Реферат

Реферат Метод безпосереднього інтегрування

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.1.2025


Метод безпосереднього інтегрування

Цей метод базується на рівності , де а та b – де сталі і застосовується у тих випадках, коли підінтегральна функція f має вигляд однієї із підінтегральних функцій таб­личних інтегралів, але її аргумент відрізняється від змінної інтегрування постійним доданком або постійним множником або постійним множником та постійним доданком.

Приклад 3. Знайти інтеграли

Розв’язування.

У цьому випадку змінна інтегрування х відрізняється від аргументу степеневої функції u8 = (х + 3)8 на постійний доданок 3;

У цьому випадку аргумент функції косинус відрізняється від змінної інтегрування х на множник ½.

У цьому випадку змінна інтегрування х відрізняється від аргу­мента степеневої функції u2/5 = (3х - 7)2/5 постійним множником 3 та постійним доданком (- 7).

Метод підстановки (заміни змінної)

Цей метод містить два прийоми.

а) Якщо для знаходження заданого інтеграла зробити підстановку х = (t), тоді має місце рівність

Після знаходження останнього інтеграла треба повернутись до початкової змінної інтегрування х. Для застосування цього прийому треба, щоб функція х = (t) мала обернену t = ).

Приклад 4. Знайти інтеграл

Розв’язування. Зробимо підстановку x = 5sin t, тоді

Отже, одержимо

Із рівності х = 5 sin t одержимо t = arcsin (x/5);

Отже,

b) Якщо зробити заміну змінної, тобто t = (х) тоді має місце рівність .

Після знаходження останнього інтеграла треба по вернутись до змінної х, використовуючи рівність t = (х).

Зауваження:

  1. Якщо підстановка обрана вдало, то одержаний інтеграл буде простішим і мета підстановки досягнута.

  2. Якщо підінтегральний вираз містить корень вигляду , то доцільно застосувати тригонометричну підстановку х = a cos t або х = а sin t

  3. Знаходження вдалої підстановки для інтегрування певної множини функцій є значною подією в інтегральному численні. Видатний вчений XVIII віку, член Петербурзької академії наук Л.Ейлер вказав підстановку для знаходження інтеграла . У цьому випадку

або

Отже,


1. Реферат на тему Место и значение управления запасами в логистике производственного предприятия
2. Реферат Этологическое направление изучения конфликта
3. Курсовая на тему Разработка технологического процесса изготовления передней панели измерителя микропробоя ИМП-3Т
4. Реферат на тему The Tale Of Two Monkeys Essay Research
5. Курсовая Современные виды, методы и системы учета затрат и калькулирования себестоимости продукции
6. Реферат Реформа жилищно-комуннального хозяйства.
7. Реферат Просвітництво 2
8. Реферат на тему Три латинских источника классического искусства памяти
9. Реферат на тему Hurricanes ALevel Essay Research Paper The
10. Реферат Активизация региональной политики по развитию малого предпринимательства в хабаровском крае