Реферат на тему Непредельные или ненасыщенные углеводороды ряда этилена алкены или олефины
Работа добавлена на сайт bukvasha.net: 2015-06-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Cl H K—OH |
2. Гидрирование ацетилена в присутствии катализатора (Pd):
H—CººC—H + H2 ® H2C==CH2
3. Дегидратация спиртов (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или А12O3:
Н2С—СН2 ® Н2С==СН2 + Н2О
| |
H OH |
этиловый
спирт
В таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродною атома (правило А.М.Зайцева):
H OH |
| |
H3C—C—CH—CH3 ® H3C—C==CH—CH3 + H2O
| |
CH3 CH3
3-метилбутанол-2 2-метилбутен-2
4. Физические и химические свойства :
Физические свойства. Физические свойства некоторых алкенов показаны в табл. 1. Первые три представителя гомологического ряда алкенов (этилен, пропилен и бутилен) — газы, начиная с C5H10 (амилен, или пентен-1) — жидкости, а с С18Н36 — твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температуры кипения цис-изомеров выше, чем транс-изомеров, а температуры плавления — наоборот.
Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы), но хорошо — в органических растворителях. Этилен и пропилен горят коптящим пламенем.
Таблица 1. Физические свойства некоторых алкенов
Название | Формула | t пл,°С | t кип,°С | d204 |
Этилен (этен) | С2Н4 | -169,1 | -103,7 | 0,5700 |
Пропилен (пропен) | С3Н6 | -187,6 | -47,7 | 0,5193* |
Бутилен (бутен-1) | C4H8 | -185,3 | -6,3 | 0,5951 |
Цис-бутен-2 | С4Н8 | -138,9 | 3,7 | 0,6213 |
Транс-бутен-2 | С4Н8 | -105,5 | 0,9 | 0,6042 |
Изобутилен (2-метилпропен) | С4Н8 | -140,4 | -7,0 | 0,5942* |
Амилен (пентен-1) | C5H10 | -165,2 | +30,1 | 0,6405 |
Гексилен (гексен-1) | С6Н12 | -139,8 | 63,5 | 0,6730 |
Гептилен (гептен-1) | C7H14 | -119 | 93,6 | 0,6970 |
Октилен (октен-1) | C8H16 | -101,7 | 121,3 | 0,7140 |
Нонилен (нонен-1) | C9H18 | -81,4 | 146,8 | 0,7290 |
Децилен (децен-1) | С10Н20 | -66,3 | 170,6 | 0,7410 |
* Жидкий
Алкены малополярны, но легко поляризуются.
Химические свойства.
Алкены обладают значительной реакционной способностью. Их химические свойства определяются, главным образом, двойной углерод-углеродной связью. p-Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:
p / /
C==C + A—B ® C—C
/ s / | s |
А В
Таким образом, при реакциях присоединения двойная связь разрывается как бы наполовину (с сохранением s-связи).
Для алкенов, кроме присоединения, характерны еще реакции окисления и полимеризации.
Реакции присоединения. Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.
1. Гидрирование (присоединение водорода). Алкены, присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), переходят в предельные углеводороды — алканы:
Н2С==СН2 + H2 ® Н3С—СН3
этилен этан
2. Галогенирование (присоединение галогенов). Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных:
Н2С==СН2 + Cl2 ® ClH2C—CH2Cl
1,2-дихлорэтан
Легче идет присоединение хлора и брома, труднее — иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом.
Сравните: у алкенов реакция галогенирования — процесс присоединения, а не замещения (как у алканов).
Реакцию галогенирования обычно проводят в растворителе при обычной температуре.
Электрофильное присоединение галогенов к алкенам можно представить следующим образом. Вначале под влиянием p-электронов алкена происходит поляризация молекулы галогена с образованием переходной неустойчивой системы (p-комплекс):
H2C=¯=CH2
Brd+ ® Brd-
p-комплекс
Стрелка, пересекающая двойную связь, обозначает взаимодействие p-электронной системы алкена с молекулой брома ("перекачка" p-электронной плотности на Brd+). В данном случае двойная связь, имеющая высокую электронную плотность, выступает в качестве донора электронов. Затем p-комплекс разрушается: двойная связь и связь между атомами брома гетеролитически разрываются с образованием двух ионов брома — аниона и катиона. Катион за счет электронов p-связи образует с углеродом обычную s-связь С—Br. Так возникает другая неустойчивая система — карбкатион (s-комплекс):
H2C=|=CH2 ® H2C –CH2+ + Br- ® H2C—CH2
¯ | ¬— ¯ | |
Brd+ ® Brd- Br Br Br
карбкатион 1,2-дибром-
(s-комплекс) этан
Результат этой реакции нетрудно предвидеть: анион брома атакует карбкатион с образованием дибромэтана.
Присоединение брома к алкенам (реакция бромирования) — качественная реакция на предельные углеводороды. При пропускании через бромную воду (раствор брома в воде) непредельных углеводородов желтая окраска исчезает (в случае предельных — сохраняется).
3. Гидрогалогенирование (присоединение галогеноводородов). Алкены легко присоединяют галогенводороды:
H2С==СН2 + НВr ® Н3С—CH2Вr
Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова (1837—1904): при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода, а галоген — к менее гидрогенизированному:
¯——————————|
Н2С=СН—СН3 + Н—Вr ® Н3С—СН—СН3
————————| |
Br
2-бромпропан
Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно. Под влиянием могильной группы, связанной непосредственно с двойной связью, происходит смещение электронной плотности в сторону этой связи (на крайний углеродный атом).
Вследствие такого смещения p-связь поляризуется и на углеродных атомах возникают частичные заряды. Легко представить, что положительно заряженный ион водорода (протон) присоединится к атому углерода (электрофильное присоединение), имеющему частичный отрицательный заряд, а анион брома — к углероду с частичным положительным зарядом.
Такое присоединение является следствием взаимного влияния атомов в органической молекуле. Как известно, электроотрицательность атома углерода немного выше, чем водорода. Поэтому в метильной группе наблюдается некоторая поляризация s-связей С—Н, связанная со смещением электронной плотности от водородных атомов к углероду. В свою очередь это вызывает повышение электронной плотности в области двойной связи и особенно на ее крайнем, атоме. Таким образом, метильная группа, как и другие алкильные группы, выступает в качестве донора электронов. Однако в присутствии пероксидных соединений или О2 (когда реакция имеет радикальный характер) эта реакция может идти и против правила Марковникова.
По тем же причинам правило Марковникова соблюдается при присоединении к несимметричным алкенам не только галогеноводоро-дов, но и других электрофильных реагентов (H2O, H2SО4, НОС1, IC1 и др.). При этом катионные и анионные части таких реагентов будут следующими:
Катион..... Н H Н Н Н С1 I
Анион ...... С1 Br I SO4H ОН ОН С1
Как известно, катионная часть реагента при присоединении идет к наиболее гидронизированному углеродному атому, а анионная часть — к менее гидронизированному.
4. Гидратация (присоединение воды). В присутствии катализаторов [H2SO4 (конц.) и др.] к алкенам присоединяется вода с образованием спиртов. Например:
H3C—CH==CH2 + H—OH ® H3C—CH—CH3
|
OH
пропилен изопропиловый
спирт
Реакции окисления. Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения этой реакции.
1. Окисление при обычной температуре. При действии на этилен водного раствора КМnO4 (при нормальных условиях) происходит образование двухатомного спирта — этиленгликоля:
3H2C==CH2 + 2KMnO4 + 4H2O ® 3HOCH2—CH2OH + 2MnO2 + KOH
этиленгликоль
Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.
В более жестких условиях (окисление КМnO4 в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов:
H3C—CH=|=CH—CH3 + 2O2 ® 2H3C—COOH
уксусная кислота
При окислении этилена кислородом воздуха в присутствии металлического серебра образуется оксид этилена:
350°C
2Н2С==СН2 + O2 ® 2Н2С——СН2
Ag O /
оксид этилена
2. Горение алкенов. Как и алканы, непредельные соединения ряда этилена сгорают на воздухе с образованием оксида углерода (IV) и воды:
Н2С=СН2 + 3O2 ® 2СO2 + 2Н2O
Реакция изомеризации. При нагревании или в присутствии катализаторов алкены способны изомеризоваться — происходит перемещение двойной связи или установление изостроения.
Реакции полимеризации. За счет разрыва p-связей молекулы алкена могут соединяться друг с другом, образуя длинные цепные молекулы.
5. Отдельные представители
Этилен (этен) Н2С==CН2 - газ без цвета и запаха, мало растворимый в воде. Как и метан, с воздухом образует взрывоопасные смеси. Широко используется для получения различных органических веществ: этилового спирта, стирола, галогенопроизводных, полиэтилена, оксида этилена и др.
Пропилен (пропен) Н3С—СН==СН2 служит сырьем для получения изопропилбензола, ацетона, фенола, полипропилена, глицерина, изопропилового спирта, синтетического каучука и других ценных органических продуктов.
Бутилены (бутен-1 и бутен-2), изобутилен (3-метилпропен-1) C4H8. Бутен-1 применяется для получения дивинила и изооктана, а бутен-2 — в качестве среды при полимеризации дивинила. Из изобутилена получают изооктан, изопропен и полиизобутилен.
Следует отметить, что алкены широко используются в качестве мономеров для получения многих высокомолекулярных соединений (полимеров).