Реферат на тему Влияние радиоактивного загрязнения на сельское хозяйство
Работа добавлена на сайт bukvasha.net: 2015-06-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ………………………………………………………………………….2.
1. ЛИТЕРАТУРНЫЙ ОБЗОР…………………………………………………….4.
1.1. Источники радиоактивного загрязнения……………………………………..4.
1.2. Влияние облучения растений на качество продукции растениеводства…..7.
1.3. Накопление радионуклидов в почвах и растениях………………………….8.
1.4. Пути миграции радионуклидов в окружающей среде……………………..12.
2. ХАРАКТЕРИСТИКА ХОЗЯЙСТВА………………………………………..16.
2.1. Почвенно-климатические, погодные условия и экологическая ситуация в хозяйстве……………………………………………………………………...16.
3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ…………………………………………18.
3.1 Постановка цели и задачи исследований…………………………………...18.
3.2. Методы проведения и результаты исследований………………………….19.
4. МЕТОДЫ ВЕДЕНИЯ СЕЛЬСКОГО ХОЗЯЙСТВА НА ЗАГРЯЗНЕННЫХ РАДИОНУКЛИДАМИ ТЕРРИТОРИЯХ…………………………………...23.
4.1. Общие принципы организации агропромышленного производства в условиях радиоактивного загрязнения…………………………………………..23.
4.2. Агрохимические мероприятия, снижающие поступления радионуклидов в с/х продукцию……………………………………………………………..…27.
4.3. Агротехнические приёмы, снижающие поступление радионуклидов в растения…………………………………………………………………………..30.
4.3.1. Технология поверхностного улучшения естественных кормовых уго-
дий………………………………………………………………………..….32.
4.3.2. Технология коренного улучшения естественных кормовых угодий……34.
5. СОВРЕМЕННОЕ СОСТОЯНИЕ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗ ВОДСТВА В СПК ИМ. КИРОВА И ПЕРСПЕКТИВЫ ЕГО РАЗВИТИЯ…37.
6. ВОЗДЕЙСТВИЕ РАДИОАКТИВНОГО ИЗЛУЧЕНИЯ НА ЖИВЫЕ ОРГА НИЗМЫ……………………………………………………………………...…40.
ЗАКЛЮЧЕНИЕ…………………………………………………………………….45.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК…………………………………………….47.
ВВЕДЕНИЕ
В настоящее время и в перспективе особо остро встаёт проблема экологической безопасности окружающей среды, экологически безопасного природопользования при возрастающих антропогенных нагрузках.
Загрязнение системы “почва – растения – вода” различными химическими веществами, а главным образом твердыми, жидкими и газообразными отходами промышленности, продуктами топлива и т.д. приводит к изменению химического состава почв.
Техногенные выбросы радионуклидов в природную среду вряде районов земного шара значительно превышают природные нормы.
До недавнего времени в качестве важнейших загрязняющих веществ рассматривались, главным образом, пыль, угарный и углекислый газы, оксиды серы и азота, углеводороды. Радионуклиды рассматривались в меньшей степени. В настоящее время интерес к загрязнению радиоактивными веществами вырос, в связи с факторами появления острых токсичных эффектов, вызванных загрязнением стронцием и цезием.
Чернобыльская катастрофа повлияла на экологическую ситуацию во многих регионах Российской Федерации. По состоянию на март 1992 г загрязнение почв радионуклидами со средней плотностью загрязнения цезием - 137 более 1.0 нюри/км2 составило Тульской области 47 % территории, Орловской – 40 %, Брянской – 34 %, Калужской и Тамбовской – 17 %, Курской – 4,4 %, Пензенской – 3 %, Воронежской – 1,5 %, Ленинградской – 1%, Смоленской – 0,5 %, Рязанской область (13 %) оказалась одной из наиболее загрязненных выпадения областей России. По площади с уровнями плотности цезиевого загрязнения более 1 Ки/км2 - 5210 км2 область занимает четвёртое место в России. В Рязанской области радиоактивному загрязнению подвержены 19 районов.
Радионуклиды по цепочке “почва – растение – животное” попадают в организм человека, накапливаются и оказывают не благоприятное воздействие на
здоровье. Поэтому одной из задач современности является производство эколо-
гически “чистой” продукции.
Важнейшая проблема сельского хозяйства в условиях загрязнения почвы радиоактивными элементами – максимально возможное снижение поступления этих веществ в растениеводческую продукцию и предотвращение накопление их в организмах сельскохозяйственных животных. Решение этой задачи связано с комплексом мероприятий, которые необходимо проводить в сельском хозяйстве. Основание для проведения данных мероприятий является увеличение заболеваемости и смертности, врожденных уродств и населения, проживающего на загрязнённых территориях.
Вопрос об изменении ведения сельского хозяйства должен решаться в каждом конкретном случае с учётом всех обстоятельств на основе точной и достоверной информации в зависимости от типа почвы, её механического состава, водно-физических и агрохимических свойств и от степени загрязнённости территории.
- ЛИТЕРАТУРНЫЙ ОБЗОР
- Источники радиоактивного загрязнения
Развитие жизни на Земле всегда происходило в присутствии радиационного фона окружающей среды. Радиоактивное излучение определяется естественным радиационным фоном и искусственным. Естественный радиационный фон – представляет собой ионизирующее излучение от природных источников космического и земного происхождения, действующих на человека на поверхности земли. Космические лучи представляют собой поток частиц (протонов, альфа-частиц, тяжёлых ядер) и жёсткого гамма-излучения (это так называемое первичное космическое излучение). При взаимодействии его с атомами и молекулами атмосферы возникает вторичное космическое излучение, состоящее из мезонов и электронов.
Естественное радиоактивные элементы условно можно разделить на три группы:
изотопы радиоактивных семейств урана, тория и актиноурана;
не связанные с первой группой радиоактивные элементы – калий - 40, кальций – 48, рубидий – 87 и др.;
радиоактивные изотопы, возникающие под действием космического излучения – углерод – 14 и тритии.
Технически изменённый радиационный фон представляет собой ионизирующее излучение от природных источников, претерпевших определённые изменения в результате деятельности человека. Например, поступление радионуклидов в биосферу вместе с извлечёнными на поверхность земли из недр полезными ископаемыми (главным образом минеральными удобрениями), в результате сгорания органического топлива, излучения в помещениях, построенных из материалов, содержащих естественные радионуклиды, а также облучения за счёт полётов на современных самолётах.
Излучение, обусловленное рассеянными в биосфере искусственными радионуклидами, представляет собой искусственный радиационный фон (аварии
на АЭС, отходы предприятий ядерной энергетики, использование искусствен-
ных ионизирующих излучений в медицине, народном хозяйстве).
Радиоактивное загрязнение природных средств на территории Российской Федерации в настоящее время обусловлено следующими источниками:
глобально распределёнными долгоживущими радиоактивными изотопами – продуктами испытаний ядерного оружия, проводивших в атмосфере и под землёй;
выбросом радиоактивных веществ из 4-го блока Чернобыльской АЭС в апреле – мае 1986 года;
плановыми и аварийными выбросами радиоактивных веществ в окружающую среду от предприятий атомной промышленности;
выбросами в атмосферу и сбросами в водные системы радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации;
привнесенной радиоактивностью (твёрдые радиоактивные отходы и радиоактивные источники).
Атомная энергетика вносит весьма незначительный вклад в изменение радиационного фона окружающей среды при нормальной работе ядерных установок. АЭС является лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Отработанное в АЭС ядерное топливо иногда подвергается вторичной обработке. Заканчивается процесс, как правило, захоронением радиоактивных отходов.
Но в результате аварий на АЭС в окружающую среду могут попасть большое количество радионуклидов. Возможны аварии с локальными загрязнения только технологических помещений. Также случаются аварии, которые сопровождаются выбросом в окружающие среду радиоактивных веществ в количествах, превышающие установленные пределы. Большую опасность при этом имеют выбросы в атмосферу. Аварийный выброс в водную среду, по мнению специалистов, менее вероятное событие и будет характеризоваться более низкими уровнями воздействия.
Также большое значение как источника радиации имеют ядерные взрывы. При испытаниях ядерного оружия в атмосфере часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается в нижнем слое атмосферы, подхватывается ветром и переносится на большие расстояния. Находясь в воздухе около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако, большая часть радиоактивного материала выбрасывается в атмосферу (на высоту 10-15 км), где он остаётся многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара.
Семипалатинский полигон занимает особое место в истории испытаний ядерного оружия в бывшем Советском Союзе. Именно здесь 29 августа 1949 года произошёл первый низкий воздушный взрыв. В настоящее время установлено, что этот взрыв оказал на Алтай максимальное радиационное воздействие. Всего за период с 1949 по 1990 годы на Семипалатинском полигоне было произведено около 470 ядерных взрывов (из них 120 воздушных), правда, после 1963 года взрывы производились исключительно под землёй на различной глубине в рамках программы по мирному использованию ядерной энергии. Российский зелёный Крест выделил 22 взрыва, радиационное воздействие которых (полностью или частично) сказалось на территории края. В зоне радиоактивного загрязнения расположено 27 районов 45 городов с населением 1600 тыс человек, то есть 60,9 % населения Алтайского края могли периодически подвергаться облучению.
В настоящее время большой вклад в дозу получаемую человеком вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Большой ущерб окружающей среде могут нанести также атомные подводные лодки с не выгруженным топливом в реакторах. Так в 1985 году от теплового взрыва реактора в бухте Чажма на Дальнем Востоке погибли люди, произошёл мощный радиоактивный выброс, и это облако двинулось в сторону Владивостока.
Также проблемы могут возникать при не правильной транспортировке радиоактивных отходов на комбинат по переработке этих отходов, хранении жидких и твёрдых радиоактивных отходов.
Таким образом, из всего выше сказанного можно сделать вывод, что в изменении радиационного фона окружающей среды большой вклад вносят АЭС, ядерные взрывы и радиоактивные отходы.
1.2. Влияние облучения растений на качество продукции растениеводства
Продовольственное и техническое качество продукции – зерна, клубней, масличных семян, корнеплодов, получаемой от облучённых растений, сколько- либо существенно не ухудшается даже при снижении урожая до 30-40 %.
Содержание белка и клейковины в зерне пшеницы, рассчитанное на единицу массы, не снижается, однако общий выход заметно уменьшается в результате больших потерь урожая зерна.
Содержание масла в семенах подсолнечника и лотса зависит от дозы облучения, получаемой растениями, и фазы их развития в момент начала облучения. Аналогичная зависимость наблюдается и по выходу сахара в урожае корнеплодов облучённых растений свеклы. Содержание витамина С в плодах томатов, собранных с облучённых растений, зависит от фазы развития растений в период начала облучения и дозы облучения. Например, при облучении растении во время массового цветения и начала плодоношения дозами 3 – 15 кР содержание в плодах томатов витамина С повышалось по сравнению с контролем на 3 – 25 %. Облучение растений в период массового цветения и начало плодоношения дозой до 10 кР затормаживает развитие семян у формирующихся плодов, которые обычно становятся бессемянными.
Аналогичная закономерность получена в опытах с картофелем. При облучении растений в период клубнеобразования урожай клубней при облучении дозами 7 – 10 кР практически не снижается. Если растения облучаются в более раннюю фазу развития, урожай клубней уменьшается в среднем на 30 – 50 %. Кроме того, клубни получаются не жизнеспособными из-за стерильности глазков.
Облучение вегетирующих растений не только приводит к уменьшению их продуктивности, но и снижает посевные качества формирующихся семян. Так при облучении вегетирующих растений не только приводит к уменьшению их продуктивности, но и снижает посевные качества формирующихся семян. Так при облучении зерновых культур в наиболее чувствительные фазы развития (кущение, выход в трубку) сильно снижается урожай, однако всхожесть получаемых семян существенно снижается, что даёт возможность не использовать их для посева. Если же растения облучают в начале молочной спелости (когда происходит формирование звена) даже в относительно высоких дозах, урожай зерна сохраняется практически полностью, однако такие семена не могут быть использованы для посева ввиду предельно низкой всхожести.
Таким образом радиоактивные изотопы не вызывают заметных повреждений растительных организмов, однако в урожае сельскохозяйственных культур они накапливаются в значительных количествах.
1.3. Накопление радионуклидов в почвах и растениях
Значительная часть радионуклидов находится в почве, как на поверхности, так и в нижних слоях, при этом их миграция во многом зависит от типа почвы, её гранулометрического состава, водно-физических и агрохимических свойств.
Основными радионуклидами, определяющими характер загрязнения, в нашей области является цезий – 137 и стронция – 90, которые по разному сортируются почвой. Основной механизм закрепления стронция в почве – ионный обмен, цезия – 137 обменной формой либо по типу ионообменной сорбции на внутренней поверхности частиц почвы.
Поглощение почвой стронция – 90 меньше цезия – 137, а следовательно, он является более подвижным радионуклидом.
В момент выброса цезия – 137 в окружающие среду, радионуклид изначально находится в хорошо растворимом состоянии (парогазовая фаза, мелкодисперсные частицы и т.д.)
В этих случаях поступления в почву цезий – 137 легко доступен для усвоения растениями. В дальнейшем радионуклид может включаться в различные реакции в почве и подвижность его снижается, увеличивается прочность закрепления, радионуклид “стареет”, а такое “старение” представляет комплекс почвенных кристаллохимических реакций с возможным вхождением радионуклида в кристаллическую структуру вторичных глинистых минералов.
Механизм закрепления радиоактивных изотопов в почве, их сорбция имеет большое значение, так как сорбция определяет миграционные качества радиоизотопов, интенсивность поглощения их почвами, а, следовательно, и способность проникать их в корни растений. Сорбция радиоизотопов зависит от многих факторов и одним из основных является механический и минералогический состав почвы тяжёлыми по гранулометрическому составу почвами поглощённые радионуклиды, особенно цезий – 137, закрепляются сильнее, чем лёгкими и с уменьшением размера механических фракций почвы прочность закрепления ими стронция – 90 и цезия – 137 повышается. Наиболее прочно закрепляются радионуклиды илистой фракцией почвы.
Большему удержанию радиоизотопов в почве способствует наличие в ней химических элементов, близких по химическим свойствам к этим изотопам. Так, кальций – химический элемент, близкий по своим свойствам стронцию – 90 и внесение извести, особенно на почвы с высокой кислотностью, ведёт к увеличению поглотительной способности стронция – 90 и к уменьшению его миграции. Калий схож по своим химическим свойствам с цезием – 137. Калий, как неизотопный аналог цезия находится в почве в макроколичествах, в то время как цезий – в ультромикроконцентрациях. Вследствие этого в почвенном растворе происходит сильное разбавление микроколичеств цезия – 137 ионами калия, и при поглощении их корневыми системами растений отмечается конкуренция за место сорбции на поверхности корней. Поэтому при поступлении этих элементов из почвы в растениях наблюдается антагонизм ионов цезия и калия.
Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количество осадков).
Установлено, что стронций – 90 попавший на поверхность почвы, вымывается дождём в самые нижние слои. Следует заметить, что миграция радионуклидов в почвах протекает медленно и их основная часть находится в слое
0 – 5 см.
Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической особенности растений. На кислых почвах радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых. Снижение кислотности почвы, как правило, способствует уменьшению размеров перехода радионуклидов в растения. Так, в зависимости от свойства почвы содержание стронция – 90 и цезия – 137 в растениях может изменяться в среднем в 10 – 15 раз.
А межвидовые различия сельскохозяйственных культур в накопление этих радионуклидов наблюдается зернобобовыми культурами. Например, стронций – 90 и цезий – 137, в 2 – 6 раз поглощается интенсивное зернобобо-
выми культурами, чем злаковыми.
Поступление стронция – 90 и цезия – 137 в травистой на лугах и пастбищах определяется характером распределения в почвенном профиле.
В загрязнённой зоне, луга Рязанской области загрязнены на площади 73491 га, в том числе с плотностью загрязнения 1,5 Ки/км2 - 67886 (36 % от общей площади), с плотностью загрязнения 5,15 Ки/км2 - 5605 га (3%).
На целинных участка, естественных лугах, цезий находится в слое 0-5 см, за прошедшие годы после аварии не отмечена значительная вертикальная миграция его по профилю почвы. На перепаханных землях цезий – 137 находится в пахотном слое.
Хотя уровень загрязнения лугов в Рязанской области не очень высокий, но требует проведения определённых агротехнических мероприятий, направленных на ослабление влияния радионуклидов на сельскохозяйственную продукцию.
Пойменная растительность в большей степени накапливает цезий – 137, чем суходольная. Так при загрязнении поймы 2,4 Ки/км2 в траве было обнаружено Ки/кг сухой массы, а на суходольной при загрязнении 3,8 Ки/км2
в траве содержалось Ки /кг.
Накопление радионуклидов травянистыми растениями зависит от особенностей строения дернины. На злаковом лугу с мощной плотной дерниной содержание цезия – 137 в фитомассе в 3 – 4 раза выше, чем на разнотравном с рыхлой маломощной дерниной.
Культуры с низким содержанием калия меньше накапливают цезия. Злаковые травы накапливают меньше цезия по сравнению с бобовыми. Растения сравнительно устойчивы к радиоактивному воздействию, но они могут накапливать такое количество радионуклидов, что становятся не пригодными к употреблению в пищу человека и на корм скоту.
Поступление цезия – 137 в растения зависит от типа почвы. По степени уменьшения накопления цезия в урожае растения почвы можно расположить в такой последовательности: дерново-подзолистые супесчаные, дерново-подзо-листые суглинистые, серая лесная, чернозёмы и т.д. Накопление радионуклидов в урожае зависит не только от типа почвы, но и от биологической особенности
растений.
Отмечается, что кальциелюбивые растения обычно поглощают больше стронция – 90,чем растения бедные кальцием. Больше всего накапливают стронций – 90 бобовые культуры, меньше корнеплоды и клубнеплоды, и ещё меньше злаковые.
Накопление радионуклидов в растении зависит от содержания в почве элементов питания. Так установлено, что минеральное удобрение, внесённое в дозах N 90, Р 90, увеличивает концентрацию цезия – 137 в овощных культурах в 3 – 4 раза, а аналогичные внесения калия в 2 – 3 раза снижает его содержание. Положительный эффект на уменьшение поступления стронция – 90 в урожай зернобобовых культур оказывает содержание кальций содержащих веществ. Так например внесение в выщелочный чернозём извести в дозах, эквивалентных гидролитической кислотности, уменьшает поступление стронция – 90 в зерновые культуры в 1,5 – 3,5 раза.
Наибольший эффект на снижение поступления стронция – 90 в урожай растений достигает внесением полного минерального удобрения на фоне доломита. На эффективность накопления радионуклидов в урожае растений оказывают влияние органические удобрения и метеорологические условия, а также и время их пребывание в почве. Установлено, что накопление стронция – 90, цезия – 137 через пять лет после их попадания в почву снижается в 3 – 4 раза.
Таким образом миграция радионуклидов во многом зависит от типа почвы, её механического состава, водно-физических и агрохимических свойств. Так на сорбцию радиоизотопов влияют многие факторы, и одним из основных являются механический и минералогический сосав почвы. Тяжёлыми по механическому составу почвами поглощённые радионуклиды, особенно цезий – 137, закрепляются сильнее, чем лёгкими. Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количества осадков).
Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической способности растений.
|
В структуре товарной продукции молочно-мясное скотоводство занимает 39,5 %, мясо свиньи – 3,0 %, зерно – 29,3 %, картофеля – 27,9 %. На перспективу производственное направление хозяйства сохранится. В структуре товарной продукции на 1990 год продукция животноводства составит – 700 тыс.руб. или 54.6 %, в том числе молоко и мясо крупного рогатого скота – 556,7 тыс.руб. или 43,4 %.
Продукция растениеводства составит – 591,6 тыс.руб. или 45,4 %. Существующая организационно-производственная структура управления построена по отраслевому (цеховому) принципу. Основные отрасли в хозяйстве – растениеводство и животноводство.
Организационно-производственная структура управления колхоза на расчётный срок сохранится.
В настоящее время в колхозе недостаточно высокая урожайность сельскохозяйственных культур и естественных кормовых угодий. За прошедшие четыре года одиннадцатой пятилетки урожайность зерновых культур составила – 10,7 ц/га, картофеля – 62,0 ц/га, кукурузы на силос – 16,5 ц/га, сена многолетних трав – 14,6 ц/га, однолетних трав – 13,3 ц/га, а в десятой пятилетке урожайность зерновых составила 10,0 , картофеля – 56,0 , кукурузы на силос – 43,4 , однолетние травы на сено – 1,6 ц/га.
В структуре посевных площадей содержится значительная доля зерновых – 61 % к площади пашни, что при значительных посевах зернобобовых (35 га) затрудняет нормальное размещение культур по предшественникам. В результате хозяйство вынуждено из года в год размещать зерновые по зерновым, что ведет к сильному поражению корневыми гнилями, снижению урожая.
На недостаточно высоком уровне находится продуктивность общественного скота. Надой молока на одну фуражную корову в среднем за последние четыре года составил 1381 кг, среднесуточный привоз молодняка крупного рогатого скота – 330 г, настриг шерсти – 2,3 кг, в 10 – пятилетке соответственно 1452 кг, 348 г 2,3 кг.
Низкая продуктивность скота является следствием недостаточной кормовой базы и несбалансированным кормлением животных.
Разработанная система земледелия позволит повысить урожайность сельскохозяйственных культур и пастбищ. К 1990 году урожайность зерновых планируется довести до 20 ц/га, картофеля – 130,0 ц/га, кукурузы на силос – 250,0 ц/га, многолетних трав – 30 ц/га. Перспективная урожайность сельскохозяйственных культур определялась с учетом результатов оценки земель и влияния агротехнических, организационных и других факторов освоения севооборотов, увеличения площади многолетних трав, применение органических и минеральных удобрений, повышение качества семян, выполнения полного комплекса противоэрозионных мероприятий, совершенствования способов защиты растений от сорняков, вредителей и болезней. Предусмотренная урожайность сельскохозяйственных культур и естественных кормовых угодий позволит укрепить кормовую базу животноводства, обеспечить поголовье скота полноценными корнями в достаточном количестве, что положительно скажется на увеличении поголовья скота и его продуктивности.
Поголовье крупного рогатого скота по сравнению с 1984 г. увеличится на 117 голов и составит 905 голов, в том числе поголовье коров увеличится на 120 голов и составит 450 голов, поголовье свиней увеличится на 163 головы и составит 490 голов, поголовье овец составит 750 голов или увеличится на 49 голов.
На 1990 год надой молока на одну фуражную корову планируется довести до 2520 кг, настриг шерсти – 3,0 кг, среднесуточный принес молодняка крупного рогатого скота 500 г, свиней – 2,5 г.
Предусмотренные схемы севооборотов, структура посевных площадей, урожайность сельхозкультур, а также поголовье скота и его продуктивность позволяет к 1990 году значительно увеличить производство и реализацию сельс-
кохозяйственной продукции.
Валовое производство зерна составит 3180 т, картофеля – 3900 т, молока – 1134 т, мяса – 164 т.
В связи с увеличением валового производства увеличится и объём товарной продукции. Реализация зерна составит – 1550 т, картофеля – 2565 т, молока – 1019 т, мяса – 164 т.
6. ВОЗДЕЙСТВИЕ РАДИОАКТИВНОГО ИЗЛУЧЕНИЯ НА ЖИВЫЕ
ОРГАНИЗМЫ
Характер облучения растений и животных может быть различным – внешним, внутренним и смешенным. При внешнем облучении источник излучения находится вне организма. Наиболее важными внешними источниками излучения являются космические, рентгеновские лучи и - излучения.
Излучаемые - частицы при высоких дозах могут воздействовать на кожу крупных сельскохозяйственных животных, однако наиболее весомо этот вид излучения проявляется при внешнем облучении растений, так как пробег этих частиц может превышать толщину листьев и стеблей. Если источник излучения находится внутри организма, то имеет место внутреннее облучение. В растения радиоактивные вещества вовлекаются через корм и листья, а в организм животных основное количество радиоактивных веществ поступает с кормами. Одновременное наличие источников внешнего и внутреннего облучения даёт смешанное облучение. Биологические эффекты ионизирующего излучения связаны с поглощением живой материей энергии, которая высвобождается в результате радиоактивного распада нуклидов. Исключительно высокий повреждающий эффект ионизирующих излучений на живую клетку связан с тем, что в результате удаления или присоединения электрических зарядов и нейтральным атомам и молекулам, они становятся отрицательно или положительно заряженными. Молекулы, получившие электрический заряд, в дальнейшем распадаются на радикалы и ионы. Затем радикалы вступают во взаимодействие с нейтральными молекулами или между собой. При этом происходят химические реакции, не характерные для необлучённых организмов, в результате чего нормальный процесс обмена веществ нарушается и в зависимости от дозы ионизирующего излучения он либо замедляется, либо прекращается вовсе. В результате взаимодействия ионизирующих излучений с молекулами воды происходит радиолиз, то есть расщепление воды на два иона: Н3О+ и ОН-. Эти радикалы вступают в
реакцию со свободным кислородом биологических тканей, образуя перекись
водорода (Н2О2) и гидропероксид (Н2О4), которые также вступают в реакцию с белками и другими молекулами облучённых организмов вызывая радиационные поражения.
Особенно чувствительны к воздействию ионизирующих излучений дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) кислоты, играющие важнейшую роль в передачи наследственной информации живой клетки при её делении. Воздействие радиации на клеточное деление – сложный процесс, его последствия во многом определяются в стадии митоза. Наибольшую чувствительность к ионизирующему излучению имеет клетка в стадии профазы. Под действием излучения наблюдается своеобразная ритмичность в изменениях митоза.
При облучении малыми дозами в начале отмечается замедление митоза, затем усиление его выше нормы, за которым следует снижение до нормы или ниже. Механизм тормозящего действия радиации на митоз клеток довольно сложен, и объяснить его какой-то одной или двумя причинами нельзя, однако существует ряд гипотез, которые в различных позициях объясняют причины нарушения деления клеток при их облучении.
Основными из них являются: разрушение веществ, стимулирующих митоз; нарушение проницаемости клеточных мембран с изменением формы клетки; накоплении веществ тормозящих деление клетки, например, избыточное содержание в клетке аденозинтрифосфорной кислоты (АТФ), в результате нарушения фермента – аденозинтрифосфатаза; нарушение синтеза нуклеиновых кислот; повреждения хромосом в виде хромосомных перестроек или хромосомных аберраций.
Реакции животных на проникающее излучение определяются параметрами излучения и особенностями организма: возрастом, полом, унитанностью и прочее. Для выражения радиационной чувствительности животных существуют величины ЛД 50/30 и ЛД 100/30 – это минимальные дозы облучения, которые вызывают смерть соответственно 50% и 100% облучённых животных в течение 30 дней.
Степень радио чувствительности тканей характеризую по функционально
биохимическим признакам, определяющим сорбционный показатель тканей, выявляемый при их витальным окрашивании, можно распределить по радио чувствительности в следующей убывающей последовательности: большие полушария и стволы головного мозга, мозжечок, гипофиз, надпочечники, семенники, тимус, лимфоузлы, спинной мозг, желудочно-кишечный тракт, печень, селезёнка, лёгкие, почки, сердце, мышцы, кожа и костная ткань.
По морфологическим признакам развивающихся пост радиационных из-
менений органы разделяют на три группы: 1) органы, чувствительные к радиации (морфологически регистрируемые изменения в них возникают уже при облучении дозой 25 Р): лимфоузлы, лимфатические фолликулы желудочно-кишечного тракта, красный костный мозг, вилочковая железа, селезёнка, половые железы; 2) органы, умеренно чувствительные к облучению; кожа, глаза;
3) органы, резистентные к действию ионизирующего излучения (первичные морфологические изменения в них отмечаются при облучении дозой 100 Р и более): печень, лёгкие, почки, мозг, сердце, кости, сухожилия, нервные стволы.
Ионизирующие излучения оказывает на человека как острое, так и хроническое воздействие. Большой объём информации о действии радиоактивности на организм был получен в результате экспериментов на животных, атомных взрывов в Хиросиме и Нагасаки, а также при различных видах аварийных облучений.
Большие дозы облучения порядка 100 Гр вызывают настолько сильные повреждения ЦНС у человека, что смерть наступает в течение нескольких часов. При дозах облучения всего тела 10 – 50 Гр. Человек обычно умирает через 1 - 2 недели от кровоизлияния в желудочно-кишечный тракт. Проявление хронического облучения в больших дозах многообразны: это хроническая лучевая болезнь, локальные поражения кожи, поражение хрусталика глаза, кроветворного костного мозга (при антикорпорации в костях стронция – 90), пневмосклероз (при ингаляции плутония – 239), гипофункция щитовидной железы (воздействие йода – 131).
Наиболее чувствительны к воздействию радиации дети. Относительно
небольшие дозы при облучении мозга ребёнка может вызвать изменения в его характере, привести к потери памяти или даже слабоумию. Крайне чувствителен к ионизирующему излучению мозг плода, особенно если мать подвергается действию между 8 – 15 неделею беременности.
Рак – наиболее серьёзное из всех последствий облучения человека. Первыми в группе раковых заболеваний, поражающих население в результате облучения стоят лейкозы, которые вызывают гибель людей в среднем через 10 лет после облучения. Широко распространены рак молочной железы и щитовидной, а также рак лёгких. Менее распространены рак костных тканей, пищевода, тонкой и прямой кишки, мочевого пузыря, поджелудочной железы и лимфатических тканей. Другим серьёзным отдалённым последствием облучения являются генетические эффекты – врождённые уродства и нарушения, передающиеся по наследству. В основе их лежат генерирующиеся излучением мутации и другие нарушения в клеточных структурах, ведающих наследственностью. Согласно оценкам определения непосредственного генетического эффекта данной дозы облучения, доза 1 Гр, полученная особями мужского пола, индуцирует появление от 1000 до 2000 мутаций, приводящих к серьёзным последствиям, и от 30 до 1000 хромосомных аберрации на каждый миллион животных новорождённых.
Анализ заболеваемости населения в пораженных радиацией и чистых районах Рязанской области, выявил у взрослого контингента населения явление признака болезней кроветворных органов, имеющих, по-видимому, связь с высокой плотностью загрязнения территории радионуклидами. Аналогичная картина отмечается и у детей. Болезни крови у людей начинают себя проявлять наиболее интенсивно от 3 – 5 год и на протяжении десятилетия после радиационного воздействия на организм. Отмечается рост заболевания органов дыхания у взрослого и детского населения на территориях с высокой плотностью загрязнения. Аналогичная тенденция наблюдается в отношении заболеваний органов пищеварения и мочеполовой системы. Увеличение болезней нервной системы в 2,17 раза. Почти не изучены вопросы влияния радиационного загрязне-
ния территории на инфекционную и зооантропозную патологию.
Туберкулёзная инфекция сохраняет тенденцию роста. А туляремия в радиационных районах за 5 лет себя не проявляет в тоже время в чистых районах выделяется возбудитель и отмечались случаи заболеваний.
Таким образом, влияние радиации как на молекулярном, клеточном уровне, так и на уровне целого организма. Обследование населения проживающего на загрязнённых территориях, выявила рост заболеваемость детей и взрослых, увеличение заболевания кровеносной системы раковых больных, врождённых уродств.
Клетки и ткани организма человека по степени возрастания чувствительности можно расположить в следующем порядке: нервная ткань – хрящевая и костная ткань – мышечная ткань – соединительная ткань - щитовидная железа – пищеварительные железы – лёгкие – кожа – слизистые оболочки – половые железы – лимфоидная ткань – костный мозг.
ЗАКЛЮЧЕНИЕ
При изучении данной проблемы и решении поставленных задач из вышеизложенного материала можно сделать следующие выводы:
обзор литературного материала показал, что в изменении естественного радиационного фона окружающей среды большой вклад вносят АЭС, ядерные взрывы и радиоактивные отходы. Наиболее неблагоприятная радиационная обстановка в различных регионах нашей страны складывалась за счёт искусственных радионуклидов (цезия-137 и стронция-90). Причём катастрофа ЧАЭС обусловила загрязнение природной среды главным образом цезия-137, а стронцием-90 в незначительной степени. При этом зоны повышенной радиоактивности распределены на территории России неравномерно. Они известны как в европейской части, так и в Зауралье, на полярном Урале, в Западной Сибири, Прибайкалье, на Дальнем Востоке, Камчатке, Северо-Востоке. Влияние радиоактивных элементов проявляется как на молекулярном, клеточном уровне, так и на уровне целого организма.
Основными радионуклидами , определяющими характер загрязнения, в нашей области являются цезий-137 и стронций-90. Рязанская область оказалась одной из наиболее загрязнённых областей России выпадениями цезия-137 в результате аварии на Чернобыльской АЭС. По площади с уровнями плотности цезиевого загрязнения более 1 Ки/км2 – 5210 км2 – область занимает четвёртое место в России (13% от территории области загрязнено). Средние концентрации суммарной - активности в г.Рязани несколько превышают среднее значение по стране.
Миграция радионуклидов в почве во многом зависит от типа самой почвы, её механического состава, водно-физических и агрохимических свойств. Так на сорбцию радиоизотопов влияют многие факторы, и одним из основным является механический и минералогический состав почвы. Тяжёлыми по механическому составу почвами поглощённые радионуклиды, особенно цезий-137, закрепляются сильнее, чем лёгкими. Кроме того, эффект миграции радионук-
лидов зависит от метеорологических условий (количество осадков).
Накопление (вынос) радионуклидов сельскохозяйственными растениями зависит от свойства почвы и биологической особенности растений.
При излучении влияния радиоактивных изотопов на качество растениеводческой продукции видно, что они не вызывают заметных повреждений растительных организмов, однако в урожае сельскохозяйственных культур они накапливаются в значительных количествах, что может нанести значительный вред здоровью человека. Поэтому необходимо разработать мероприятия снижающие накопления радиоактивных веществ в сельскохозяйственных растениях. Вопрос об изменении ведения сельского хозяйства должен решаться в каждом конкретном случае с учётом всех обстоятельств на основе полной достоверной информации.
Все мероприятия, проводимые в настоящее время для проведения плодородия почв, будут способствовать снижению размеров перехода радионуклидов в растение при загрязнении сельскохозяйственных угодий радиоактивными выпадениями. Наиболее простой и дешёвый приём снижения содержания радионуклидов в растениеводческой продукции – подбор культур и сортов, отличающихся способностью накапливать выражая минимальное количество стронция-90 и цезия-137. Как правило, это сорта с низким содержанием калия и кальция.
Также эффективными приёмами являются запашка загрязнённого пахотного слоя, известкование кислых почв и внесение минеральных и органических удобрений. Правильный выбор глубины обработки почвы и способов её проведения позволяет существенно снизить поступление радионуклидов в растения в несколько раз.