Реферат

Реферат на тему Тепловой расчет реактора

Работа добавлена на сайт bukvasha.net: 2015-06-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024


МЭИ (ТУ)

 

 

Кафедра парогенераторостроения

 

 

Типовой расчёт по курсу:

Генераторы тепловой энергии

Тепловой расчёт ВВЭР

 

 

 

 

 

 

 

 

 

 

 

Студент: Иванов А.А.

Группа: С-2-95

Преподаватель: Двойнишников В.А.

 

 

 

 

 

 

 

Москва 2000 год

Аннотация.

В данной работе решались следующие задачи:

расчёт реактора при m = 1 и qv = 100 и определение его экономичности и надёжности при учёте наложенных ограничений: 1.6 < n < 2.2,

2 < Wт <10 м/с, tоб < 350 оС, tc < 2300 оС.

нахождение области допустимых значений относительной высоты активной зоны m и удельного энерговыделения qv (m = 0.8 … 1.6,

qv = 50 … 150) при учёте наложенных ограничений: 1.6 < n < 2.2,

2 < Wт <10 м/с, tоб < 350 оС, tc < 2300 оС.

для выбранного варианта расчёт температуры сердечника, оболочки и теплоносителя по высоте активной зоны.

 

Содержание:

Введение Исходные данные Тепловой расчёт реактора при m = 1 и qv = 100 МВт/м3

3.1. Определение размеров активной зоны реактора и скорости теплоносителя

3.2. Определение коэффициента запаса по критической тепловой нагрузке

3.3. Расчёт максимальных температур оболочки ТВЭЛа и материала

топливного сердечника

3.4. Определение области допустимых значений m и qv

3.5. Расчёт распределения температуры теплоносителя, оболочки и топливного

сердечника по высоте активной зоны реактора

4. Выводы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Введение

Назначение и виды тепловых расчётов реакторов.

Тепловой расчет ядерного реактора является одной из необходимых составных частей процесса обоснования и разработки конструкции. Без него невозможны ни предварительные поисковые проработки, ни определение оптимальных проектных решений.

Тепловые расчеты обычно выполняются одновременно с гидравлическим и нейтронно-физическим расчетами реактора. В зависимости от задач, решаемых на том или ином этапе проработки конструкции, различают поисковые и поверочные расчеты

Поисковые тепловые расчеты проводятся в период определения основных конструктивных решений. При их выполнении, как правило, известны тепловая мощность реактора, распределение плотности энерговыделения, вид теплоносителя и его параметры все эти данные получают в результате нейтронно-физического расчета, а также тип и конструкция ТВЭЛов и кассет, определяемых техническим заданием на основе накопленного опыта проектирования, изготовления и эксплуатации. В результате определяются размеры активной зоны и других элементов реактора, находятся, а при необходимости уточняются параметры теплоносителя, определяются характерные температуры, выбираются конструкционные материалы и топливные композиции.

По мере разработки конструкции тепловые расчеты выполняются снова, но более детально, с учетом выбранных конструктивных решений, как для номинального режима, так и для работы на частичных нагрузках. Также обсчитываются тепловые режимы работы оборудования при переходных процессах при пуске, останове, изменении нагрузки, характерных как для штатных ситуаций, так и в аварийных случаях. Во всех этих случаях тепловой расчет носит характер поверочного, и его основной задачей является определение термодинамических характеристик теплоносителя и тепловых параметров характеризующих условия функционирования элементов ядерного реактора. Обеспечение надежной работы реактора в целом и его отдельных элементов, достижение высокой экономичности реакторной установки требует высокой точности определения теплотехнических параметров, что ведет к существенному усложнению всех видов расчетов, в том числе и теплового. Необходимость же их автоматизации приводит к созданию сложных программных комплексов, объединяющих тепловые, Гидравлические, нейтронно-физические и прочностные расчеты.

Настоящий метод ориентирован на использование несколько упрощенного теплового расчета, базирующегося на одномерном представлении протекания процессов тепло - и массообмена в одной ячейке активной зоны реактора.

2. Исходные данные.

Для выполнения теплового расчета водо-водяного энергетического реактора (ВВЭР) в соответствии с упрощенной методикой требуются исходные данные, условно подразделяемые на режимные и конструктивные,

Данные режимного типа:

Тепловая мощность ВВЭР N = 1664.87 МВт

Конструктивные данные:

Характеристики кассеты:

Число ТВЭЛов в кассете nТВЭЛ = 331

Шаг решётки а¢ ¢ = 12.75·10-3 м

Размер кассеты “под ключ” а¢ = 0.238 м

Толщина оболочки кассеты δ = 1.5·10-3 м

Характеристика ТВЭЛа:

Радиус топливного сердечника r1 = 3.8·10-3 м

Внутренний радиус оболочки r2 = 3.9·10-3 м

Внешний радиус оболочки rq = 4.55·10-3 м

Размер ячейки а = 0.242 м Материал оболочки ТВЭЛов и кассет: 99% циркония и 1% ниобия Топливная композиция: двуокись урана

 

3.Тепловой расчёт реактора при qv= 100 МВт/м3 и m= 1

Определение размеров активной зоны реактора и скорости теплоносителя. Температура теплоносителя на выходе из реактора

tвых = 314 ° C

Принимаем из расчёта парогенератора

Температура теплоносителя на входе в реактор

tвх = 283 ° C

Принимаем из расчёта парогенератора

Перепад температур теплоносителя между входом и выходом

Δtт = tвых - tвх = 314 – 283 = 31 ° С

Температура воды на линии насыщения

Запас до температуры кипения δt = 30 ° C

ts = tвых + δt = 314 + 30 = 344 ° C

Давление в реакторе

P = 15.2 МПа

Расход воды (теплоносителя) на один реактор

средняя температура воды в реакторе tср = Тепловой расчет реактора = 298.5 ° C

средняя теплоёмкость воды Cp = 5.433 кДж/кг

Gт = Тепловой расчет реактора =9885.05 кг/с

Принимаем из расчёта парогенератора.

Объём активной зоны реактора.

Средняя плотность тепловыделения АЗ реактора qv = 100 МВт/м3

VАЗ = Тепловой расчет реактора= 16.648 м3

Диаметр активной зоны реактора

Параметр m* = Тепловой расчет реактора= 1

DАЗ = Тепловой расчет реактора = 2.767 м

Число кассет в активной зоне

Площадь поперечного сечения ячейки: Sяч = 0.866·a2 = 5.072·10-2 м2

Тепловой расчет реактора = 178.2 шт.

т.к.Тепловой расчет реакторадробное, то округляем его до ближайшего большего целого числа

Nкас = 179 шт. с последующим уточнением величин:

DАЗ=Тепловой расчет реактора= 3.4 м

m = Тепловой расчет реактора= 0.993

Высота активной зоны реактора

HАЗ = m·DАЗ = 0.993·3.4 = 3.376 м

Тепловыделение в ТВЭЛах

Доля теплоты выделяемая в ТВЭЛах κ1 = 0.95

= κ1·N = 0.95·3064 = 2910.8 МВт

Суммарная поверхность ТВЭЛ

F = 2·π·rq·HАЗ·nТВЭЛ·Nкас = 2·π·4.55·10-3·3.376·331·179 = 5719 м2

Расход теплоносителя через одну кассету

Gтк = Тепловой расчет реактора= 90.22 кг/с

3.1.14. Скорость теплоносителя в активной зоне реактора

сечение для прохода теплоносителя около одного ТВЭЛа SвТВЭЛ = 0.866·(a¢ ¢ )2-

-π·rq2 = 0.866·(12.75·10-3)2 – π·(4.55·10-3)2 = 7.574·10-5 м2

сечение для прохода теплоносителя в кассете Sвкас = SвТВЭЛ·nТВЭЛ = 7.574·10-5·331 = 2.507·10-2 м2

плотность воды при средней температуре и давлении в реакторе ρв = 713.2 кг/м3

Wт = Тепловой расчет реактора= 5.046 м/с

Определение коэффициента запаса по критической тепловой нагрузке.

3.2.1. Коэффициенты неравномерности тепловыделения

Эффективная добавка отражателя δ0 = 0.1 м

Эффективная высота активной зоны Hэф = HАЗ + 2·δ0 = 3.376 + 2·0.1 = 3.576 м

по оси реактора: Kz = Тепловой расчет реактора= 1.489

по радиусу активной зоны: Kr = Тепловой расчет реактора= 2.078

3.2.2. Коэффициент неравномерности тепловыделения в объёме АЗ

Kv = Kz·Kr = 1.489·2.078 = 3.094

Максимальная величина тепловой нагрузки на единицу поверхности ТВЭЛа

Средняя тепловая нагрузка на единицу поверхности ТВЭЛа qF = Тепловой расчет реактора= =0.509 МВт/м2

qmax = qF·Kv = 0.509·3.094 = 1.575 МВт/м2

Критический тепловой поток кризиса первого рода для трубы d = 8 мм

Теплота парообразования теплоносителя R = 931.2 кДж/кг

Температура воды на линии насыщения ts = 347.32 ° C

Величина паросодержания теплоносителя в центральной точке реактора xкр = =Тепловой расчет реактора = -0.2782

qкр(8) =Тепловой расчет реактора

Тепловой расчет реактора=

= 1.347·3.5990.5549·е0.4173 = 4.161 МВт/м2

Критический тепловой поток кризиса первого рода для труб диаметром 2rq

qкр(2rq) = Тепловой расчет реактора= 3.901 МВт/м2

Коэффициент запаса по критической нагрузке.

nзап = Тепловой расчет реактора= 2.477

Расчёт максимальных температур оболочки ТВЭЛа и материала топливного сердечника.

3.3.1. Максимальное тепловыделение в центре реактора приходящееся на единицу высоты ТВЭЛа.

ql,0= Тепловой расчет реактора= 4.503·10-2 МВт/м

Коэффициент теплоотдачи от стенки к теплоносителю.

Коэффициент теплопроводности теплоносителя λ = 548.3·10-3 Вт/(м·К) при температуре tcр

Эквивалентный диаметр сечения для прохода воды dэкв = Тепловой расчет реактора= 6.851·10-3 м

Кинематическая вязкость воды. Для её определения необходимо найти динамическую вязкость. μ = 8.936·10-5 Па/с. ν = Тепловой расчет реактораТепловой расчет реактора= 1.253·10-7 м2/с

Критерий Рейнольдса Re = Тепловой расчет реактора= 2.759·105

Число Прандтля Pr = 0.9217

α=Тепловой расчет реактора=3.685·104 Вт/м2К

Перепад температуры между оболочкой ТВЭЛа и теплоносителем в центре реактора.

Δθа0 = Тепловой расчет реактора= 40.61 ° С

Координата в которой температура на наружной поверхности оболочки ТВЭЛа максимальна.

Z*=Тепловой расчет реактора=0.4287м

Максимальная температура наружной поверхности оболочки ТВЭЛа

tТепловой расчет реактора= 351.7 ° C

Температурный перепад в цилиндрической оболочке ТВЭЛа

Коэффициент теплопроводности материала оболочки λоб = 24.1 Вт/(м·К)

Δθоб0 = Тепловой расчет реактора= 43.55 ° С

Температурный перепад в зазоре ТВЭЛа

Коэффициент теплопроводности газа в зазоре λз = 30 Вт/(м·К)

Δθз0 = Тепловой расчет реактора= 18.52 ° С

Температурный перепад в цилиндрическом сердечнике

Коэффициент теплопроводности в цилиндрическом сердечнике λс = 2.7 Вт/(м·К)

Δθс0 = Тепловой расчет реактора= 1261 ° С

Перепад температур между теплоносителем и топливным сердечником

Δθс = Δθа0 + Δθоб0 + Δθз0 + Δθс0 = 42.46 + 43.55 + 18.52 + 1261 = 1366 ° С

Максимальная температура топливного сердечника

tТепловой расчет реактора = 1674 ° C

3.4 Определение области допустимых значений m и qv

Исходные данные для расчёта по программе WWERTR

Тепловая мощность реактора [МВт] Давление в реакторе [МПа] Перепад температур воды [° C] Радиус топливного сердечника ТВЭЛа [м] Внутренний радиус оболочки ТВЭЛа [м] Внешний радиус оболочки ТВЭЛа [м] Шаг решетки [м] Размер кассеты “под ключ” [м] Размер ячейки [м] Толщина оболочки кассеты [м] Эффективная добавка отражателя [м] Число ТВЭЛов в кассете [шт] Температура воды на линии насыщения [° С] Теплота парообразования [кДж/кг] Теплоемкость воды [кДж/кг·К] Теплопроводность воды [Вт/м·° С] Кинематическая вязкость воды [м2/с] Число Прандтля Плотность воды [кг/м3] Теплопроводность оболочки ТВЭЛа [Вт/м·° С] Теплопроводность газа в зазоре ТВЭЛа [Вт/м·° С] Теплопроводность двуокиси урана [Вт/м·° С] Удельное энерговыделение [кВт/л] Относительная высота активной зоны Расч. скорость воды [м/с] Расч. коэффициент запаса Расч. координата точки с мак. темп. оболочки [м] Расч. мак. температура оболочки ТВЭЛа [° С] Расч. мак. температура сердечника ТВЭЛа [° С]

N = 1664.84

P = 15.2

Δt = 31

r1 = 3.8·10-3

r2 = 3.9·10-3

rq = 4.55·10-3

а¢ ¢ = 12.75·10-3

а¢ = 0.238

а = 0.242

δ = 1.5·10-3

δ0 = 0.1

nТВЭЛ = 331

ts = 344

R = 1020.9

Cp = 5.433

λ = 556.658·10-3

ν = 1.21·10-7

Pr = 0.905

ρв = 724.4

λоб = 23.9

λз = 30.5

λс = 2.7

qv = 100

m = 0.995

Wт = 4.345

nзап = 2.699

Z*= 0.333

tТепловой расчет реактора= 343.957

tТепловой расчет реактора = 1623.37

 

 

Результаты расчёта по программе WWERTR.

m*

DАЗ

nзап

Z*

tТепловой расчет реактора

tТепловой расчет реактора

-

м

м/с

-

м

° С

° С

qv = 50.0 кВт/л

1

2

3

4

5

0.800

1.004

1.203

1.409

1.608

4.602

4.267

4.018

3.812

3.647

2.754

3.204

3.614

4.015

4.386

3.433

3.731

3.990

4.234

4.451

0.546

0.699

0.850

1.007

1.160

345.5

342.1

339.7

337.8

336.3

1016.8

1013.4

1010.5

1007.7

1005.2

qv = 75.0 кВт/л

1

2

3

4

5

0.802

1.006

1.201

1.405

1.611

4.018

3.726

3.512

3.333

3.184

3.614

4.202

4.730

5.253

5.755

2.707

2.941

3.141

3.332

3.510

0.413

0.530

0.645

0.766

0.889

351.4

347.2

344.2

341.9

340.0

1343.5

1339.7

1336.2

1332.7

1329.3

qv = 100.0 кВт/л

1

2

3

4

5

0.804

1.001

1.209

1.405

1.604

3.647

3.390

3.184

3.028

2.897

4.386

5.076

5.755

6.362

6.950

2.290

2.482

2.662

2.817

2.962

0.339

0.433

0.533

0.630

0.729

356.2

351.5

347.9

345.3

343.2

1662.9

1659.0

1654.7

1650.7

1646.7

qv = 125.0 кВт/л

1

2

3

4

5

0.801

1.005

1.213

1.411

1.605

3.390

3.143

2.953

2.807

2.689

5.076

5.905

6.692

7.405

8.067

2.009

2.183

2.341

2.479

2.602

0.289

0.372

0.459

0.543

0.627

360.5

355.1

351.1

348.2

346.0

1976.9

1972.6

1967.8

1963.2

1958.7

qv = 150.0 кВт/л

1

2

3

4

5

0.806

1.010

1.206

1.412

1.609

3.184

2.953

2.784

2.641

2.528

5.755

6.692

7.529

8.365

9.126

1.812

1.969

2.102

2.231

2.345

0.256

0.330

0.402

0.479

0.555

364.0

358.3

354.2

350.9

348.4

2286.2

2281.8

2276.9

2271.4

2266.1

 

 

 

 

 

Тепловой расчет реактораm = 0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m = 1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тепловой расчет реактораm = 1.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m = 1.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тепловой расчет реактораm = 1.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Границы возможного диапазона значений qv

для каждого параметра (по графикам).

m

параметры

0.8

1.0

1.2

1.4

1.6

nзап

108.1

123.6

139.9

tТепловой расчет реактора

68.83

91.04

116.4

141.6

tТепловой расчет реактора

Диапазон допустимых значений

Прочерк в таблице означает, что максимальное или (и) минимальное значение величины находится за границами рассматриваемой области.

Знак "*" означает, что ни одно значение не входит в накладываемые ограничения.

Анализ таблицы показывает, что при заданных начальных условиях не существует значений m и qv, которые удовлетворяли бы наложенным ограничениям.

 

3.5. Расчёт распределения температуры теплоносителя, оболочки и топливного сердечника по высоте активной зоны реактора. m = 1.4, qv = 125 кВт/л.

Координата,

м

Температура теплоносителя,

° С

Температура сердечника,

° С

Температура оболочки,

° С

1

2

3

4

5

6

7

8

9

10

11

-1.981

-1.585

-1.188

-0.792

-0.396

0.000

0.396

0.792

1.188

1.585

1.981

292.0

293.1

295.5

299.0

303.3

308.0

312.7

317.0

320.5

322.9

324.0

416.8

898.6

1328.0

1666.8

1885.0

1963.2

1894.4

1684.9

1353.1

928.5 448.8

294.8

306.6

318.5

329.5

338.5

344.9

348.0

347.5

343.6

336.4

326.8

Тепловой расчет реактора

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Выводы по проведённой работе.

При m = 1 и qv = 100 получено, что данный пример не удовлетворяет условию экономичности n = 2.477 (1.6 < n < 2.2) и незначительно условию надёжности tоб = 351.7 oC (tоб < 350 oC).

При заданных начальных условиях характеристики теплоносителя и реактора, и поставленных ограничениях на скорость теплоносителя, коэффициент запаса, максимальную температуру оболочки и теплоносителя; области допустимых значений относительной высоты активной зоны m и удельного энерговыделения qv (m = 0.8 … 1.6, qv = 50 … 150) не существует. Во всех случаях кроме последнего (m = 1.6 и qv = 150, здесь n > 2.2) не проходит по надёжности.

При расчёте температур по высоте активной зоны получено для m = 1.4 и qv = 125: температура сердечника максимальна в середине высоты ТВЭЛа, температура оболочки максимальна на высоте z = 0.5, а температура теплоносителя максимальна в верхней части ТВЭЛа. Максимальный градиент температуры теплоносителя в середине высоты ТВЭЛа.



1. Реферат на тему Философское понимание материи
2. Реферат Развитие психологии
3. Реферат на тему Creation Essay Research Paper The Creation StoriesDid
4. Реферат Константинопольская конференция
5. Реферат Мероприятия по повышению эффективности управления загрузкой гостиничного предприятия
6. Курсовая Разработка предложений и методов для улучшения экологической ситуации в Волго-Вятском районе
7. Контрольная работа Философские проблемы и методы познания
8. Реферат на тему Chil Abuse Essay Research Paper
9. Реферат на тему The Two Sides Of Hamlet Essay Research
10. Реферат Саркисов, Саркис Артемьевич