Реферат

Реферат на тему Одно и многоатомные спирты

Работа добавлена на сайт bukvasha.net: 2014-12-27

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024


Одно- и многоатомные спирты.
Алифатические спирты - это соединения, содержащие гидроксильную группу (-ОН), связанную с sp3-гибридизованным атомом углерода. Спирты можно разделить на три большие группы: простые спирты, стерины и углеводы. Рассмотрим простые спирты, с общей формулой CnH2n+1OH.
методы получения спиртов
1.   Гидролиз галогеналканов в водных растворах щелочей

Реакция замещения галогена на ОН-группу протекает по механизму нуклеофильного замещения SN. В зависимости от строения субстрата замещение протекает по SN1 (мономолекулярное замещение):
 SHAPE  \* MERGEFORMAT
(
C
H
3
)
3
C
O
H
+ HX
(
C
H
3
)
3
C
O
H
H
-
H
2
O
(
C
H
3
)
3
C
O
H
H
(
C
H
3
)
3
C
O
H
H
X
-
(
C
H
3
)
3
C
X

или SN2 (бимолекулярное):
  SHAPE  \* MERGEFORMAT
C
H
3
C
H
2
O
H
+ HBr
C
H
H
C
H
3
O
H
B
r
-
C
C
H
3
H
H
O
H
B
r
C
H
3
C
H
2
B
r
  
+
  H
2
O
d
-
d
+

Атакующий агент – анионы (SH -, OН -, I -, Br -, С l -, F -, RO -, CH3COO -, ONO2-) или молекула (ROH, HOH, NH3, RNH2). По увеличению реакционной способности анионы располагаются в следующий ряд:
HS -, RS - > I - > Br - > RO - > Cl - > CH3COO - > ONO2-
Анионы более сильные нуклеофилы, чем сопряженные кислоты:
OH - > HOH, RS - > RSH, RO - > ROH, Cl - >HCl
Нуклеофил – атом (или частица), который может отдать пару электронов любому элементу, кроме водорода. Механизм бимолекулярного нуклеофильного замещения (SN2) включает образование промежуточного комплекса.

Представленная реакция является реакцией замещения, так как нуклеофил (ОН -) вытесняет уходящую группу (I-).
Механизм мономолекулярного нуклеофильного замещения (SN1) состоит из двух стадий:

Реакции замещения по механизму SN1 в тех случаях, когда образуется стабильный катион. Первичные галогеналканы реагируют по механизму SN2 , а третичные - по механизму SN1.
2.   Гидратация алкенов.
Присоединение воды к алкену протекает в присутствии кислотных катализаторов (H2SO4, H3PO4, оксид алюминия и другие носители, обработанные кислотами).
 Реакция протекает по карбоний-ионному механизму:
 SHAPE  \* MERGEFORMAT
 R
C
H
=C
H
2
 
+
 H
X
 
+
 H
2
O
 R
C
H
=C
H
2
 
O
 
H
 
H
 
H
X
 
d
+
 
d
-
 R
C
H
C
H
2
 R
C
H
C
H
3
 O
H
+ HX
O
H
X
-
H
H
+

3.    Восстановление карбонильных соединений (кетонов и альдегидов)
Альдегиды и кетоны легко восстанавливаются водородом в присутствии катализаторов (например, Ni, Pd, Pt) в соответствующие первичные и вторичные спирты:
CH3-CH2-COH + H2 ® CH3-CH2-CH2-OH
пропионовый альдегид     пропанол-1

циклогексанон                   циклогексанол
Для восстановления карбонильной группы используются комплексные гидриды металлов - борогидрид натрия NaBH4 (растворитель - вода, этанол) или алюмогидрид лития LiAlH4 (растворитель - абсолютный эфир):
 SHAPE  \* MERGEFORMAT
H
C
O
H
C
O
A
l
Н
4
A
l
Н
4
H
2
O
H
C
O
H
+
 A
l
Н
3
O
H

CH3COCH3 + LiAlH4 ® (CH3)2-CHOH
CH3-CHO + NaBH4 ® CH3-CH2-OH
Сложные эфиры также восстанавливаются алюмогидридом лития, причем оба фрагмента эфира превращаются в спирты:
  SHAPE  \* MERGEFORMAT
C
O
O
C
2
H
5
+ LiAlH
4
H
2
O
эфир
C
H
2
O
H
+
C
2
H
5
O
H

4.    Синтезы спиртов с использованием реактивов Гриньяра.
        
 SHAPE  \* MERGEFORMAT
C
M
g
X
C
O
C
C
O
алкоголят
M
g
X
H
2
O
C
C
O
H
спирт
+
M
g
X
O
H

RMgHal + H2C=O (формальдегид) ® RCH2O -Mg+Hal + H2O ® R-CH2-OH
RMgHal + R’HC=O (альдегид) ® R( R’)CHO -Mg+Hal + H2O ® R(R’)CH-OH
RMgHal + (R’)2C=O (кетон) ® R( R’)2CO -Mg+Hal + H2O ® R(R’)2C-OH
 По механизму это реакция нуклеофильного присоединения к карбонильной группе.
Промышленные методы получения спиртов.
1.   Окисление алканов (синтез спиртов С1020).
3 RCH2-OH + B(OH)3 « B(OHC2R)3 + 3 H2O
2.   Гидратация алкенов.
R-CH=CH2 + H2O « R-CH (OH)-CH3
CH2=CH2 + H2O ® CH3CH2OH
из пропилена и н-бутилена - изопропиловый и н-бутиловый спирты:
CH3-CH=CH2 + H2O ® CH3-CH (OH)-CH3
CH3-CH2-CH=CH2 + H2O ® CH3-CH2-CH (OH)-CH3
а из изобутилена - трет-бутиловый спирт:
(CH3)2C=CH2 + H2O ® (CH3)3C-OH
         Электрофильный механизм гидратации определяет уже отмеченное выше направление присоединения (правило марковникова), а также изменение реакционной способности алкенов в ряду, определяемом сравнительной стабильностью образующихся карбокатионов:
(CH3)2CH=CH2 >> CH3-CH2-CH=CH2 > CH3-CH=CH2 >> CH2=CH2
3.   Синтез спиртов по методу Фишера-Тропша.
СО + 2Н2 « СН3ОН
4.   Процесс оксосинтеза.
CH2=CH2 + CO + H2 ® CH3-CH2-CHO
Химические свойства спиртов
Обусловлены способностью гидроксильной группы образовывать межмолекулярные водородные связи.

1. Кислотные и основные свойства спиртов.
CH3-OH + HNO3 ¨ CH3-ONO2 + H2O
CH3CH2OH + H2SO4 ® CH3CH2OSO3H + H2O
CH3CH2OH + (CH3CO)2O ® CH3COOC2H5 + CH3COOH
Это – реакции замещения водорода на кислотный остаток.
2. Замещение гидроксильной группы на галоген.
CH3CH2OH + HBr « CH3CH2Br + H2O
Реакция протекает по механизму нуклеофильного замещения.
CH3CH2-OH + SOCl2 ® CH3CH2-Cl + SO2­+ HCl­
3CH3CH2-OH + PCl3 ®  3CH3CH2-Cl + H3PO4
Ниже приводится механизм взаимодействия спирта с тионилхлоридом:
 SHAPE  \* MERGEFORMAT
C
O
C
H
3
S
C
l
O
H
C
H
3
C
H
2
C
H
2
н
а
г
ре
в
C
H
C
H
3
C
H
2
C
H
2
C
H
3
+
S
O
O
C
l
C
l
C
C
H
3
C
H
3
C
H
2
C
H
2
H
+ SO
2

Этот механизм обозначается символом Sni (замещение нуклеофильное внутримолекулярное).
Реакции отщепления
CH3CH2OH ® CH2=CH2
В качестве катализаторов используют минеральные кислоты (серная, фосфорная), кислые соли (KHSO4), ангидриды кислот (Р2О5), оксид алюминия и т.д.
R-OH + R’-OH ® ROR (ROR’, R’OR’) + H2O
Порядок отщепления воды в большинстве случаев определяется
правилом зайцева: при отщеплении воды наиболее легко отщепляет водород от соседнего наименее гидрированного атома углерода.

Реакция отщепления воды от спиртов протекает через стадию образования карбкатиона:

В зависимости от строения спирта образуются первичные, вторичные и третичные карбкатионы:
 SHAPE  \* MERGEFORMAT
C
H
3
C
H
2
O
H
C
H
3
C
H
C
H
2
(
C
H
3
)
3
C
O
H
O
H
C
H
3
C
H
2
+
п
е
рв
и
чн
ы
й
C
H
3
C
H
C
H
2
 в
тори
чн
ы
й
(
C
H
3
)
3
C
+
 тре
ти
чн
ы
й

По увеличению стабильности катионы располагаются в следующий ряд:   CH3CH2+ < CH3CH+CH3 < (CH3)3C+
Любое влияние, делокализующее положительный заряд карбкатиона, ведет к его стабилизации. Мы имеем дело в данном ряду с индукционной стабилизацией:

Образующиеся катионы в зависимости от их строения способны к перегруппировкам:

3-Метил-2-бутанол - в 2-метил-2-бутильный катион, склонный к перегруппировке в более стабильный:

Образование последнего 2-метил-2-бутильного катиона связано с гидридным перемещением (Н-) из положения 3 в положение 2.
В перегруппировке может участвовать и алкильная группа:

Основное различие между тремя типами реакционных интермедиатов (карбкатионы, карбанионы и свободные радикалы) состоит в том, что карбкатионы имеют тенденцию изомеризоваться в более устойчивые частицы.
Окисление. Первичные и вторичные спирты могут быть окислены соответственно до альдегидов и кетонов. Третичные спирты устойчивы к окислению в мягких условиях.
         Первичные спирты окисляются до альдегидов под действием окислителей, содержащих Cr(VI). Это обычно хромовая кислота H2CrO4:
R-CH2-OH + H2CrO4 ® R-CHO + H2CrO3 (неустойчива) + H20
Окисление первичного спирта начинается с образования эфира хромовой кислоты RCH2-O-Cr(O)2-OH. На следующей стадии эфир претерпевает реакцию отщепления, в результате которой образуется двойная связь С=О.
Альдегиды можно также получить окислением первичных спиртов реагентом Саретта (комплекс CrO3 с пиридином).
В относительно мягких условиях происходит окисление спирта разбавленным раствором оксида хрома (VI) в разбавленной серной кислоте (окисление по Джонсу).
Вторичные спирты легко окисляются до кетонов под действием K2Cr2O7+H2SO4+H20 , CrO3+CH3COOH+H2O и KMnO4 в кислой среде:
(R )2CH-OH + [O] ® R-CO-R + H2O
Механизм окисления вторичных спиртов подобен окислению первичных спиртов в альдегиды, поэтому для получения кетонов пригодны методы, описанные выше.
Дегидрирование спиртов. Этим способом получают многие альдегиды и кетоны:
2R-CH2-OH ® R-COH + H2­
2(R)2-CH-OH ® (R)2-CO + H2­
В качестве катализатора используются металлическая медь и серебро. В промышленности этот процесс реализован для получения формальдегида из метанола.
Многоатомные спирты
Обычно названия двухатомных спиртов производятся от названия двухатомного радикала с прибавлением слова гликоль, например этиленгликоль, пропиленгликоль. По Женевской номенклатуре пользуются окончанием -ол, но указывают число гидроксильных групп - диол, -триол, -тетрол и т.д.
В двухатомных спиртах гидроксилы могут быть соединены с первичными, вторичными и третичными атомами углерода, поэтому различают гликоли двупервичные, первично-вторичные и т.д.
Синтез гликолей осуществляется в основном теми же способами, что одноатомных спиртов, кроме того, окислением соответствующих алкенов перманганатом калия в щелочной среде (реакция Вагнера)
R-CH=CH2 + [O]® R-CH(OH)CH2-OH
Для окисления используют разбавленные водные растворы перманганата калия.
Практически наиболее важным промышленным методом получения гликолей является гидратация соответствующих a-оксидов:

Из этиленоксида получают три важных класса соединений: целлозольвы, карбитолы и карбоваксы.
Целлозольвы (соединения типа ROCH2CH2OH) образуются в результате реакции алкоголята и этиленоксида. Название “целлозольв” относится к 2-этоксиэтанолу. Бутилцеллозольв - хороший растворитель; он используется в гидравлических тормозных жидкостях и добавляется к авиационному топливу в качестве антифриза:
CH3CH2CH2CH2ONa + (CH2)2O + H2O® CH3CH2CH2CH2-O-CH2CH2OH
Карбитолы, являющиеся моноалкиловыми эфирами диэтиленгликоля, применяются в качестве растворителей, а также при изготовлении лаков. Их получают реакцией целлозольва с эквивалентным количеством этиленоксида.
Этиленгликоль и пропиленгликоль широко используют в производстве антифризов:
C3H5(OCOR)3 + 3 NaOH ® HOCH2-CHOH-CH2OH + 3 RCOONa
Синтетический глицерин получают исходя из пропилена:
 CH3-CH=CH2 + Cl2 ® Cl-CH2-CH=CH2 ® OH- CH2-CH=CH2 ®
® OH- CH2-CH(Cl)-CH2OH ® OH- CH2-CH(OH)-CH2OH;
CH3-CH=CH2 ® CH2=CH-COH + H2O2 ® OH-CH2-CH(OH)-COH ®
® OH- CH2-CH(OH)-CH2OH.

1. Реферат Абсолютная монархия во Франции
2. Реферат Ранник вузлуватий редька посівна чорна
3. Реферат на тему Effects Of Electromagnetic Wav Essay Research Paper
4. Курсовая Повышение эффективности формирования, распределения и использования прибыли на промышленном пред
5. Реферат на тему The Movie Of Jfk By Oliver Sto
6. Контрольная работа Фінансова система України Внутрішня структура
7. Реферат Психологические особенности молодости
8. Реферат на тему Railroadties And Candy Bars Essay Research Paper
9. Книга Мудрость запада. Том 2 Рассел Бертран
10. Реферат на тему Нормативно-правовые нормы безопасности Бактериологическое оружие