Реферат

Реферат на тему Антенна излучающая

Работа добавлена на сайт bukvasha.net: 2015-06-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025


Пояснительная записка к курсовому проекту 08.092.54ИС1

Выполнил: студент группы 54ИС1 Новицкий Андрей

Санкт-Петербургский Государственный Морской Технический Университет

Кафедра 50

Санкт-Петербург

2003

Введение

К одной из важнейшей научно-технической проблеме современности можно отнести освоение водного пространства.  

Освоение океана повлекло множество технических проблем. Одной из них являлась невозможность заглянуть в глубины океана, узнать особенности дна, наличие и особенности подводных обитателей. С появлением судов и устройств, способных пребывать под водой более или менее долго, возникла проблема передачи информации: связь с другими объектами, сканирование окружающего пространства и прочее.

Акустические (звуковые) волны, благодаря своей природы, свойствам водной среды, способны возбуждаться при сравнительно малых затратах энергии, и распространяться на большие расстояния, при некоторых условиях на тысячи и десятки тысячи километров.

С помощью гидроакустических средств (ГАС) производят картографирование дна морей и океанов и обнаруживают предметы (эхолоты и гидролокаторы бокового обзора), осуществляют водную связь (средства гидроакустической связи), обеспечивают безопасность плавания судов, измерение скорости хода и глубины под килем (средство судовождения), производят поиск скопления рыб, управление автономными подводными приборами, доставляющими информацию о состоянии подводной обстановки (средств телеметрии и телеуправления), обнаруживают и определяют координаты подводных объектов.  

Процесс преобразования электрической энергии в акустическую выполняют подводные электроакустические излучатели и приёмники, входящие в состав антенны, и называемые гидроакустическими преобразователями (ГАП).

Конструкцию антенны определяют, в основном, её назначение и местоположение. Так, антенны судовых гидроакустических систем можно размещать на корпусе судна, буксировать или опускать за борт; антенны стационарных гидроакустических станций устанавливают на фундаментальных опорах в прибрежных районах, у входов в порты, в районах рейдовых стоянок и т.п.

Техническими параметрами гидролокационных станций (ГАС) являются: рабочая частота (от единицы до десятков килогерц), излучаемая акустическая мощность (от сотен ватт до сотен киловатт), ширина диаграммы направленности антенны в режимах излучения и приема в главных плоскостях, форма и длительность излучаемых импульсов, уровень усиления приемного тракта, ширина полосы частот приемного тракта. ГАС, которые не излучают акустическую энергию и предназначены для обнаружения и определения пеленга (курсового угла) подводного объекта по производимому им шуму, в частности движущегося судна, относят к пассивным средствам ШПС – полоса рабочих частот, ширина диаграммы направленности антенны, коэффициента усиления приемного тракта.

В данной работе для обеспечения ХН с малыми боковыми максимумами предлагается ромбический поршень, у которого величина бокового максимума меньше 5%.

Основная часть:

1. Выбор формы, определения размеров антенны и направленности

Для обеспечения малой величины бокового максимума (10%) выбираем излучающую пластину в форме плоского ромба, характеристика направленности которого выражается формулой

R()=, (1) 

где - длина диагонали, - длина волны в воде.

 м

По заданию, в осевой диагональной плоскости угловая ширина главного лепестка на уровне 0,7 в плоскости х0z равна, а в плоскости у0z .

Обозначим аргумент функции (1) через a, то есть . Получаем уравнение

 , откуда

 , (2) 

Построим графики  и 0,84; корень уравнения  находится в точке пересечения обоих графиков, которой соответствует значение . Следовательно , длина диагонали  .  

 

 

Для м.

Для м.

Проверка решения уравнения (2). Подставляем  с очень малой погрешностью.

Таким образом, волновые размеры диагоналей равны  и Антенна излучающая. Соответствующие выражения для характеристик направленности имеют вид , Антенна излучающая.

В формуле  угол  отчитывается от оси z, проходящей через точку пересечения диагоналей ромба, в плоскости x0z; в формуле  угол  также отсчитывается от оси z, но в плоскости y0z.

Излучающая пластина совмещена с плоскостью х0у, которой ось z перпендикулярна.

 

Нули в направлениях, определяемых из уравнений

, m=1,2,3...... (3)

 , Антенна излучающая ,  , Антенна излучающая и т.д.

Направления боковых максимумов (приближенно):

 Þ ; Антенна излучающая;  и т.д.

Аналогично все повторяется для , формулы те же.

Коэффициент осевой концентрации, учитывая немалые размеры излучающей поверхности, рассчитывается по формуле

 или Антенна излучающая , (4)

где S – активная площадь антенны

Подставляя значения  и , получаем

 

Для плоскости х0z ( ДН содержит только один главный лепесток:  и Антенна излучающая, а  , то есть последующих нулевых направлений нет. В плоскости y0z  значения углов  и величины боковых максимумов даны в следующей таблице 1: 

Таблица 1

 

 

 

 

 

 

 

7,8 11,8 15,8 19,9 24,1 28,5 33,0

 

 

 

 Антенна излучающая

 

 

 

0 0,045 0 0,016 0 0,008 0

Таблица 2

 , град.

1 2 2,5 3 4 5

0,94 0,89 0,70 0,60 0,38 0,20

В плоскости х0z () значения углов  и величины боковых максимумов дана в следующей таблице 2: 

Таблица 3

 

 

 

32 54 90

 

 

 

0 0,0055 0

Таблица 4

 ,град.

5 10 15 20

 

0,91 0,71 0,44 0,20

Как видно из таблиц, наибольший боковой максимум равен 0,045, то есть составляет 4,5%. Следовательно, требования задания выполнено, что обеспечено выбором формы антенны, при которой амплитуда колебаний уменьшается от середины к краю.

2. Колебательная система преобразователя

По заданию, колебательная система преобразователя – полуволновая, то есть пьезо-

керамическая поршневая пластина не нагружена накладками (рис.5). Боковые размеры пластины велики по сравнению с ее толщиной. Электроды наложены на большие грани, перпендикулярные оси z.

 

Необходимые расчетные формулы даны в §9.6 [1] и в пособии [2].

Резонансная частота при продольном пьезоэффекте определяется из уравнения

,

где - скорость распространения волны в пластине, измеренная при разомкнутых электродах.

Для дальнейших расчетов требуется знать конкретный пьезоэлектрический материал, марку пьезокерамики.

3. Чувствительность излучателя

Эффективность излучателя можно оценить давлением P, которое он создает в точке, в направлении главного максимума при определенном электрическом напряжении U на входе. Такая оценка называется чувствительностью излучателя и определяется по формуле

, (6)

где r – расстояние до точки измерения давления. Если принять r=1м и U=1В, то величина .

Для определения акустического давления воспользуемся известным соотношением между излучаемой мощностью  и давлением на оси

 

Допустимая удельная мощность излучения ограничивается порогом кавитации , величина которого тем выше, чем меньше длительность импульса  и больше гидростатическое давление (заглубление  антенны). При  и Антенна излучающая [2]. Зависимость от  определяется формулой

 

По заданию, =100м, получаем . С учетом длительности  можем принять . Тогда , Антенна излучающая- излучаемая площадь антенны.

Антенна излучающая 

Из выражения (4) находим звуковое давление

 

Таким образом, чувствительность излучателя

Выбор активного материала и расчет электрических параметров

Основным назначением рассматриваемой антенны является излучение акустической энергии. Известно, что при одинаковой напряженности электрического поля наибольшая мощность излучения будет у преобразователей из пьезокерамики составов ЦТБС-3, ЦТС-19 и ЦТСНВ-1 [1]. Следовательно, для получения наибольшей удельной акустической мощности при наименьшей величины напряжения целесообразно использовать указанные активные материалы. Остановимся на ЦТБС-3, приведем значения ее постоянных:

 

Толщину пьезокерамической пластины определим, принимая заданную частоту 250 кГц за частоту резонанса, так как антенна излучающая, тогда

 

Статическая электрическая емкость пластины

,

где - площадь электрода.

 

Эквивалентное сопротивление электрических потерь

 ,

 

Емкостное сопротивление


 

Коэффициент электромеханической трансформации

 

Сопротивление электрических потерь на резонансе

 

Емкостное сопротивление на резонансной частоте

 

Акустическая мощность излучения при резонансе

 

Здесь - КПД, учитывающий механические потери; принимаем . Величина - активное сопротивление излучения, соответствует немалым волновым размерам пластины:

 

Частотная зависимость акустической мощности вблизи резонанса

,

где - механическая добротность

 

При такой высокой добротности резонансная кривая мощности представляется весьма узкополосной: относительная ширина полосы  и Антенна излучающая

Электрический импеданс преобразователя образован из сопротивлений электрической части и приведенных к ней механических:

 Антенна излучающая .

На частоте механического резонанса  Антенна излучающая, сумма , так как

>>Антенна излучающая; .

Импеданс , Антенна излучающаяОм

Конструкция антенны

Кабель 3 марки ПГЭШ-1.0 вклеивается в хвостовик корпуса 2, выполненного из латуни Л-63. Хвостовик корпуса вместе с кабелем вулканизируется резиной. Сырьем для вулканизации служит сырая резина марки С-576. Текстолитовая шайба 5 и пенопластовая обойма 4 склеиваются клеем К-153. В обойму из полиуретана вклеивается пьезокерамический преобразователь 1 с припаянными проводниками. Провод укладывается в канал блока, он припаян к кабелю 3 и к преобразователю. Рабочую поверхность преобразователя и части образующей корпус 2 смазывают клеем. Затем осуществляется заливка компаундом

6. Измерение характеристики направленности (ХН)

Измерения характеристики направленности (ХН) излучателей и приемников звука является простой операцией, но требует выполнения ряда условий для получения правильных результатов.

Испытуемый преобразователь (излучатель, приемник) поворачивается вокруг оси, перпендикулярной плоскости в которой определяется ХН. Расстояние  между излучателем и приемником следует выбирать так, чтобы ХН полностью сформировалась, то есть не зависят от дальнейшего увеличения . Обычно пользуются приближенной оценкой этой величины

0,161м

где L – максимальный габаритный размер преобразователя (антенны).

Если за критерий взять среднюю фазовую ошибку, то относительная погрешность измерения  направленности антенны размером L будет равна

=Антенна излучающая

Расстояние r по этому критерию оценивается неравенством

 

Если же излучение и прием осуществляются излучателями заключительных размеров, то расстояние r отвечает неравенству

 

Условия измерений должны соответствовать свободному полю, чтобы при каждом новом повороте регистрировался (измерялся) только прямой сигнал, распространяющийся от излучателя к приемнику.

Поворот системы производится электромеханических приводом – двигателем и набором шестерней, обеспечивающих приемлемую частоту вращения, определяемую скоростью фиксации сигналов, характером среды и требуемой точностью структуры ХН.

Для регистрации ХН в полярных координатах используют круглые бланки, поворачивающиеся синхронно с поворотом испытуемого преобразователя.  

Синхронизация движения бумаги и вращения испытуемого преобразователя лучше всего обеспечивается сельсильной связью: ось сельсина – датчика механически соединяется с валом, непосредственно вращающим преобразователем, а ось сельсина – приемника – с осью вращения бланка. Сельсины обеспечивают точность передачи угла порядка 0,5°, что вполне достаточно для большинства акустических измерений.

Заключение

Спроектирован излучающий преобразователь в виде пьезокерамического поршня в форме ромба. Такая форма обеспечивает малый уровень боковых максимумов (4,5%). Эффективность преобразователя достаточна, благодаря применению пьезокерамического материала состава ЦТБС-3.

Требования задания по направленности антенны выполнено с соответствующим выбором размеров (диагоналей) излучающей поверхности.

Список литературы

Свердлин Г.М. Прикладная гидроакустика. Л: Судостроение, 1990

Свердлин Г.М. Гидроакустические преобразователи и антенны Л.: Судостроение, 1988.

Свердлин Г.М., Огурцов Ю.П. Расчет преобразователей. Учебное пособие. Л: ЛКИ, 1976.

Кобяков Ю.С. и др. Конструирование гидроакустической рыбопоисковой аппаратуры. Л: Судостроение, 1986.

Колесников А.Е. Акустические измерения. Учебник для вузов. Л: Судостроение, 1983.



1. Сочинение на тему Распутин b. - В. распутин живи и помни.
2. Сочинение на тему Сочинения на свободную тему - Друзья познаются в беде
3. Реферат Население и трудовые ресурсы России 3
4. Сочинение на тему Гоголь н. в. - Живые и мертвые душив творчестве гоголя
5. Реферат на тему Ludwig Van Beethoven Essay Research Paper Ludwig
6. Реферат на тему Ignorance Is Strength Essay Research Paper In
7. Курсовая Служба приема и размещения в гостинице
8. Реферат Первые шаги астрономической оптики
9. Реферат на тему It And Mis Essay Research Paper These
10. Реферат Центральный Банк 4