Реферат

Реферат Основні фізичні процеси в оптичних лініях звязку

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024


ОСНОВНІ ФІЗИЧНІ ПРОЦЕСИ В ОПТИЧНИХ ЛІНІЯХ ЗВ’ЯЗКУ

1. Розповсюдження електромагнітних хвиль в оптичних волокнах

Модель розповсюдження світла крізь обмежену структуру подібну до оптичного волокна в термінах геометричних променів представляє тільки приблизний опис ефектів розповсюдження в них. Цей підхід добре діє поки характерний розмір поперечного перетину волокна як діаметр серцевини (2а, де а-радіус серцевини) великий у порівнянні з довжиною хвилі (l), що розповсюджується в волокні, і відносна різниця індексів серцевини і оболонки не надто мала. Фактично, як а, так і D можуть бути з'єднані разом з l, щоб створити комплексний параметр, що називається нормалiзованою частотою (V-числом) волокна, що визначається, як

. (1)

Якщо число V-волокна більше 10, результати геометричної оптики, основаної на променевих траєкторіях, приводять до точних рішень для багатьох ефектів розповсюдження в оптичних волокнах. Для V£10, геометрична оптика не в змозі пояснити ефекти розповсюдження в волокнах, що й вимагає здійснити електромагнiтний аналіз, оснований на хвильовій оптиці, щоб дослідити ефекти розповсюдження. Для одержання загальної основи, що могла б бути застосована для будь-якого волоконного хвильоводу з довільним числом V, починають з рівняння Максвела і відтворюють так звані векторні хвильові рівняння [5, 6], що задовольняють електричному () та магнiтному () полю векторів світлової хвилі:

, (2)

, (3)

де e=e0n2, e0 є значенням e для вільного простору, n - показник заломлення, ε - діелектрична проникність волокна і m0 - магнитна проникність для вільного простору, що по значенню така як і в волокні, при припущенні, що волокно не є немагнетиком. Перша форма розподілу індексу заломлення, запропонована для оптичного волокна, являє собою профiль, в якому поза серцевиною з показником заломлення n1 (діаметр 2а) знаходиться однорідна оболонка з показником заломлення n2; так, що можна алгебраїчно представити профіль показника заломлення (ППЗ) як:

. (4)

Волокна з профілем, аналогічним (4) відомі як волокна зі східчастим ППЗ. Для такого однорідного середовища член Ve дорівнюватиметься 0 як в серцевині, так і в оболонці, і в кожній з цих областей кожна декартовська компонента електричного та магнiтного поля буде задовольняти рівнянню

. (5)

Воно відоме як скалярне хвильове рівняння, де Y представляє будь-яку з декартовських компонент полів та . Оскільки n є незалежним від z, рішення рівняння може, взагалі, бути записано так:

Y(r,j,z,t)=y(r,j)exp( i [wt-bz]), (6)

де напрямок розповсюдження - уздовж z, і b - поширена стала розповсюдження. Рівняння (6) допускає два вигляду рішень в (5) - перше, в якому поле експоненціальне зменшується з r, при якому r>а і осцилює всередині серцевини (r<a): друге рішення допускає осцилюючі хвилі при всіх величинах r. Ми незабаром побачимо, що перший тип рішення допускає дискретні значення b, відомий як направлені моди волокна, другий – відомий як радіаційні моди, що характеризуються континуумом b. Формально, направлена мода визначається як певний розподіл поля, що поширюється в хвильоводі з певним станом поляризації і групової швидкості vг=1/(db/dw) без яких-небудь змін в періоді цього розподілення. Будучи залежним від своєї геометрії і фізичних властивостей, волокно може підтримувати цілий ряд мод або тільки одну моду - в першому випадку його можна назвати багатомодовим волокном, в другому - одномодовим або мономодовим волокном. Фактично, довільно падаюче поле на вхідному кінці волокна може бути завжди записано як

. (7)

В (7) – представляє суму дискретних направлених мод, тоді як інтеграл - безрозмірна сукупність радіаційних мод. Реальні значення bP будуть визначатися граничними умовами.

Ми можемо згадати, що в якісних волокнах телекомунікації відносна різниця показника заломлення оболонка-серцевина звичайно ніколи не перевищує 1-2%. Такі волокна що мають D<<1 відомі як напрямні волокна. Побічним продуктом цієї умови (яка має практичний зміст) - те, що моди в таких волокнах є (що можна продемонструвати) майже лінійно поляризованими і мають поперечну компоненту поля Y, що лежить майже повністю вздовж y або x, з порівняно дуже малою поздовжньою компонентою. Далі, так як різниця індексу заломлення є малою, можна припустити, що Y і ¶Y/r є безперервними поперечно r=a.

Так як для східчастого волокна, і залежить від r і лише від нього, тобто є цилiндрично симетричним, (5) записують в цилiндричнiй системі координат

, (8)

де – хвильове число вільного простору.

Застосовуючи засіб розділення перемінних, тобто записуючи

, (9)

Рівняння (9) може бути вирішене окремо для своєї радіальної та азимутальної компонент. Азимутальна компонента може бути представлена

F(j)~exp i l j ), (10)

де l=0, 1, 2, 3... Радіальна частина Y задовольнить таким рівнянням

, r<a, (11)

, r³a. (12)

Рівняння (11), (12) - стандартна форма рівнянь Бесселя, які допускають чотири різноманітних типи циліндричних функцій: J1(x), Y1(x),та K1(x), I1(x) відповідно. Проте для полів мод кінцевих та обмежувальних серцевин і експоненціальне загасаючих в оболонці, можна обрати функцію Бесселя J1(x), як поширення (11) всередині серцевини і модифіковану функцію Бесселя K1(x), як рішення (12) всередині оболонки. Відповідно, рішення (11) і (12) можуть бути записані як:

, (13)

де і такі, що

(див. (2.1)). (14)

В записі (13) була використана безперервність Y, та EY була обрана як домінантна поперечна компонента електричного поля, тоді як при D<<1 моди поляризовані майже лінійно. Для великих реальних значень аргументу, J1(wr/a) зменшується монотонно. Тобто ці функції точно відповідають вимогам (13) для подання направлених мод волокна. Тобто, як U, так і W повинні бути матеріальними і позитивними для напрямних мод, визначаючи, що для напрямної моди її власне b повинно задовольняти умові

. (15)

Тепер, як уже встановлено D<<1, поперечна компонента поля Y буде лежати майже повністю вздовж Y або X, так що єдиними ненульовими компонентами поля для модального рішення (13) будуть EY, EZ, HX, HZ з яких, як можна показати, граничні компоненти EZ та HZ багато менше, ніж поперечні компоненти EY та HX при малому D. Якщо EX обрана як домінантна поперечна компонента поля, тоді ненульовими компонентами поля, що будуть формувати поле моди, будуть: EX, EZ, HZ, HY. Відповідно, моди в слабко направлених структурах, як відомо, є лінійно поляризованими і позначаються як LPlm-моди. З безперервності dEY/dr при r=a, витікає:

, (16)

де (') - позначає диференціювання циліндричних функцій по їх аргументу. Використовуючи рекурентні рівняння, регулюючі функції Бесселя, і модифіковані функції Бесселя, як можна показати, зводиться до:

. (17)

Рівняння (17) - трансцендентальне рівняння, рішення якого в межах діапазону зазначеного (15) будуть визначати дискретні постійні поширення для різноманітних направлених мод.

Тут треба визначити, що при більш точному наближенні слідувало б вирішити (5) в циліндричних полярних координатах для y (=EZ) і одержати Er (та Hr) і Ej (також і Hj) через EZ і HZ із замкнутих рівнянь Максвела шляхом переписання їх компонентів в циліндричних координатах. Після цього, вважаючи безперервність EZ(HZ) та Ej (Hj), які є тангенціальними компонентами, при заміні (16), результат в наступному трансцендентальному рівнянні для b був би:

, (18)

де (') - диференціювання по аргументу функцій. Такий висновок (18) не включає будь-яких наближень в собі. Проте, якщо застосовуються слабко направлені умови, а саме D<<1 та n1~n2, тоді (17) спрощується, (після застосування рекурентних рівнянь як в рівнянні (17)), таким чином підтверджуючи наші більш ранні припущення про те, що в слабко направлених волокнах моди практично лінійно поляризовані з електричним полем вздовж осей X та Y. Рівняння (17) - апроксимована форма точного рівняння (18) для певних постійних поширення різноманітних мод за умови D<<1, як було показано, є в межах 1% для D<0.01 і в межах 10% для 0.01<D<0.25.

2 Режими роботи оптичних волокон

Графік 1 показує залежність нормалізованих постійних поширення b від V, b визначається як:

, (19)

так що для спрямованих мод, умова (15) може бути переписана:

1³ b³ 0. (20)

На нижній межі b=0: b=kon2 є тільки постійною поширення плоскої хвилі в невизначеному однорідному середовищі з індексом n2 (нескінченно однорідному середовищі). За визначенням мода, як кажуть має відсічку, тобто припиняє поширюватися як направлена мода, якщо її b=kon2. При b=kon2, W стає рівним 0, також при b<kon2 W стає уявним позначаючи те, що поле в оболонці замість зменшення до нескінченно малого значення (тобто експоненціального зменшення при великих r) буде переходити в коливальне поле при всіх величинах r, таким чином перетворюючись в радіаційну моду. Гранична умова:

b=k0n2ÞW=0. (21)

Рисунок 1 – Залежність відносної постійної розповсюдження b од V для різних LPlm мод: b=(b2 / k02 - n22) / (n12 - n22) і V=ak0 (n12- n22)0,5

Таким чином стає відомою умова відсічки моди. В межах W®0 для моди нижчого порядку (відповідає l=0), (17) показує, що частота відсічки (Vc) цієї моди дає перший корінь рівняння:

, (22)

в той час як для наступної моди, частота відсічки дала б перший корінь:

, (23)

де Vc представляє величину V при відсіканні моди (W=0 для відсічки моди, його параметри: U=V=VC). Так як нулі I1(x) та I0(x), відповідно, мають місце при VС=0; 3.8317; 7.0456; і при VC=2.4048; 5.5201; 8.6537;…, моди, які мають VC=0; 2.4048; 3.8317;… відповідно позначаються як LP01, LP11; LP02…моди. Позначення LP lm витікає з факту, що ці моди лінійно поляризовані. Індекс l позначає l-й порядок функції Бесселя, який визначає умову відсічки для відповідного порядку моди,що пов'язаний із азимутальною періодичністю, тоді як m (яке - також ціле число) визначає послідовні корені відповідної функції Бесселя. Фізично 1 представляє номер пучності або півцикла, в той час як m є числом радіальних пучностей в структурі поля моди. У прикладі були зображені модові структури двох LPlm мод порівняно високого порядку (рисунок 2) - у їх вигляді на фотографії. Тут можна визначити, що, на практиці, вкрай важко одержати експериментально моду відносно високого порядку, зокрема в багатомодовому волокні, і забезпечити її поширення вздовж волокна великої довжини. Все тому, що будь-яка мала неоднорідність вздовж довжини волокна (геометрична недосконалість, неоднорідність і т. п.) викликають перекачку енергії від однієї моди до інших при поширенні.

Рисунок 2 – Схематичне представлення структури напруженості поля моди для мод: a – LP41 та (б) LP82..

Внаслідок цього, коли багатомодове волокно збуджується, наприклад, He-Ne лазером, все, що спостерігається на вихідному кінці, представляє, по суті, суперпозицію різноманітних модових структур. Тільки в разі, якщо волокно настільки визначено, що його постійна V лежить в межах 0<V<2,4048, тільки тоді буде можливо підтримати розповсюдження однієї фундаментальної моди, а саме LP01 моди, в волокні. Це так, бо при V<2,4048 жодна інша мода, крім LP01, не може бути підтримана волокном. Фактично LP01 ніколи не має відсічку! Вона може поширюватися, навіть якщо діаметр серцевини чи різниця показників заломлення D зроблені довільно малими (тобто V - довільно низький), хоч ми незабаром побачимо, що при дуже низьких величинах V потужність, обмежена в межах серцевини LP01 моди, дуже мала і більшість її поширюється в оболонці. Волокна, що підтримують тільки LP01 моду, відомі як одномодові. Таким чином для чисто одномодових операцій, V - параметр волокна - повинен лежати в межах:

0 <V< 2,4048. (24)

Ця умова може бути використана для одержання проектних настанов, наприклад, вибору а та D для одержання одномодового стану при конкретному l. Тоді, щоб стримати втрати розсіяння на добавках в волокні у прийнятно низьких величинах, D звичайно не повинно перевищувати 0.003%, щоб задовольняти умові (24) для одномодового ефекту; діаметр серцевини (2а) треба зробити 4-6 мкм в першому поколінні довжин хвиль ~0.8 мкм, 8-10 мкм в 2-му і 3-му поколінні довжин хвиль ~1.3 мкм. Умова (24) також часто навпаки виражається через довжину хвилі відсічки, що визначається як:

. (25)

При будь-який l>>lC для конкретного волокна, може підтримуватися тільки LP11 мода, бо другий, більш високий порядок моди, а саме, LP11 мода і всі наступні моди більш високого порядку будуть мати відсічку, тобто будуть відсутні в волокні. В цьому розумінні концепція lC дуже важлива, бо вибір lC, що реально диктується такими передумовами, як низькі втрати при передачі, якість ширини смуги пропускання в вікні довжин хвиль, довжина хвилі, на якій піки ефективності джерела та детектору співпадають і т. д. - максимально визначить а та D.

Для того, щоб одержати точне значення потужності, що переноситься різноманітними модами, треба, по суті, розрахувати z-компоненти вектору Пойнтінгу, зв'язані з кожною модою і проiнтегрувати їх по поперечному перетину волокна. Шляхом простої алгебри можливо показати, що в слабко направляючому волокні частини енергії (потужності), що переносяться спрямованою модою в серцевині та оболонці, будуть, відповідно:

hсердц=Pсердц / Ptotal =1-(U2 / V2)(1-k), (26)

hclad=Pclad / Ptotal = U2 (1-k) / V2, (27)

де .

Ці рівняння ясно показують, що далеко від відсічки поки W буде відносно великою величиною, більшість з спрямованої потужності буде розташовуватися в серцевині. З іншого боку біля відсічки, W<<1 і, отже:

hcore@1-(1+l2)-0,5, (28)

hclad@(1+l2)-0,5. (29)

Таким чином, для мод з l=0 більшість потужності буде витікати через оболонку, що невірно для мод з l>>1.


1. Книга Логика открытия или психология исследования, Кун Томас
2. Реферат Зростання темпу інфляції переміщуватиме криву Філіпса
3. Реферат Разработка и внедрение эффективных тренингов для персонала на предприятиях скс и т на приме
4. Реферат Задачи школы в воспитании толерантности
5. Сочинение Ольга Ильинская и ее роль в духовном преображении Обломова
6. Реферат Гольденберг, Григорий Давыдович
7. Кодекс и Законы Понятие и способы обеспечения исполнения обязательств
8. Реферат на тему Charles Lindbergh Essay Research Paper Charles LindberghA
9. Реферат на тему Violation Of Human Rights Vs The Book
10. Реферат Полиция Англии