Реферат Разработка следящего гидропривода
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
|
7
6
Рисунок 1. 2 - Функциональная схема следящего гидропривода с дросселем, установленным на выходе из исполнительного органа
1 - насос с нерегулируемым рабочим объемом; 2 - приводной электродвигатель; 3 - предохранительный клапан с пропорциональным электрическим управлением; 4- регулируемый дроссель с пропорциональным электрическим управлением; 5 - гидрораспределитель c электрогидравлическим управлением; 6 - усилитель ( сумматор ); 7 - гидроцилиндр с двухсторонним расположением штоков; 8 - тахогенератор; 9 - передаточный механизм; 11 - преобразователь прямолинейного движения в поворотное.
Дроссель на выходе из исполнительного органа устанавливается в гидроприводах, на исполнительный орган которых действует знакопеременная статическая сила сопротивления. Особенностями конструкций следящих приводов являются применение регуляторов и другой аппаратуры с пропорциональным электрическим управлением, наличие обратных связей. Кроме этого для обеспечения динамической устойчивости следящего электрогидравлического привода используются электрические и гидромеханические корректирующие устройства. Для очистки жидкости применяются фильтры.
Гидроклапан давления предназначен для поддержания заданного давления в трубопроводе.
Гидрораспределитель предназначен для изменения направления жидкости.
Гидравлический замок предназначен для прохода жидкости к исполнительному органу привода при наличии давления нагнетания и запирания жидкости в полостях исполнительного органа при отсутствии давления нагнетания.
Реле давления контролирует уровень давления масла в гидросистеме, подавая электрический сигнал.
Манометры служат для визуального контроля давления.
2 ВЫБОР ИСПОЛНИТЕЛЬНОГО ОРГАНА, РАСЧЁТ ВХОДНЫХ И ВЫХОДНЫХ ПАРАМЕТРОВ
Гидравлический цилиндр выбираем из каталога [3] при соблюдении следующих условий:
где
Выбираем гидроцилиндр с двухсторонним расположением штоков Г22-23, имеющий техническую характеристику:
D=50 мм; d=16 мм;
Для выбранного типоразмера гидроцилиндра определяем расчётные значения необходимого перепада давления и объёмного расхода жидкости
Эффективные площади поршня:
Необходимый перепад давления:
Расход жидкости:
где
Для гидроцилиндра с двухсторонним расположением штоков, если штоки имеют одинаковый диаметр и в кинематической паре «поршень-цилиндр» установлены уплотнения, объёмные расходы жидкости на входе и на выходе из гидроцилиндра одинаковы.
3 ГИДРАВЛИЧЕСКИЙ РАСЧЁТ ТРУБОПРОВОДОВ
Гидравлический расчёт трубопроводов заключается в выборе оптимального внутреннего диаметра трубы и в определении потерь давления по длине трубопровода.
Расчётное значение внутреннего диаметра трубы
где Q- расчётный объёмный расход жидкости в трубопроводе,
[u]- допускаемая скорость движения жидкости,
Допускаемая скорость движения жидкости в нагнетательном трубопроводе гидропривода выбирается по нормативным данным, изложенным в таблице 3.1 метод. указаний, в зависимости от расчётного перепада давления р на исполнительном органе привода ([u]=3м/c). Для сливного трубопровода допускаемая скорость движения жидкости принимается [u]=2м/с, а для всасывающего-
Из справочной литературы [1] выбираем внутренний диаметр бесшовной холоднодеформируемой трубы так, чтобы действительный внутренний диаметр трубы
Принимаем бесшовные холоднодеформируемые трубы на нагнетательном и сливном трубопроводе:
труба
Определяем действительную скорость движения жидкости в нагнетательном и сливном трубопроводах:
где Q- объёмный расход жидкости в трубопроводе,
Потеря давления при движении жидкости по нагнетательному трубопроводу (участок АБ) и сливному трубопроводу (участок ВГ) определяется:
где
Коэффициент сопротивления
где
Число (критерий) Рейнольдса
где
4 РАСЧЁТ ПОТЕРЬ ДАВЛЕНИЯ В МЕСТНЫХ ГИДРАВЛИЧЕСКИХ СОПРОТИВЛЕНИЯХ
Участки трубопровода, при прохождении жидкостью которых вектор скорости изменяется или по величине, или по направлению, называются местными гидравлическими сопротивлениями (например, внезапное или плавное расширение или сужение, изменение направления движения жидкости и т.д).
Потеря давления при прохождении местного гидравлического сопротивления
где
Для выбора некоторых значений коэффициента
Суммарные потери давления в местных сопротивлениях
5 ВЫБОР ГИДРОАППАРАТУРЫ И ОПРЕДЕЛЕНИЕ ПОТЕРЬ ДАВЛЕНИЯ
Гидравлическая аппаратура выбирается из справочника [3] при соблюдении следующих условий:
где
При выборе гидроаппаратуры можно воспользуемся таблицами 5.1 … 5.10 метод. указаний.
Для выбранного типоразмера гидроаппарата определяется действительная потеря давления при прохождении расчетного расхода через гидроаппарат:
где
1. Предохранительный клапан ПКПД20-20, имеющий техническую характеристику:
номинальное давление - 20×106
номинальный расход – 16,7×10-4
потеря давления – 0,3×106
объемный расход утечек – 2,5×10-6
диаметр условного прохода – 0,02м;
масса – 7,8кг.
Потеря давления жидкости при прохождении каналов предохранительного клапана:
2. Дроссель ДВП – 16, имеющий техническую характеристику:
номинальное давление -
номинальный расход -
потеря давления – 0,25×106
объемный расход утечек – 4,1×10-6
диаметр условного прохода - 16×10-3м;
диаметр основного золотника дросселя - 18×10-3м;
максимальный ход основного золотника – 3,5×10-3м;
масса – 0,8кг.
Потеря давления жидкости при прохождении каналов дросселя:
3. Гидрораспределитель с электрогидравлическим управлением В16, имеющий техническую характеристику:
номинальное давление -
номинальный расход -
потеря давления – 0,3×106
объемный расход утечек – 2,6×10-6
диаметр условного прохода - 16×10-3м;
масса – 7,5кг.
Потеря давления жидкости при прохождении каналов гидрораспределителя:
4. Двухсторонний гидравлический замок ГМ3 10/2, имеющий техническую характеристику:
номинальное давление -
номинальный расход -
потеря давления – 0,5×106
диаметр условного прохода – 0,01м;
масса – 1,8кг.
Потеря давления жидкости при прохождении каналов гидравлического моста:
5. Фильтры, имеющие технические характеристики:
приемный фильтр ФВСМ63:
номинальный расход – 16,7×10-4
потеря давления – 0,007×106
диаметр условного прохода – 0,063м;
точность фильтрации – 80мкм;
масса – 6кг.
напорный фильтр 2ФГМ32:
номинальное давление - 32×106
номинальный расход – 11×10-4
потеря давления – 0,1×106
диаметр условного прохода – 0,027м;
точность фильтрации – 10мкм;
масса – 6,5кг.
сливной фильтр ФС100:
номинальное давление – 0,63×106
номинальный расход – 16,7×10-4
потеря давления – 0,1×106
диаметр условного прохода – 0,032м;
точность фильтрации – 25мкм;
масса – 4,5кг.
Потеря давления жидкости:
6. Манометры МПТ-60, имеющие технические характеристики:
контролируемое давление - 0,1…40МПа;
класс точности – 1,5;
масса – 0,2кг.
7. Реле давления БПГ62-11, имеющие технические характеристики:
контролируемое давление - 0,8…10МПа;
объемные расход утечек 0,33×10-6
масса – 0,2кг.
После определения расчетных значений потерь давления в каждом гидроаппарате рассчитываем суммарные потери в гидроаппаратуре, установленной в нагнетательной линии АБ (
6 РАСЧЁТ СУММАРНЫХ ПОТЕРЬ ДАВЛЕНИЯ В НАГНЕТАТЕЛЬНОМ И СЛИВНОМ ТРУБОПРОВОДАХ
Суммарные потери давления при прохождении жидкости как в нагнетательном, так и в сливном трубопроводах состоят из потерь давления по длине трубопровода
Так как участки сопротивления соединяются последовательно, то суммарные потери в нагнетательной или сливной линиях гидросистемы определяются алгебраическим суммированием всех потерь давления в элементах трубопровода.
Суммарные потери давления в нагнетательном трубопроводе (на участке АБ)
Суммарные потери давления в сливном трубопроводе (на участке ВГ)
7 ВЫБОР ИСТОЧНИКА ПИТАНИЯ
Выбрать из справочника источник питания гидросистемы с необходимыми параметрами можно только после определения расчетных значений необходимых давления и расхода на выходе из насосной установки.
Т.к. в качестве исполнительного органа используется гидроцилиндр с двухсторонним расположением штоков, то расчетное давление на выходе из насосной установки определяется :
Расчетный расход на выходе из насосной установки:
где
+4,1×10-6=10,14×10-4
В качестве источника питания выбираем пластинчатый насос с нерегулируемым рабочим при соблюдении следующих условий:
где
Выбираем пластинчатый насос с нерегулируемым рабочим БГ 12-24М, имеющий техническую характеристику:
- номинальное давление –
- номинальная производительность -
- рабочий объем -
- частота вращения ротора – 25 об/с;
- объемный КПД – 0,88;
- механический КПД – 0,87;
- общий КПД – 0,77;
- масса – 22 кг.
8 РАСЧЁТ ВЫСОТЫ ВСАСЫВАНИЯ
Уравнение равновесия давлений во всасывающем трубопроводе-
где
Расчет высоты всасывания осуществляется при условии обеспечения во всасывающей трубе ламинарного режима ( допускаемая скорость движения жидкости
Объемный расход жидкости во всасывающем трубопроводе:
где
Расчетное значение высоты всасывания
где параметры подставляются в следующих размерах:
Высота всасывания
Гидравлический расчет всасывающего трубопровода.
Расчётное значение внутреннего диаметра трубы
где Q - расчётный объёмный расход жидкости в трубопроводе,
[u]- допускаемая скорость движения жидкости,
Для сливного трубопровода допускаемая скорость движения жидкости принимается [u]=2м/с, а для всасывающего-
Выбираем внутренний диаметр бесшовной холоднодеформируемой трубы так, чтобы действительный внутренний диаметр трубы
После выбора трубы определяем действительную скорость движения жидкости во всасывающем трубопроводе:
Т.к. во всасывающем трубопроводе ламинарный режим движения жидкости, то
коэффициент сопротивления
l=
где
Число (критерий) Рейнольдса
где
Итак,
9 РАСЧЁТ НАГНЕТАТЕЛЬНОГО ТРУБОПРОВОДА НА ПРОЧНОСТЬ
Прочностной расчет трубопровода заключается в определении толщины стенки трубы из условий прочности. Труба рассматривается как тонкостенная оболочка, подверженная равномерно распределенному давлению
где
Для труб, выполненных из стали 20,
Из справочников толщина стенки трубы выбирается так, чтобы действительная толщина стенки трубы
По таблице 3.2 выбираем трубу с параметрами:
10 ВЫБОР ПРИВОДНОГО ЭЛЕКТРОДВИГАТЕЛЯ
В качестве приводного электродвигателя обычно используется трехфазный асинхронный электродвигатель с короткозамкнутым ротором общепромышленного применения. Электродвигатель выбираем при соблюдении следующих условий:
где
Расчетная номинальная мощность на валу ротора насоса при дроссельном регулировании скорости
где
Из каталога [1] выбираем трехфазный асинхронный электродвигатель с короткозамкнутым ротором 4А132М4У3, имеющий следующую техническую характеристику:
номинальная мощность - 11 кВт>10,14 кВт;
синхронная частота вращения - 25 об/с=
масса – 100 кг.
11 РАСЧЁТ МЕХАНИЧЕСКИХ И СКОРОСТНЫХ ХАРАКТЕРИСТИК
При дроссельном регулировании скорости вывод уравнения механических и скоростных характеристик гидропривода осуществляется из условия равновесия сил, действующих на исполнительный орган привода, и уравнения неразрывности потока рабочей жидкости.
Уравнение сил, действующих на поршень гидроцилиндра,
Для гидроцилиндра с двухсторонним расположением штоков одинакового диаметра эффективные площади поршня со стороны нагнетательной и сливной полостей гидроцилиндра равны, т.е.
где
тогда
Уравнение давлений имеет вид
или
где
Уравнение неразрывности жидкости для нагнетательного трубопровода-
где
Тогда
или
Для дросселя можно записать:
где
Так как скорость потока жидкости входит в формулу потерь давления в квадратичной зависимости, то определенные ранее потери давления жидкости в соответствующих элементах трубопровода нужно умножить на коэффициенты:
Суммарные потери давления жидкости в нагнетательном трубопроводе могут быть выражены зависимостью
где
Аналогично могут быть выражены суммарные потери давления жидкости в сливном трубопроводе ( участок ВГ ):
где
Тогда уравнение равновесия сил, действующих на поршень гидроцилиндра примет вид
Отсюда скорость движения поршня ( штока ) гидроцилиндра, м/с,
Механические и скоростные характеристики гидроприводов рассчитываем для заданного диапазона бесступенчатого регулирования скорости движения поршня ( штока ) гидроцилиндра от
В зависимости от заданных пределов регулирования скорости движения поршня ( штока) гидроцилиндра определяются максимальная и минимальная площади проходного сечения дросселя по условному проходу.
где
Проверка правильности расчетов:
где
Принимая несколько значений
Максимальное значение усилия сопротивления на штоке гидроцилиндра, при действии которого поршень ( шток ) остановится ( u=0 ), определится из условия.
Методика определения скорости движения поршня гидроцилиндра на основании уравнения равновесия сил, действующих на гидроцилиндр, не учитывает конечную производительность источника питания. Поэтому при подстановке в формулы малых усилий F могут получиться значительные скорости движения поршня ( штока ) гидроцилиндра. В действительности в гидроприводе установлен насос с нерегулируемым рабочим объемом, который имеет конечную паспортную номинальную производительность
Следовательно, расчет скоростей движения поршня имеет смысл производить только до тех пор, пока
Полученные в результате вычислений данные занесены в таблицу 1. Используя данные таблицы 1, построены механические (естественная и искусственные) характеристики и скоростные характеристики гидропривода (рисунок 2).
а)
б)
Рисунок 2 – Механические ( а ) и скоростные ( б ) характеристики гидропривода
Таблица 1 – Параметры механических и скоростных характеристик гидропривода
Усилие F на штоке, Н | Скорость υ движения штока, м/с, при | ||
| | | |
Fмакс=12874 | 0 | 0 | 0 |
FЗ=8157 | 0,01 | 0,36 | 0,57 |
0,75FЗ=6118 | 0,012 | 0,43 | 0,69 |
0,5FЗ=4079 | 0,014 | 0,49 | - |
0,25FЗ=2039 | 0,015 | 0,54 | - |
F=0 | 0,017 | 0,592 | - |
12 АНАЛИЗ И СИНТЕЗ ДИНАМИЧЕСКОЙ ЛИНЕАРИЗОВАННОЙ МОДЕЛИ СЛЕДЯЩЕГО ГИДРОПРИВОДА
Цель анализа и синтеза динамической модели следящих гидроприводов с дроссельным и объемным регулированием скорости – проверить устойчивость работы гидропривода по характеру переходного процесса и при необходимости определить параметры корректирующих устройств.
Гидроприводы , оснащенные гидроаппаратурой с пропорциональным электрическим управлением , имеют стандартные узлы : электронный усилитель – сумматор БУ2110 и пропорциональный магнит ПЭМ6. Передаточные функции указанных гидроаппаратов:
12.1 Передаточная функция дросселя с пропорциональным
электрическим управлением
Дроссель состоит из следующих элементов: пропорционального электромагнита ПЭМ6, гидравлического потенциометра и цилиндрического золотника, выполняющего функции дросселя. Дроссель имеет обратную электрическую связь.
Передаточная функция потенциометра
где Кп – коэффициент передачи,
Расход через золотник управления при Хо:
где m - коэффициент расхода , m=0,7;
d0 – диаметр золотника управления;
х0 – максимальный ход золотника управления;
Коэффициент усиления потенциометра по расходу
Коэффициент усиления потенциометра по давлению
Коэффициент обратной связи
Эффективная площадь основного золотника
Жесткость пружины основного золотника
где Lз – перемещение основного золотника.
Постоянная времени потенциометра
где m – масса основного золотника,
Относительный коэффициент демпфирования колебаний
где f – приведенный коэффициент вязкого трения, .
Передаточная функция основного золотника
Т.к. дроссель расположен на выходе исполнительного органа:
12.2 Передаточная функция гидроцилиндра.
где Кгц – коэффициент передачи,
Постоянная времени гидроцилиндра
где m – масса подвижных частей (поршня со штоком и рабочего органа машины,
Сгц – коэффициент динамической жесткости гилроцилиндра,
где Епр – приведенный модуль упругости стенок гидроцилиндра и жидкости,
Lгц – длина хода поршня гидроцилиндра.
Относительный коэффициент демпфирования колебаний
где f – приведенный коэффициент вязкого трения,
Передаточная функция гидроцилиндра может быть представлена:
12.3 Передаточная функция обратной связи по скорости
Обратная связь обеспечивается тахогенератором ТД – 101. Его ротор связан с выходным валом (штоком) исполнительного органа привода зубчатой передачей, обеспечивая на выходе при максимальной заданной скорости +24 В. На вход усилителя – сумматора подается напряжение +24 В.
Тогда передаточная функция обратной связи
Wо.с (Ps) = Kо.с = 1.
12.4 Передаточные функции корректирующих устройств
Для повышения запаса устойчивости системы и улучшения качества переходного процесса в систему вводится параллельная коррекция с помощью дифференцирующих звеньев, имеющих следующие передаточные функции:
где Т1 и Т2 – постоянные времени корректирующих устройств.
Перечень ссылок
1 Анурьев В. И. Справочник конструктора – машиностроителя : В 3 т. – М:
Машиностроение, 1980. – Т. З. – 560 с.
2 Башта Т. М. и др. Гидравлика, гидромашины и гидроприводы. – М.: Машиностроение, 1982. – 422 с.
3 Свешников В. К., Усов А. А. Станочные гидроприводы: Справочник. – М.: Машиностроение, 1988. – 512 с.
4 Методические указания к курсовой работе по дисциплине “Исполнительные механизмы и регулирующие органы”, Е.Ф. Чекулаев, ДГМА, Краматорск, 2000
Министерство образования и науки Украины
Донбасская государственная машиностроительная академия
Кафедра ”Автоматизация производственных процессов”
Расчетно – пояснительная записка
к курсовой работе по дисциплине
“Исполнительные механизмы и
регулирующие органы”
Выполнил:
студент группы
АПП97-1 Комаров В .Н..
Руководитель:
доцент Чекулаев Е. Ф.