Реферат

Реферат на тему Оптимизация системы сигналов

Работа добавлена на сайт bukvasha.net: 2015-06-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 19.12.2024


канд. биол. наук М.П.Иванов, д-р техн. наук В.В.Кашинов

ФНИИ им.А.А.Ухтомского, СПбГУ

Во многихсистемах, например, спутниковой навигационной системе GPS NAVSTAR, асинхронных адресныхсистемахсвязи (ААСС) и т.д. используются сигналы, излучаемые многими источниками на одной несущей частоте и адресованные разным потребителям. При этом для приема используется согласованная с тем сигналом, который нужно принять, фильтрация или корреляционный прием. Возможно, применение частотно-временной фильтрации [1]. В таких системах неизбежно появление перекрестных внутрисистемных помех, которые желательно минимизировать. В работе [2] показано, что при определении качества системы по среднему интегральному эффекту взаимных помех непрерывные сигналы должны иметь одинаковые автокорреляционные функции, то есть должны различаться только фазовыми характеристиками. Этот критерий целесообразно использовать, если взаимные корреляционные функции (ВКФ) имеют один значительный всплеск Rkm, которым,восновном,иопределяется критерий - величинаОптимизация системы сигналов, или, наоборот, имеют много всплесков одного порядка. Однако в упомянутой работе [2] не приведена процедура построения самой системы сигналов.

Примем за критерий оптимальности максимальную величину всплесков ВКФ, а сигналы оптимальной системы определим в классе функций, связанных между собой линейными операторами. Все реальные сигналы принадлежат энергетическому пространству L2, а общий вид линейного оператора, действующего из L2 в L2, - интегральный, поэтому искомая система сигналов является единственной.

Обозначим как Оптимизация системы сигналовискомую систему сигналов, построеннуюна базе некоторого основного (условного) сигнала S0 по правилу

Оптимизация системы сигналов (1)

где Ak - линейный интегральный оператор с ядром hk (u):

Оптимизация системы сигналов (2)

Будем считать основной сигнал S0 реализацией некоторого случайного стационарного процесса с интервалом корреляции tcor << T, получим для ВКФ Rkm k-го и m-го сигналов

Оптимизация системы сигналов (3)

В частности, как известно [3],

Оптимизация системы сигналов (4)

и

Оптимизация системы сигналов (5)

Экстремальные значения ВКФ всех сигналов Sk достигаются в моментывремени относительномаксимумаосновногосигналаx0, которые определяются уравнениями

Оптимизация системы сигналов (6)

где H(u) - ядро произведения линейных интегральных операторов Ak Ak-1 -A1.

Чтобы исключить тривиальные решения Ak º 0, введем естественные ограничения на энергию функций hk(u):

Оптимизация системы сигналов (7)

Тогда первая вариация функционала R10 с учетом ограничений (6) и (7) будет иметь вид

Оптимизация системы сигналов (8)

где l1 и l2 - неопределенные пока множители Лагранжа.

Используя результаты работы [4], получим обобщенное уравнение Эйлера-Пуассона для функции h1(u), доставляющей экстремум функционалу R10

Оптимизация системы сигналов (9)

Множитель Лагранжа l2 находится при интегрировании по интервалу T обеих частей уравнения (9), умноженных на ядро h1(u), а множитель l1 - путем подобного интегрирования после возведения обеих частей уравнения в квадрат. Выполняя преобразования с учетом ограничений (6) и (7) и формулы (5), получим для ядра оператора A1, определяющего первый сигнал системы S1, и для корреляционной функции этого сигнала следующие выражения

Оптимизация системы сигналов (10)

где коэффициент a1 является корнем квадратного уравнения

Оптимизация системы сигналов (11)

Подходящая экстремаль h1(u) формулы (10) обуславливает величину перекрестной помехи P10 обнаружителя сигнала S1 при наличии основного сигнала S0

Оптимизация системы сигналов (12)

Аналогично могут быть найдены оптимальные в сформулированном смысле ядра операторов A2, A3, - и соответствующие перекрестные помехи P20, P30, ... и P31, P42, ... и т.д.

Расширение системы сигналов ограничивается величиной допустимых перекрестных помех.

Заметим, что принятая процедура установления последовательности линейных интегральных операторов A1, A2, ... зависит только от автокорреляционной функции основного сигнала S0.

Найдем величину перекрестных помех, определяемых ВКФ сигналов. Для этого перейдем в ограничении (7) в частотную область.

Оптимизация системы сигналов (13)

гдеОптимизация системы сигналов

Найдем спектральную функцию первого оператора H1(f). Обозначим через G00(f) спектр мощности основного сигнала S0. Тогда ВКФ сигналов S1 и S2 можно представить [3] в виде

Оптимизация системы сигналов  (14)

Экстремумам найденной ВКФ будут соответствовать значения t1, удовлетворяющие уравнению

Оптимизация системы сигналов (15)

Функции ½H1(f)½и j1(f) оператора A1, доставляющие при t=t1 экстремум функционалу R10(t) с учетом ограничений (13) и (15), будут определяться [4] двумя уравнениями

Оптимизация системы сигналов(16)

Оптимизация системы сигналов  (17)

Уравнение (16) получено путем варьирования функционала R10(t1) по функции½H1(f)½, а уравнение (17) - по функции j1(f).

Умножая левую часть уравнения (16) на функцию½H1(f)½ и интегрируя его в пределах от 0 до ¥, получим, принимая во внимание формулы (13) и (14),

Оптимизация системы сигналов (18)

Замечая, что cos(j1(f)+2pft1) не может быть равен нулю, и подставляя значение l1f из уравнения (17) в уравнение (16) получим с учетом выражения (18)

Оптимизация системы сигналов (19)

Умножим уравнение (19) на функцию G00(f) и выполним интегрирование в пределах от 0 до ¥, тогда, с учетом формулы (14), получим

Оптимизация системы сигналов (20)

Таким образом, модуль и фаза искомой спектральной функции H1(f) оказываются связанными со спектром мощности основного сигнала S0 следующим соотношением

Оптимизация системы сигналов  (21)

Замечая, что при линейном преобразовании сигнала с некоторой спектральной функцией ½H(f)½2 раз, получаем для спектра мощности сигнала S1

Оптимизация системы сигналов  (22)

Таким образом, при расширении линейной системы сигналов (1), принимая во внимание ограничение (13) и учитывая перекрестные помехи только смежных сигналов в последовательности S1, S2, ..., находим величину перекрестных помех, изменяющуюся по закону

Оптимизация системы сигналов  (23)

Формула (23) очевидно определяет нижнюю границу перекрестных помех для линейной системы сигналов при отсутствии других внешних помех. Эта формула позволяет сделать еще одно важное предположение: минимум нижней границы перекрестных помех в линейной системе сигналов с фиксированной энергией или средней мощностью достигается на последовательности сигналов (1), отличающихся только фазовыми спектрами, причем

Оптимизация системы сигналов (24)

где G00(f) - спектр мощности основного сигнала S0.

В качестве основного сигнала может быть выбран любой сигнал. Величина перекрестных помех определяется только спектром мощности основного сигнала S0. Оптимальный выбор спектра сигнала S0 по установленному критерию требует дополнительных исследований. В частности, спектр G00(f) может быть выбран в соответствии с критерием [2].

Возьмем для примера в качестве базового сигнала S1(t) реализацию случайного телеграфного сигнала, принимающего значения ¦1, причем моменты перемены знака сигнала представляют простейший поток событий. Такой сигнал описывается, как известно [3], уравнением Пуассона, а его автокорреляционная функция имеет вид экспоненты

Оптимизация системы сигналов (25)

где b - удвоенная частота перемены знака.

Как следует из формулы (10), ядро оператора A пропорционально линейной комбинации автокорреляционной функции базового сигнала и ее производной. Поэтому преобразование Фурье функции h1(t) будет иметь в общем случае вид

Оптимизация системы сигналов (26)

или с учетом формулы (25)

Оптимизация системы сигналов (27)

где c - некоторая постоянная.

Ограничимся системой сигналов, отличающихся только фазовыми характеристиками или характеристиками, имеющими постоянное значение модуля характеристики Hk(w). В частности, характеристика H1(w)удовлетворяет этому требованию, если a=b, то есть передаточная функция линейного устройства, преобразующего каждый предыдущий сигнал Sk(t) в последующий Sk+1(t), k=0, 1, 2, ...с точностью до несущественных постоянных амплитудных и фазовых множителей будет

Оптимизация системы сигналов (28)

Такие передаточные функции имеют, как известно [5], линейные ортогональные фильтры, импульсные переходные функции которых gn описываются полиномами Лаггера

Оптимизация системы сигналов (29)

где

Оптимизация системы сигналов

Рассмотрим изменение ВКФ с ростом числа сигналов системы для данного примера. Взаимный спектр сигналов системы имеет [3] вид

Оптимизация системы сигналов (30)

где G0(w) - спектр мощности базового сигнала или, с учетом формулы (25), и в соответствии с формулой (28)

Оптимизация системы сигналов  (31)

Общий вид ВКФ рассматриваемых сигналов может быть определен путем применения преобразования Фурье к правой части выражения (31)

Оптимизация системы сигналов                     (32)

Интегрируя с помощью вычетов, определяем

Оптимизация системы сигналов (33)

Выводы

1. Установлен алгоритм построения оптимальной по минимуму внутрисистемных помех системы сигналов на базе основного сигнала.

2. Получена зависимость перекрестных помех от спектра мощности основного сигнала и производящих ядер соответствующих линейных интегральных операторов.

3. Установлена нижняя граница минимальной величины перекрестных помех, которая определяется только спектром основного сигнала.

Список литературы

1.ИвановМ.П., КашиновВ.В. Оптимальная частотно-временная фильтрация //  http://www.laboratory.ru/, 2001.

2.ГущинЮ.Е.,КашиновВ.В.,ПономаренкоБ.В. Некоторые свойства оптимальной группы сигналов для асинхронной адресной системы связи. // В сб. "Повышение эффективности и надежности радиоэлектронных систем". Вып. 6, 1976, ЛЭТИ.

3.БендатДж,ПирсолА. Измерение и анализ случайных процессов. М., "Мир", 1971.

4.ИвановМ.П.,КашиновВ.Обобщенный принцип наименьшего действия.  http://www.laboratory.ru/, 2001.

5.ТихоновВ.И. Нелинейные преобразования случайных процессов. // М. Радио и связь, 1986.



1. Контрольная работа на тему Метод низпадаючої розробки структури програми
2. Реферат на тему Government Essay Research Paper Hello welcome to
3. Реферат Электроизоляционная керамика
4. Реферат Характеристика функциональных стратегий
5. Доклад на тему В поисках утраченной цивилизации
6. Реферат Похищение Рауля Валленберга
7. Реферат Письменность Древней Руси
8. Биография на тему Берк Роберт ОХара
9. Реферат Все о Turbo Basic
10. Курсовая на тему Особенности возникновения и развития Всероссийской чрезвычайной ко