Реферат

Реферат Метод безпосереднього інтегрування

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024


Метод безпосереднього інтегрування

Цей метод базується на рівності , де а та b – де сталі і застосовується у тих випадках, коли підінтегральна функція f має вигляд однієї із підінтегральних функцій таб­личних інтегралів, але її аргумент відрізняється від змінної інтегрування постійним доданком або постійним множником або постійним множником та постійним доданком.

Приклад 3. Знайти інтеграли

Розв’язування.

У цьому випадку змінна інтегрування х відрізняється від аргументу степеневої функції u8 = (х + 3)8 на постійний доданок 3;

У цьому випадку аргумент функції косинус відрізняється від змінної інтегрування х на множник ½.

У цьому випадку змінна інтегрування х відрізняється від аргу­мента степеневої функції u2/5 = (3х - 7)2/5 постійним множником 3 та постійним доданком (- 7).

Метод підстановки (заміни змінної)

Цей метод містить два прийоми.

а) Якщо для знаходження заданого інтеграла зробити підстановку х = (t), тоді має місце рівність

Після знаходження останнього інтеграла треба повернутись до початкової змінної інтегрування х. Для застосування цього прийому треба, щоб функція х = (t) мала обернену t = ).

Приклад 4. Знайти інтеграл

Розв’язування. Зробимо підстановку x = 5sin t, тоді

Отже, одержимо

Із рівності х = 5 sin t одержимо t = arcsin (x/5);

Отже,

b) Якщо зробити заміну змінної, тобто t = (х) тоді має місце рівність .

Після знаходження останнього інтеграла треба по вернутись до змінної х, використовуючи рівність t = (х).

Зауваження:

  1. Якщо підстановка обрана вдало, то одержаний інтеграл буде простішим і мета підстановки досягнута.

  2. Якщо підінтегральний вираз містить корень вигляду , то доцільно застосувати тригонометричну підстановку х = a cos t або х = а sin t

  3. Знаходження вдалої підстановки для інтегрування певної множини функцій є значною подією в інтегральному численні. Видатний вчений XVIII віку, член Петербурзької академії наук Л.Ейлер вказав підстановку для знаходження інтеграла . У цьому випадку

або

Отже,


1. Реферат на тему Romeo And Juliet Commentary Essay Research Paper
2. Реферат Кинематика точки, сложное движение точки, движение точки вокруг неподвижной оси
3. Реферат на тему Election 2000 Essay Research Paper Election 2000Unless
4. Доклад на тему Устройство современных модемов
5. Реферат на тему Природно-социальные опасности
6. Реферат Мыс Нордкап
7. Контрольная работа Концепция стратегического управления организацией
8. Сочинение Проблематика пьес Владимира Маяковского Клоп и Баня
9. Диплом на тему Разработка автоматизированной системы управления торговым предприятием
10. Курсовая на тему Кадастровая оценка земель лесного фонда