стр. 34), так как его ныне должно считать наиболее достоверным и содержащим все лучшие и новейшие определения. При этом примем, вместе с большинством химиков, условно атомный вес кислорода равным 16. Подробное исследование «вероятных» погрешностей показывает, что примерно для половины приведенных результатов погрешность чисел менее 0,1%, но для остальных она доходит до нескольких десятых, а для иных, быть может, и до процентов. Все атомные веса приведены по порядку их величины.
Ряды O=16          Атомный вес
1       Водород    Н       1,008
         Литий         Li      7,03
                           
2       Берилий, Gl или Be     9,08
         Бор   B       10,95
         Углерод     C       12,01
         Азот, Az или       N       14,04
         Кислород  O       16
         Фтор F       19,06
                           
3       Натрий      Na     23,05
         Магний      Mg    24,28
         Алюминий Al      27,11
         Кремний    Si      28,40
         Фосфор      P       31,02
         Сера S       32,07
         Хлор Cl      35,45
                           
4       Калий        K       39,11
         Кальций     Ca     40,07
         Скандий     Sc      44,12
         Титан         Ti      48,15
         Ванадий     V       51,38
         Хром         Cr     52,14
         Марганец  Mn    54,99
                           
         Железо       Fe      56,02
         Кобальт     Co     58,93
         Никель       Ni      58,69
                           
5       Медь Cu     63,60
         Цинк Zn     65,41
         Галлий       Ga     69,91
         Германий   Ge     72,48
         Мышьяк    As     75,01
         Селен         Se      79,02
         Бром Br     79,95
                           
6       Рубидий     Rb     85,43
         Стронций  Sr      87,61
         Иттрий       Y       89,02
         Цирконий  Zr      90,40
         Ниобий, Cb или  Nb     93,73
         Молибден  Mo    95,99
                           
         Рутений     Ru     101,68
         Родий         Rh     103,01
         Палладий  Pd     106,36
                           
7       Серебро     Ag     107,92
         Кадмий      Cd     111,95
         Индий        In      113,85
         Олово        Sn     119,05
         Сурьма      Sb     120,43
         Теллур       Te     127,49
         Йод   J        126,85
                           
Часть 8 ряда                Цезий         Cs     132,89
         Барий         Ba     137,43
         Лантан       La     138,64
         Церий        Ce     140,20
                           
Часть 10 ряда              Иттербий   Yb     173,19
         Тантал       Ta     182,84
         Вольфрам  W      184,83
                           
         Осмий        Os     190,99
         Иридий      Ir       193,12
         Платина     Pt      194,89
                           
Часть 11 ряда              Золото       Au     197,23
         Ртуть                   Hg     200,00
         Таллий       Tl      204,15
         Свинец       Pb     206,92
         Висмут       Bi      208,11
                           
Часть 12 ряда               Торий        Th     232,63
         Уран          U       239,59
В этом сопоставлении уже намечена П. законность и она выражена в рядах, каждый из которых содержит до некоторой степени явное периодическое повторение одних и тех же количественных и качественных свойств элементов, особенно примечаемое тогда, когда взять целые периоды (большие), содержащие один четный ряд и следующий за ним нечетный. Так, ряд 2-ой начинается Li – металлом щелочным и в соединении с рядом 3-м образует период, кончающийся галоидом С1 с явно кислотными свойствами представителя металлоидов. Точно также в следующем большом периоде, содержащем 4-ый и 5-ый ряды, началом служит щелочной металл К, а концом галоид Вr; в периоде, содержащем 6 и 7 ряды, опять в начале щелочной металл Rb, а в конце галоид йод. Следующий период, начинаясь опять явно щелочно-металлическим цезием, очевидно не полон, а в следующих периодах известны лишь некоторые средние элементы, но ни начальные щелочные металлы, ни конечные галоиды неизвестны. Если взять один из полных периодов, напр. (4 и 5 ряды), начинающийся калием и кончающийся бромом: то можно здесь подметить прежде всего содержание двух рядов с возрастающею, судя по кислородным соединениям, атомностью входящих элементов. При том это возрастание, по отношению к кислороду, идет в каждом ряде совершенно последовательно для высших солеобразных окислов.
В первых группах – основания, в последних кислоты, в середине промежуточные по характеру, слабоосновные и слабокислотные окислы, примером которых лучше всего могут служить ZnO и TiО2. Важнее всего обратить внимание на повторение свойств в рядах и периодах и на существование в более полных из периодов между четным рядом и следующим нечетным 3-х элементов, относимых к VIII группе. Таковы Fe, Со и Ni между 4 и 5 рядом. Ru, Rh и Pd между 6 и 7 рядами и Os, lr и Pt между 10 и 11 рядами.
Начиная с водорода, первые с наименьшим атомным весом элементы до Na представляют не мало своих особенностей, как примечено давно во всех подобных рядах и сложных тел. Напр., первые члены ряда предельных спиртов СnН2n+2O будут, при n=0 и n=1, вода H2O и древесный спирт СН4O и в них известно много особенностей. Эти легчайшие элементы, от Н до Na, называются типическими, ибо в них выражены, как в образцах и в наиболее ясной форме, все виды и свойства, но и со своими особенностями. Взяв затем остальные элементы, мы видим, что в одной строке, то есть на одном месте в периоде, встречаются ближайшие, давно установленные аналоги. напр. К, Rb и Cs; Ca, Sr и Ва; Сu, Ag и Au; P, As и Sb; S, Se и Те; Cl, Вr и J. Следовательно, П. законность показывает связь, существующую между ближайшими аналогами, сближает их и вызывает признание не подмечавшихся аналогий, примером которых могут служить аналогии: Hg с Мg, Zn и Cd, V с Nb и Та, Се с Zr и Ti, Pt и Pd с Ni, Pb с Sn и т.п.
В каждом большом периоде между начальным четным и конечным нечетным рядами помещаются элементы VIII группы, где известно 9 элементов: Fe, Со и Ni, Ru, Rh и Pd, и Os, lr и Pt, которые характеризуются особою совокупностью самобытных свойств, для чего достаточно упомянуть, напр., о соединениях Ni и Pt с окисью углерода, о столь характерных двойных синеродистых металлах, как те, которые содержат Fe, Pt и т.п., а особенно о том, что только для элементов этой группы, а именно Os и Ru, известны окислы состава OsO4. Притом элементы эти во всех отношениях представляют свойства переходные от последних членов четных рядов к первым членам нечетных, напр. Fe, Со и Ni представляют переход от Cr и Mn к Сu и Zn. Таким образом сопоставление элементов по величине их атомного веса раскрывает или показывает главнейшие их взаимные качественные отношения и аналогии и в то же время отвечает изменению в них способности к соединениям, что видно не только по правильности в составе окислов, но и во множестве других случаев. Напр., по отношению к водороду только в типических элементах 2-го ряда и только в последних группах нечетных рядов существует способность образовать летучие и газообразные соединения. В том же ряде понятий уясняется и образование предельного насыщения кислородом O4. В самом деле, если С дает СО2, то ее высший гидрат (ортоугольная кислота) и должен иметь состав С(НО)4=СH4O4 а хлор, если дает Cl2O7 и HCl, как видно по его месту в периодической системе элементов, то и гидрат высшего окисла будет ClO3(OH)=СlНО4: тоже и для элементов V и VI групп. Такого же рода простота и правильность открываются и для чисто физических свойств и отношений, отвечающих аналогическим соединениям или состояниям элементов. Так, напр., удельные веса (а след. и удельные объемы или частные от деления веса атома на уд. вес) в твердом и жидком виде (не говоря уже о газообразном, потому что он прямо зависит от атомного веса и числа атомов в частице) как для самих простых тел, так и для их аналогических соединений в данном ряде последовательно изменяются по мере изменения атомного веса или при переходе от одной группы к другой, т.е. по мере постепенного возрастания ат. веса здесь уд. вес явно, но постепенно уменьшается, а уд. объем увеличивается. При переходе же от конечного галоида к начальному (для следующего периода) щелочному металлу (здесь от J к Cs) сразу совершается скачек, а именно напр. для Cs уд. вес 2,37, уд. объем 56, т.е. слишком вдвое, чем для йода. Наибольшая плотность и наименьший уд. объем отвечают в периодах элементам VIII группы (Ni, Ru, Os), а между типическими элементами, образующими как бы свой особый период, среднему из элементов бору (уд. вес 2,5, уд. объем 4,4). Подобная же этой волнообразная (периодическая), если можно так выразиться, зависимость, отвечающая П. законности, замечается и для иных свойств, напр. для темп. плавления простых тел. для темп. кипения соответствующих ( напр. металлоорганических) соединений, для уд. их веса и т.п. физических свойств, прямо определяемых наблюдением и не содержащих уже в себе – как атомность – никаких отвлеченных представлений. Входить здесь в подробности всех этих отношений мне кажется неуместным.
Всю совокупность соотношений, замечаемых при подобных сличениях. можно формулировать в следующем положении: химические и физические свойства соединений, образуемых элементами, находятся в периодической зависимости от величины атомного веса элементов. Это и составляет сущность П. законности. Нельзя при этом не остановить внимания на том, что возрастание атомного веса состоит в увеличении массы, а при увеличении массы во всех обычных случаях идет все время последовательное изменение (напр. возрастает, при прочих равных обстоятельствах, притяжение, объем и т.п.) в определенную сторону, здесь же это замечается только до известного предела (напр. до перехода от одного периода к другому или до VIII группы в периоде и т.п.), после которого или совершается обратное изменение, или начинается повторение прежнего, как в пиле повторяются зубья и имеются высшие и низшие точки. Эта сторона дела придает П. законности общий своеобразный интерес новизны и заставляет думать, что замеченная законность может послужить к объяснению природы химических элементов, которые поныне составляют последнюю грань постижения химических превращений.
История и приложение П. законности. Первые, но слабо обработанные замечания о связи между величиною ат. веса элементов и свойствами их соединений явились при изучении ат. весов, напр. у Дюма, Гладстона, Кремерса, Петтенкофера, Ленсена, Л. Мейера и др., заметивших правильность изменения ат. веса в группах сходственных элементов. Первые попытки расположить все элементы в ряды по величине их ат. веса встречаются у Шанкуртуа (vis tellurique) и Ньюландса (Lav of octavos), но хотя при этом и было подмечено совпадение с известными до тех пор аналогиями, но взаимное соответствие и последовательность групп не служили предметом наблюдения, носившего характер отрывочной неполноты, и все изложение, как всякие первые попытки, было лишено такого значения, чтобы обратить на себя внимание. Только в 1869 г. Д. Менделеев, не имея в виду сопоставлений Шанкуртуа и Ньюландса, а вновь подметив общность соотношения и периодичность зависимости свойств элементов от их веса атомов, в Рус. Химич. Общ. точно формулировал П. закон, вывел много новых из него следствий и показал такую важность предмета, что к нему обратились многие, а затем полнее развил П. законность как в своем сочинении «Основы химии», так и в статьях, помещенных в «Liebig's Anualen» и в «Журнале Рус. Хим. Общества» (1871), где с определенностью вывел необходимость изменить ат. веса Се, U, Be, In, Y и др., исправить определения ат. веса Ti, Os, Ir, Pt, Au и др. и ждать совершенно определенной совокупности свойств от неоткрытых еще элементов, из числа которых особенно остановился на свойствах тогда неизвестных, а ныне уже полученных аналогов – бора (описанного под названием экабора, а ныне названного скандием), алюминия (ныне называемого галлием) и кремния (ныне германия). То, что касается церия, Менделеев сам проверил, определив его теплоемкость, а затем подтвердил Браунер в Праге. Роско в Англии, Циммерман в Германии и др. оправдали требуемое П. законностью и указанное Менделеевым удвоение принятого прежде ат. веса урана. Торпе в Лондоне оправдал требуемый П. законностью ат. вес титана, а исследования Зейберта, Крюсса, Маллета и др. подтвердили то соображение, вытекавшее из П. законности, что величина ат. веса в ряде Os, Ir, Pt, и Au должна идти возрастая, тогда как прежние данные показывали обратное. Особенное же внимание привлекли к себе исследования, касающиеся величины ат. веса бериллия, и оправдание П. законности свойствами новооткрытых элементов, о чем говорится далее (III и IV). Вместе с тем стали прилагать П. законность к изучению разных свойств простых и сложных тел (от изоморфизма до парамагнитности и теплот соединения) и везде находили оправдание общих начал, законом установленных, т.е. свойства стояли в П. зависимости от ат. веса элементов, что и повело к общему признанию П. законности, чему много содействовали труды и статьи особенно Роско, Браунера, Торпе, Лаури, Пиччини и К. Винклера, причем исходом признания и оправдания П. законности считалась обыкновенно статья Менделеева, помещенная в «Liebig's Annalen», Supplementband, VIII, 1871 г., хотя на русском языке все основное, вышеизложенное и явилось ранее, а именно в 1869 и 1870 гг. Вообще П. законность, как и всякий иной закон природы, получает вес, значение и силу не с момента его появления и формулирования, а от того только, что его проверка и оправдание придает новый интерес науке, что он дает возможность видеть то, что помимо его остается неизвестным, не отыскиваемым и неожиданным и только тогда, когда ожидаемое по закону оправдывается в действительности, что и случилось с П. законностью, как показано далее несколько подробнее в двух примерах.
Оправдание П. законности новооткрытыми элементами. До П. законности ничто, кроме прямого опыта, не указывало вперед на необходимость существования каких-либо еще неизвестных элементов, ни тем более – на свойства неизвестных элементов и их соединений. Это было прямым эмпиризмом, как видно, напр., из того, что Rb, Cs. Тl и In, открытые с помощью спектральных исследований, оказались со свойствами совершенно не ожидавшимися и заставившими изменить многие из предвзятых мнений, ранее господствовавших, напр. когда тяжелый (удельный вес 11,8), как свинец (уд. вес 11,3), таллий оказался дающим в воде растворимую закись Тl2O, гидрат которой ТlНО многим напоминает щелочи. С П. законностью дело сильно изменилось, так как, во-первых, в системе элементов оказались сразу такие промежутки между известными элементами, заполнения которых должно было ждать при помощи вновь открываемых элементов, а во-вторых – и это всего важнее – для этих неизвестных элементов, судя по их месту в системе, должно было ждать не только определенных атомных весов и данных окислов и др. соединений, но и совершенно ясно предвидимых свойств для множества их соединений. Свойства эти легко выводить на основании П. законности для неизвестных элементов, если они окружены уже известными. Так, в 1869 г., когда был установлен П. закон, не было известно элемента, ныне называемого германием, в IV группе 5-го ряда. Его место пустовало также, как и место рядом с ним в III группе. Не видя и ничего не испытывая в лаборатории, можно таким образом иметь полное понятие о свойствах таких элементов, которых еще никто не имел под руками, и в 1871 г. этим способом были указаны в подробностях свойства трех элементов, которые все затем были открыты и ныне известны под именами: 1) галлия Ga, открытого во Франции в 1875 г. Лекок-де-Буабодраном в цинковой обманке из Пиеррефита и тожественного с ожидавшимся экаалюминием: 2) скандия Sc, открытого Нильсоном в Швеции в 1879 г. между церитовыми металлами и оказавшегося равным предугаданному экабору; 3) германия Ge, извлеченного 1886 г. К. Винклером во Фрейберге, в Германии, из саксонского минерала аргиродита и оказавшегося в точности воспроизводящим предвиденный экасилиций. Во всех трех случаях предвиденные по П. закону свойства совершенно подтвердились и этим путем П. законность в сравнительно краткое время совершенно оправдалась. Здесь нельзя не указать на то, что для неизвестных элементов, вблизи или, так сказать, вокруг которых нет известных, нельзя бывает так подробно предвидеть свойства, как это оказалось возможным для Ge, Ga и Sc. Можно, напр., сказать, что при открытии галоида Х с атомным весом большим, чем йод, он все же будет образовать КХ, КХО3 и т.п., что его водородное соединение HХ будет газообразной, очень непрочной кислотою, что атомный вес будет или около 170 или около 215, но ни для галоида из 9-го ряда, ни для галоида из 11-го ряда нельзя уже предвидеть многие подробности свойств, так как тут близко нет хорошо известных элементов. Далее можно думать, что в том первом ряде, где ныне известен лишь водород, будут открыты свои элементы, также как в VIII группе между F и Na, но здесь не только край системы, но и типические элементы, а потому можно ждать своеобразия и особенностей. Быть может, недавно (1895) открытые гелий и аргон (Релей и Рамзай) отвечают указанным местам, но так как до сих пор не удалось ввести ни один из них в соединения, то всякие суждения о их отношении к другим элементам ныне должно считать преждевременными, тем более, что и вес атома их нельзя считать совершенно уверенно установленным.
Приложение П. законности к определению величины атомного веса. Аналитические исследования состава соединений данного элемента Z могут дать только эквивалент его в различных формах или степенях его окисления или вообще соединения, но ничего не могут дать по отношению к величине атомного веса, т.е. наименьшего числа эквивалентов, входящих в частицы элемента. Особенно ясно это, когда Z дает не одну, а несколько степеней окисления или форм соединения с О, С1 и др. Так железо дает с 16 весовыми частями кислорода или закись, содержащую 56 вес. частей железа, или окись с 37,33 част. железа, или ангидрид железной кислоты с 18,67 железа, а потому сравнительно с 1 вес. частью водорода (судя по составу воды) эквивалент железа в первом случае 28, во втором 18,67, в третьем 9,33. Сколько же эквивалентов разного рода содержится в атоме железа? Ответ дают: изоморфизм, плотность паров, теплоемкость и аналогии, что здесь не уместно рассматривать и что приводить для железа, напр., к тому, что за его атомный вес необходимо признать 56, т.е. два эквивалента первого рода, 3 – второго и 6 эквивалентов третьего рода. Когда открывается новый элемент – эквивалент узнается сравнительно легко, дело же определения веса атома, как очень трудное и требующее многих сведений, решается часто наугад по случайным наблюденным сходствам, а потому к эпохе появления П. законности еще много элементов, эквиваленты которых были более или менее хорошо известны, имели очень сомнительные атомные веса. Сюда относились в 1869 г. не только столь редкие элементы как La, Di; Y и их спутники, но и Be, In, Се, Th, V, Nb и U, для которых состав, свойства, реакции и формы соединений были, однако, хорошо известны, но не давали категорических данных для определения числа эквивалентов, содержащихся в атоме. П. законность оказалась здесь, очевидно, полезною и стала важным новым руководительным началом, потому что периодичности подлежат не эквиваленты, а веса атомов. Чтобы видеть в чем здесь дело, остановимся на двух крайних примерах, а именно вкратце над ураном и несколько подробнее над бериллием, для которых (как для Се, Y, In, La и др.) вес атома установлен благодаря П. законности. Уран дает две главные степени окисления: низшую – закись (ныне UO2) и высшую – окись (ныне UO3), в первой эквивалент (по водороду)=60, во второй=40. По закону кратных отношений и по сущности дела очевидно, что в атоме урана будет содержаться целое число эквивалентов. то есть U=n60=m40. Очевидно, что m=n11/2 и что приняв n=2, получим m=3, т.е. m и n тогда будут, как и следует, целыми числами. При этом простейшем допущении вес атома уранае120, формула закиси UO, окиси U2O3. Так это все и принимала, вслед за Пелиго, до П. законности. Но ныне, при П. законности, признать этого нельзя, потому что тогда урану нет подходящего места между элементами, так как у Sb ат. вес немного более 120, а у Sn немного менее и, судя по месту в системе, элемент с ат. весом около 120 должен давать высший солеобразный окисел состава RO2 или R2O5, т.е. с высшим чем у урана содержанием кислорода или с меньшим эквивалентом. Из равенства U=n.60=m.40 следует, что n должно быть четным числом, если m и n суть целые числа, и после невозможности признания n=2, проще всего было принять n=4, так как тогда закись будет UO2 окись UO3 и U=240, признать же n=6 и m=9 – невероятно, потому что тогда закись получит состав UO3, окись U2O9 (при U=360), а этот последний состав для солеобразных окислов, R2O5, совершенно невероятен и по П. законности существовать не может. Признав же n=4, т.е. U=240 и придав поэтому высшей окиси состав UO3, тотчас находим для U место в системе, в VI группе, аналогично с хромом, дающим СrO3 молибденом, образующим MoO3, и вольфрамом, высший окисел которого WO3. Тогда уран становится в 12-й ряд вслед за торием из IV группы с ат. весом 232. Эта уверенность подтверждена затем Роско, Циммерманом и др. при помощи определений теплоемкости, плотности пара и аналогий разного рода, которые здесь не место подробнее излагать. Ныне общепринят именно этот атомный вес U=240, установленный (мною в 1871 г.) по П. законности. Быстро приняты были и другие, вызванные П. законностью, перемены в весе атомов нек. др. элементов, но долго и с разных сторон не признавался для бериллия (или глиция) требуемый П. законностью вес атома Be=9, дающий ему при эквиваленте 4,5 место во 2 ряде и U группе, особенно по той причине, что у единственной солеобразной окиси бериллия есть много несомненных пунктов сходства с глиноземом, что и заставляло приписывать окиси Be состав глиноземный, т.е. Ве2O3, т.е. считать атом содержащим 3 эквивалента и равным Be=13,5. Масса работ была сделана для оправдания этого последнего веса атома бериллия, который тогда не находил вовсе места в периодической системе. Интерес к делу возрос именно из-за его связи с П. законностью. Считалось всеми в эпоху начала 80-х годов, что если будет доказана формула Ве2O3 и придется признать Be=13,5 – П. закон надо будет оставить, как недостаточный (ибо законы природы, в отличие от грамматических правил, исключений не допускают и ими опровергаются), если же оправдается формула ВеО и Be=9, надо будет признать общность П. закона. Здесь следует, однако, указать на то, что Авдеев еще в 1819 г., то есть задолго до П. законности, исследуя окись бериллия, счел ее аналогом магнезии MgO и придал ей состав ВеО, требуемый П. законностью. Значит, были и ранее основания к этому допущению, так что все дело было очень спорным. Наиболее горячее участие в защите формулы Вe2O3 долго (в начале 80-х годов) принимали упсальские ученые Нильсон и Петерсон, но они же затем определили при высотой темп. плотность паров хлористого бериллия и тем оправдали формулу Авдеева и П. законности, что и признали открыто и что представляет один из поучительных примеров разрешения научного недоразумения при твердом стремлении к достижению истины. Дело тут вот в чем. Если окись бериллия есть Ве2O3 и вес атома Ве=13,5, то хлористый бериллий должен представлять в парах (без разложения) частицу ВеСl3 или ее полимер, т.е. вес частицы тогда будет около 119,5 или 120 или в целое число раз более (напр. Be2Cl6, как у аналогов нередко бывает), след. по водороду плотность паров хлористого бериллия будет тогда =60 или n60 (так как плотность пара по водороду = половине частичного веса, считая атом водорода за 1 или кислорода за 16). Если же окись бериллия имеет состав магнезиальный ВеО и Be=9, то частица хлористого бериллия ВеСl2 будет весить около 79 или 80 и плотность пара будет около 40 (или n40). Опыт Нильсона и Петерсона оправдал это последнее число. Humpidge тогда же (1884) подтвердил его. Этим подтвердилось предположение Авдеева и вновь оправдалась П. законность. Но нельзя не указать здесь на то, что и после 80-х годов у очевидно неверной гипотезы об атомном весе бериллия и о сходстве состава его окиси с составом Al2O3 осталось некоторое число упорных приверженцев, следующих за оставленным, между которыми за последнее время особо выступил в Париже Вырубов, который (в 1896 г.) не раз говорил против всей П. законности и, исследуя кремневольфрамовые соли, пришел к заключению, что бериллий совершенно аналогичен в них с трехэквивалентными (Ве=13,5), а не двуэквивалентными (Be=9) металлами. Вследствие подобных сомнений, вновь высказанных, А. Rosenheim and P. Woge в 1897 г. («Zeitschr. f. Anorganische Chemie», стр. 283) очень подробно вновь исследовали многие (молибденовые, сернистые, щавелевые и др.) двойные соли бериллия и применили бекмановский способ (по температ. кипения растворов) к определению частичного веса хлористого бериллия, причем пришли вновь к категорическому выводу, что «согласно с П. законностью бериллий есть элемент двуэквивалентный». Для понимания П. закона очень важно обратить внимание на то, что он не был признан сразу всеми, имел много противников и лишь постепенно выступал, как истинный, по мере накопления фактов и по мере оправдания следствий, из него вытекающих. Здесь виден пример того, с какими трудами добываются новые истины и как в науке обеспечивается их утверждение.
Дальнейшие исследования по П. законности. Хотя все вышеуказанное и многое еще мною не приведенное ясно оправдывает П. законность и не позволяет сомневаться в том, что сравнительно недавно открытый закон этот уже имеет немаловажное значение для основных химических представлений, и хотя и не подлежит сомнению, что дальнейшая разработка П. законности будет совершаться, тем не менее считаю не излишним указать на некоторые из общих и частных вопросов, тесно связанных с П. законностью и требующих по его смыслу опытного разрешения. Между частными вопросами мне кажутся особо интересными вопросы об атомном весе Со, Ni, Те и J с одной стороны, а с другой о перекисях. Есть много оснований полагать, что между столь близкими элементами, как Со и Ni, первый из них ближе к железу, а второй к меди, т.е. по величине ат. веса ставить ряд по возрастающим весам: Fe, Со, Ni, Сu, как это и принято выше. А между тем большинство данных, существующих доныне, говорит за то, что ат. вес Со более, чем Ni, а потому желательно, чтобы новые, возможно точные определения решили этот предмет окончательно при помощи опытов сравнительных и параллельных для Ni и Со. Если же окажется и при этом, что Со весит более Ni, т.е. что надо писать ряд: Fe, Ni, Со, Сu, то желательно дальнейшее исследование аналогий Со и Ni с Rh и Pd, с Ir и Pt, для чего особенно важны сложные двойные соли и соединения подобные Ni(CO)4. Что же касается ат. весов Те и J, то по всему смыслу П. законности должно думать, что ат. вес йода более теллура, но так как определения Браунера, всегда защищавшего и подтверждавшего П. законность, дают Те=127,5, а опред. Стаса – J=126,85, т.е. противное требованию П. закон., то прежде чем вновь перерешать трудный вопрос о чистоте Те или искать в нем более тяжелых подмесей (как думает Браунер), мне кажется, следует вновь определить, после всевозможного очищения йода, величину его эквивалента, так как, несмотря на предосторожности, принятые столь сильным исследователем, каков был Стас, все же можно еще думать, что в его йоде могла оставаться подмесь хлора и брома, которые должны уменьшать вес атома йода. С своей стороны, я не придаю большого веса и настоятельности вопросу об атомных весах Со, Ni, Те и J по той причине, что здесь идет дело лишь о малых разностях и частностях, изучение которых представляет глубокие практические трудности, чему придет свое время в будущем. Притом, если и окажется, что Со тяжелее Ni, придется лишь усовершенствовать одну частность П. закона, и его судьба не связана с этою переменою. Гораздо важнее отношение йода к теллуру, и здесь нужнее новые точные исследования, особенно же над атомн. весом йода.
Сложнее и много поучительнее вопрос о перекисях в его связи с П. законностью. При начале распространения понятий, сюда относящихся, число истинных перекисей, обладающих характерными реакциями перекиси водорода и связанных с нею взаимными переходами, было сравнительно невелико, и все известные (напр. NaO, КО2, BaO2, AgO и т.п.) относились к настоящим металлам, кислот не дающим. Поэтому могло казаться, что общий тип окисления, по мере увеличения кислорода, будет такой: недокиси, основные окиси, перекиси и кислотные ангидриды, т.е. что перекиси составляют переход от основных окислов к кислотным. Это предубеждение совершенно пропало в последнее время, когда стали известны надсерная кислота S2H2O8 ей отвечающий ангидрид S2O7 и ей соответствующие многие иные кислоты (надазотная, надхромовая, надтитановая, надугольная и т.п.), все обладающие реакциями H2O2, из нее часто происходящие и в нее нередко переходящие. Эти открытия наделали много переполоха в представлениях многих химиков, не видевших, следуя за понятиями Берцелиуса, глубокой разницы между так наз. перекисью марганца и типическою перекисью бария. При этом посыпались, даже со стороны просвещеннейших химиков, нарекания на П. законность. Говорили напр. так: П. законность требует для серы, как элемента из VI группы, высшего окисла состава SO3, а оказывается, что она дает сверх того S2O7, как элементы VII группы, что нарушает стройность соответствий П. законности. На это прежде всего следует заметить, что считать настоящие перекиси, подобные ВаO2 или S2O7, стоящими в том же отношении к элементам, в каком стоят «солеобразные» окислы, нет никакого основания, что при самом установлении П. законности было видно и указано (1869–1871 гг.), потому, например, что и тогда была известна перекись натрия NaO, представляющая состав окислов элементов II группы, натрий же по всем своим отношениям, равно как и по составу своей «высшей солеобразной» окиси Na2O, несомненно, есть металл I группы, как барий II группы, хотя дает перекись ВаO2 такого же состава, как у высших солеобразных окислов IV группы. Мало того, П. законность, выставив вышеприведенное естественное соображение, давала возможность ждать и для всех элементов, как для Н, Na и Ва, своих перекисей, содержащих более кислорода, чем у высших, настоящих солеобразных окислов, кислотного ли или основного характера, но отвечающих по типу, по реакциям и по превращениям воде, тогда как настоящие перекиси отвечают типу, реакциям и превращениям (особенно же легкому выделению части кислорода) перекиси водорода. И эта сторона дела оправдалась, потому что вслед за надсерною кислотою исследования показали образование перекисных степеней окисления для множества разнообразных элементов. Упомянем, для примера о перекисях: углерода С2O5, хрома Cr2O7 или CrO4 (Wiede, 1897), олова SnO3 (Спринг, 1889), титана TiO3 (Пиччини, Веллер), молибдена Мо2О7, вольфрама W2O7, урана UO4 и др. Здесь и является вопрос о системе перекисных форм окисления и на основании общности П. законности можно ждать, что и в перекисях по группам и рядам элементов откроется П. правильность, что, по мнению моему, представляет одну из весьма интересных тем для дальнейших опытных исследований. Таким образом «перекиси», в истинном смысле понимаемые (тогда МnO2 и PbO2 – уже не суть перекиси, а их представители суть: H2O2, NaO и S2O7), не только не колеблют П. закона, но его оправдывают, показывая, что истинные перекиси всегда содержат более кислорода, чем «высшие солеобразные окислы», как в H2O2 более, чем в Н2O, и по реакциям отвечают H2O2, если высшие солеобразные окислы отвечают Н2O.
Но не эти и многие другие частные вопросы особенно важны для определения дальнейшей роли П. закона в химии, а многие общие, законом этим возбуждаемые. Среди них, я думаю, важнее всех нахождение точного соответствия между числами, выражающими атомные веса элементов, местом их в системе и специальными (индивидуальными) свойствами элементов, так как при всем параллелизме свойств элементов в величине их атомных весов нет однообразия в отношениях ни арифметических, ни геометрических. Так, напр., взяв лишь O=16; С=12,01; F=19,06; S=32,07; Si=28,40; Cl=35,45, получаем арифметические разности: Si–C=l6,39; S–O=16,()7 и Cl–F=16,39 не тожественные, причем нельзя думать, что S=32,39, как можно бы полагать, если бы допустить равенство разностей. Точно также разности между членами больших периодов, напр. Rb–К, Мо–Cr, Ru–Fe, Sb–As, J–Вr и т.п. то близки между собою, то представляют небольшие, но несомненные уклонения в разные стороны. В геометрических отношениях как аналогов разных периодов, так и членов рядов представляются подобного же рода не обобщенные неравенства, причину которых, мне кажется, можно будет со временем (когда более точно будет известно большее, чем ныне, число атомных весов и будет известна возможная погрешность в их определении) сопоставить, а затем закономерно связать, с индивидуальными особенностями элементов. Уже многие исследователи, особенно же Ридберг, Базаров, Гаугтон, Чичерин, Флавицкий, Милльс и др., старались с разных сторон подойти к точному выражены П. законности, но до сих пор предмет этот не поддавался точным и общим выводам, хотя обещает очень много не только для увеличения степени точности сведений об атомных весах, но и для постижения как причины П. законности так и самой природы элементов. При этом считаю необходимым обратить внимание на то, часто из виду упускаемое, обстоятельство, что выражением П. закона не могут служить обычные «сплошные» функции, напр. от синусов, потому что элементы более всего характеризуются «разрывами», как видно напр. из того, что между К=39 и Са=40 нельзя мыслить – без нарушения законов Дальтона (целых кратных отношении в числе атомов, напр. КСl и СаСl2) – беспредельного числа промежутков, как нет между 1 и 2 ни одного промежуточного целого числа. Поэтому мне кажется, что для П. закона можно искать или геометрического выражения в точках пересечения двух «сплошных» кривых или аналитического выражения в «теории чисел». Попытки же выразить его «сплошными» кривыми, что делалось доныне, едва ли обещают успех, так как природе элементов, очевидно, мало соответствуют. Отсутствие до сих пор строго аналитического выражения для П. закона, по моему мнению, определяется тем, что он относится к области еще очень новой для математической обработки. Что же касается до отсутствия какого-либо объяснения сущности рассматриваемого закона, то причину тому должно искать прежде всего в отсутствии точного для него выражения. Он рисуется ныне в виде новой, отчасти только раскрытой, глубокой тайны природы, в которой нам дана возможность постигать законы, но очень мало возможности постигать истинную причину этих законов. Так, закон тяготения известен уже два столетия, но все попытки его объяснения – доныне мало удачны. Эти тайны природы составляют высший интерес точных наук, кладут на них особый отпечаток и делают изучение естествознания – в отличие от классического приема знаний – залогом умения сочетать и подчинять реально понятное с идеально вечным и общим, а потому и кажущимся непонятным. Словом, широкая приложимость П. закона, при отсутствии понимания его причины – есть один из указателей того, что он очень нов и глубоко проникает в природу химических явлений, и я, как русский, горжусь тем, что участвовал в его установлении.
Закон постоянства состава
Впервые сформулировал Ж.Пруст (1808 г).
Все индивидуальные химические вещества имеют постоянный качественный и количественный состав и определенное химическое строение, независимо от способа получения.
Из закона постоянства состава следует, что при образовании сложного вещества элементы соединяются друг с другом в определенных массовых соотношениях.
Массовая доля элемента w(Э) показывает, какую часть составляет масса данного элемента от всей массы вещества: где n - число атомов; Ar(Э) - относительная атомная масса элемента; Mr - относительная молекулярная масса вещества.
w(Э) = (n•Ar(Э)) / Mr
Зная количественный элементный состав соединения можно установить его простейшую молекулярную формулу:
1. Обозначают формулу соединения Ax By Cz 2. Рассчитывают отношение X : Y : Z через массовые доли элементов:
w(A) = (х•Ar(А)) / Mr(AxByCz)
w(B) = (y•Ar(B)) / Mr(AxByCz)
w(C) = (z•Ar(C)) / Mr(AxByCz)
X = (w(A)•Mr) / Ar(А) Y = (w(B) •Mr) / Ar(B)
Z = (w(C) •Mr) / Ar(C)
x : y : z = (w(A) / Ar(А)) : (w(B) / Ar(B)) : (w(C) / Ar(C))
3. Полученные цифры делят на наименьшее для получения целых чисел X, Y, Z.
4. Записывают формулу соединения.
Закон кратных отношений.
(Д.Дальтон, 1803 г.)
Если два химических элемента дают несколько соединений, то весовые доли одного и того же элемента в этих соединениях, приходящиеся на одну и ту же весовую долю второго элемента, относятся между собой как небольшие целые числа.
N2O N2O3 NO2(N2O4) N2O5
Число атомов кислорода в молекулах этих соединений, приходящиеся на два атома азота, относятся между собой как 1 : 3 : 4 : 5. 
Закон объемных отношений.
(Гей-Люссак, 1808 г.)
"Объемы газов, вступающих в химические реакции, и объемы газов, образующихся в результате реакции, относятся между собой как небольшие целые числа".
Следствие. Стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества.
Примеры.
a) 2CO + O2 --> 2CO2
При окислении двух объемов оксида углерода (II) одним объемом кислорода образуется 2 объема углекислого газа, т.е. объем исходной реакционной смеси уменьшается на 1 объем.
b) При синтезе аммиака из элементов:
n2 + 3h2 --> 2nh3
Один объем азота реагирует с тремя объемами водорода; образуется при этом 2 объема аммиака - объем исходной газообразной реакционной массы уменьшится в 2 раза.
Закон Авогадро ди Кваренья (1811 г.)
В равных объемах различных газов при одинаковых условиях (температура, давление и т.д.) содержится одинаковое число молекул.
Закон справедлив только для газообразных веществ.
Следствия:
1. Одно и то же число молекул различных газов при одинаковых условиях занимает одинаковые объемы.
2. При нормальных условиях (0°C = 273°К , 1 атм = 101,3 кПа) 1 моль любого газа занимает объем 22,4 л.
Объединенный газовый закон - объединение трех независимых частных газовых законов: Гей-Люссака, Шарля, Бойля-Мариотта, уравнение, которое можно записать так:
P1V1 / T1 = P2V2 / T2
И наоборот, из объединенного газового закона при P = const (P1 = P2) можно получить
V1 / T1 = V2 / T2 (закон Гей-Люссака);при Т= const (T1 = T2):P1V1 = P2V2 (закон Бойля-Мариотта);
при V = const
P1 / T1 = P2 / T2 (закон Шарля).
Уравнение Клайперона-Менделеева.
Если записать объединенный газовый закон для любой массы любого газа, то получается уравнение Клайперона-Менделеева:
pV= (m / M) RT
где m - масса газа; M - молекулярная масса; p - давление; V - объем; T - абсолютная температура (°К); R - универсальная газовая постоянная (8,314 Дж/(моль•К) или 0,082 л атм/(моль•К)).
Для данной массы конкретного газа отношение m / M постоянно, поэтому из уравнения Клайперона-Менделеева получается объединенный газовый закон.
Относительная плотность газов показывает, во сколько раз 1 моль одного газа тяжелее (или легче) 1 моля другого газа.
DA(B) = r(B) / r(A) = M(B) / M(A)
Средняя молекулярная масса смеси газов равна общей массе смеси, деленной на общее число молей:
Mср = (m1 +.... + mn) / (n1 +.... + nn) = (M1•V1 + .... Mn•Vn) / (n1 +.... + nn)
Планетарная модель строения атома.
(Э.Резерфорд, 1911 г.)
1. Атомы химических элементов имеют сложное внутреннее строение.
2. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
3. Весь положительный заряд и почти вся масса атома сосредоточена в ядре атома(масса электрона равна 1/1823 а.е.м.).
4. Вокруг ядра по замкнутым орбиталям движутся электроны. Их число равно заряду ядра. Поэтому атом в целом - электронейтрален.
Ядро атома.
Ядро атома состоит из протонов и нейтронов (общее название - нуклоны). Число протонов в ядре атома элемента строго определено - равно порядковому номеру элемента в периодической системе - Z. Число нейтронов в ядре атомов одного и того же элемента может быть различным - A - Z (где А - относительная атомная масса элемента; Z - порядковый номер).
Заряд ядра атома определяется числом протонов. Масса ядра определяется суммой протонов и нейтронов.
Изотопы.
Изотопы – разновидности атомов определенного химического элемента, имеющие одинаковый атомный номер, но разные массовые числа. Обладают ядрами с одинаковым числом протонов и различным числом нейтронов, имеют одинаковое строение электронных оболочек и занимают одно и то же место в периодической системе химических элементов.
Относительные атомные массы элементов, приводимые в периодической системе - есть средние массовые числа природных смесей изотопов. Поэтому они и отличаются от целочисленных значений.
Изотопы водорода имеют специальные символы и названия:
1 H - протий; 2 D - дейтерий; 3 T - тритий.
Химические свойства изотопов одного элемента одинаковы. Изотопы, имеющие одинаковые массовые числа, но различные заряды ядер, называются изобарами.
Радиоактивность.
Радиоактивность - самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, сопровождающееся испусканием элементарных частиц или ядер (например, ?- частиц).
Радиоактивность, проявляемая природными изотопами элементов, называется естественной радиоактивностью.
Самопроизвольный распад ядер описывается уравнением: mt = m0•(1/2)t / T1/2 где mt и m0 - массы изотопа в момент времени t и в начальный момент времени; Т1/2 - период полураспада, который является постоянным для данного изотопа. За время Т1/2 распадается половина всех ядер данного изотопа.
Основные виды радиоактивного распада.
a - распад. Сопровождается потоком положительно заряженных ядер атома гелия 42Не (a- частиц) со скоростью 20000 км/с. При этом заряд Z исходного ядра уменьшается на 2 единицы (в единицах элементарного заряда), а массовое число А - на 4 единицы (в атомных единицах массы).
Z' = Z – 2 A' = A - 4
т.е. образуется атом элемента, смещенного по периодической системе на две клетки влево, от исходного радиоактивного элемента, а его массовое число на 4 единицы меньше исходного.
226 Ra --> 222 Rh + 4 He
b - распад. Излучение ядром атома потока электронов со скоростью 100'000 - 300'000 км/с. (Электрон образуется при распаде нейтрона ядра. Нейтрон может распадаться на протон и электрон.) При b- распаде массовое число изотопа не изменяется, поскольку общее число протонов и нейтронов сохраняется, а заряд ядра увеличивается на 1. (Химический элемент смещается в периодической системе на одну клетку вправо, а его массовое число не изменяется)
 g- распад. Возбужденное ядро испускает электромагнитное излучение с очень малой длиной волны и высокой частотой, обладающее большой проникающей способностью, при этом энергия ядра уменьшается, массовое число и заряд остаются неизменными. (Химический элемент не смещается в периодической системе, его массовое число не изменяется и лишь ядро его атома переходит из возбужденного состояния в менее возбужденное).
Ядерные реакции - превращения ядер, происходящие при их столкновении друг с другом или с элементарными частицами. Первая искусственная ядерная реакция была осуществлена Э.Резерфордом (1919 г.) при бомбардировке ядер азота a- частицами:
 С помощью ядерных реакций были получены изотопы многих химических элементов и ядра всех химических элементов с порядковыми номерами от 93 до 110.
Законы сохранения в ядерных реакциях
Рассмотрим три ядра AZX, A1Z1X1, A2Z2X2, таких, что A = A1 + A2, Z = Z1 + Z2. Будем предполагать, что ядро X "состоит" из ядер X1 и X2.
Записывая для каждого ядра соотношение (1), получим
M(Z, A) = M(Z1, A1) + M(Z2, A2) - W/c2,  (4), где
W = Eсв(Z, A) - Eсв(Z1, A1) -Eсв(Z2, A2). (5)
Если W 0, то ядро X устойчиво относительно распада на ядра Ядро, масса которого больше суммы масс ядер X1, X2, неустойчиво и может распасться. При этом внутриядерная энергия - W перейдет в кинетическую энергию осколков X1 и X2.
Кроме энергии в ядерных реакциях сохраняется электрический заряд Z = Z1 + Z2, число нуклонов A = A1 + A2. Выполняются также и ряд дополнительных законов сохранения, о которых будет сказано в разделе, посвященном свойствам элементарных частиц.
Деление ядер урана
Анализ зависимости Eсв(Z, A) (см. Рис. 2) показывает, что для тяжелых ядер с Z 82 выполняется условие W0. Например, изотоп 23592U самопроизвольно распадается с полупериодом 7·108 лет. Оказалось также, что этот изотоп расщепляется при поглощении нейтрона. При этом, в каждом акте деления ядра возникают два ядра-осколка, 8-10 -квантов и в среднем 2,5 нейтронов. Если эти нейтроны вызывают новые акты деления, то возникает самоподдерживающаяся цепная реакция. При делении каждого ядра выделяется 200 МэВ (см. левую половину Рис. 5, где схематично изображена реакция
235U + n --> 140Cs + 93Rb + n + n + 250МэВ).
При делении 1 кг урана 235U выделяется 8,19·1013 Дж. (Удельная теплота сгорания нефти в 20 миллионов раз меньше.)
В природном уране содержится только 0,711% изотопа 23592U. В естественной смеси изотопов, в которой на одно ядро 23592U приходится 140 ядер 23892U, нейтроны не способны поддерживать реакцию. Можно, однако, получить цепную реакцию в смесях природного (или слабообогащенного 2%) урана со специальными веществами - замедлителями нейтронов. При обогащении до 20 - 25% надобность в замедлителях отпадает. При этом происходит превращение 23892U в плутоний 23994Pu, который делится также легко как и 23592U - процесс воспроизводства ядерного топлива.
Реакция идет по схеме последовательных - распадов:
23892U + n --> 23992U +  (23 мин.) -->23993Np + e- (2,4 дня) --> 23994Pu + e-.
(В скобках указаны времена полураспадов.) Только три страны - Россия, Франция и Япония - имеют достаточный опыт в этой высокой технологии.
Первые реакторы созданы в США (1942 г.) и в СССР (1946 г.). В настоящее время во Франции ядерная энергетика дает 73% всей вырабатываемой энергии, в США - 22%, в России - 13%.
Общий вид одной из АЭС, построенной в США, показан на Рис. 6.
Синтез легких ядер
Если W 0, то распад ядра энергетически запрещен. Но в обратном процессе - слиянии ядер X1 и X2 - энергия исходной системы должна уменьшится на величину W. Продукты синтеза приобретут кинетическую энергию W.
На правой половине Рис. 5 изображена реакция слияния
2H + 2H --> 3He + n + 3,2 МэВ.
Однако наибольший интерес представляют реакции
21H + 31H --> 42He + n + 17,6 МэВ,
21H + 32He --> 42He + 11H + 18,3 МэВ.
Высвобождающаяся энергия, отнесенная к одному нуклону дейтерия, значительно больше энергетического выхода на один нуклон делящегося изотопа урана-235. Для реализации таких реакций необходимо сблизить ядра на расстояние R 10-14м, затратив энергию k0 e2/R 0,15 0,3 МэВ, поэтому реакции остаются энергетически выгодными. Поскольку тритий очень радиоактивен, то реакция с использованием 3He более безопасна.
Надежды на практическую реализацию управляемого термоядерного синтеза продолжают оставаться "умеренно оптимистическими" на протяжении более 40 лет.
Если бы удалось осуществить управляемые термоядерные реакции в промышленных услових, то это дало бы доступ к практически неисчерпаемым источникам энергии и избавило бы человечество от угрозы энергетического кризиса. С другой стороны, если взорвутся те огромные запасы водородных бомб, которые накоплены (и продолжают накапливаться многими странами, несмотря на окончание т.н. холодной войны), то человечество и большая часть всего живого на Земле будет уничтожено.

Заключение
В далёком прошлом философы Древней Греции предполагали, что вся материя едина, но приобретает те или иные свойства в зависимости от её «сущности». А сейчас, в наше время, благодаря великим учёным, мы точно знаем, из чего на самом деле она состоит.
Современная химия представляет собой широкий комп­лекс наук, постепенно сложившийся в ходе ее длительного исторического развития. Практическое знакомство человека с химическими процессами восходит к глубокой древности. В течение многих столетий теоретическое объяснение хими­ческих процессов основывалось на натурфилософском учении об элементах-качествах. В модифицированном виде оно по­служило основой для алхимии, возникшей примерно в III-IV вв. н.э. и стремившейся решить задачу превращения не­благородных металлов в благородные. Не добившись успеха в решении этой задачи, алхимики, тем не менее, выработали ряд приемов исследования веществ, открыли некоторые хи­мические соединения, чем в определенной степени способ­ствовали возникновению научной химии.
К числу наиболее значительных вех развития на­учной химии и всего естествознания принадлежит открытие Д.И. Менделеевым периодического закона химических эле­ментов. В конце XIX – начале XX вв. к ведущим направле­ниям развития химии стало относиться изучение закономер­ностей химического процесса. Со второй половины XX в. в химии плодотворно развивается концепция, нацеленная на изучение возможностей использования в процессах получе­ния целевых продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем. Эволюционная химия обратилась к постижению путей получения наиболее высокоорганизованных химических систем, которые только возможны в настоящее время.
Современная химия представлена множеством различных направлений развития знаний о природе вещества и способах его преобразования. В то же время химия является не просто суммой знаний о веществах, а высоко упорядоченной, посто­янно развивающейся системой знаний, имеющей свое место в ряду других естественных наук.
Химия изучает качественное многообразие материальных носителей химических явлений, химической формы движе­ния материи. Хотя структурно она пересекается в определен­ных областях и с физикой, и с биологией, и с другими есте­ственными науками, но сохраняет при этом свою специфику.
Одним из наиболее существенных объективных оснований выделения химии в качестве самостоятельной естественно­научной дисциплины является признание специфичности химизма взаимоотношения веществ, проявляющегося, прежде всего, в комплексе сил и различных типов взаимодействий, обусловливающих существование двух- и многоатомных со­единений. Этот комплекс принято характеризовать как хи­мическую связь, возникающую либо разрывающуюся в ходе взаимодействия частиц атомного уровня организации мате­рии. Для возникновения химической связи характерно зна­чительное перераспределение электронной плотности по сравнению с простым положением электронной плотности несвя­занных атомов или атомных фрагментов, сближенных на расстояние связи. Эта особенность наиболее точно отделяет химическую связь от разного рода проявлений межмолеку­лярных взаимодействий.
Происходящее ныне неуклонное возрастание в рамках естествознания роли химии как науки сопровождается быст­рым развитием фундаментальных, комплексных и приклад­ных исследований, ускоренной разработкой новых материа­лов с заданными свойствами и новых процессов в области технологии производства и переработки веществ.

Список использованной литературы
1. Большой энциклопедический словарь. Химия.   М., 2001.
2. Кузнецов В.И. Общая химия. Тенденции развития. М., 1989.
3. Химия//Химический энциклопедический словарь. М., 1983.
4. www.ermine.narod.ru.

1. Реферат на тему Economics 3 Essay Research Paper A Price
2. Реферат Понятие и сущность молодёжной субкультуры
3. Реферат на тему Участники и субъекты уголовно процессуального процесса
4. Реферат на тему Короткострокова крива пропонування фірми і галузі
5. Реферат Системный подход при решении управленческих задач
6. Сочинение на тему Сочинения на свободную тему - Зачем быть вежливым
7. Курсовая Совершенствование системы подготовки специалистов по социальной работе в России
8. Реферат Теория частей речи в русском языке
9. Курсовая на тему Договор продажи предприятия
10. Реферат Описание стиля ар-деко в интерьере