Реферат

Реферат Исследования

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024



Исследовать на наибольшее и наименьшее значение по заданному отрезку.

Решение:

Рассмотрим фун-ю у=…. и исследуем ее на промеж при хэ[..;..] на наиб, наимень значения.

1)Д(у)=…

2)Найдем производ фун-и у=…

3)Д(у)=….

4)Найдем критич точки у=0, ……=0

х1=…;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю. Эти точки принадлежат (или нет) нашему промеж […;…].

х1э
[…;…]; x2
э
[…;…]
.

Найдем значения в кртич точках и на концах отрезка: f(…)=…;f(x1)=…;f(x2)=…;f(…)=…

Наиболь знач фун-я принимает при х=…,а наимень при х=…

Max[…;…] f(x)=……;min[...;…] f(x)=….

Ответ
:
наиб знач фун-я принимает при х=..,а наимень при х=…

Найти область определения фун-и.

Решение:

Рассмотрим фун-ю f(x)=

1)Д (f) (т.к. многочлен)


2)Найдем нули функции: f(x)=0, …..=0

х1=…;х2=…-эти точки разбив числовую прямую на промеж в каждом из которых фун-я сохран свой знак в силу непрерывности.

        +         х1                    -                   х2           +

На промеж (-беск;х1):f(x)=>0 и т.д.

Т.к. функция приним все знач больше или равно нулю,то Д(f
)=(-беск
;
х1)
$(x2;
+беск).


Ответ
:
Д(f)=(-беск;х1)$(x2;+беск).

Исследовать на монотонность.

Решение:

Рассмотрим фун-ю f(x)=…

1)Д (f)=…..

2)Находим производ f(x)=….

3)Приравниваем произв к нулю находим критич точки: f’(x)=0, ……=0

х1=…;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю.

Эти точки разбивают числовую прямую на промежутки в каждом из которых производная сохр свой знак в силу непрерывности.

     +    x1           -           x2  +              

На промеж (-беск;х1):f(x)=>0 и т.д.

4)Т.к. в точках x1=..,  x2=..фун-я определена, то она возростает на промежетке (-беск; x1]$                [x2;+беск)и убывает на промеж [x1 ;х2].

Ответ
:
возростает на промежетке (-беск; x1]$                [x2;+беск) и убывает на промеж [x1 ;х2].

Исследовать на экстремум.

Решение:

Рассмотрим фун-ю f(x)=…

1)Д (f)=…..

2)Находим производ f(x)=….

3)Приравниваем произв к нулю находим критич точки: f’(x)=0, ……=0

х1=;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю.

Эти точки разбивают числовую прямую на промежутки в каждом из которых производная сохр свой знак в силу непрерывности.

     -   x1           +          x2    -             

На промеж (-беск;х1):f(x)=>0 и т.д.

4)В точке х1=производ сменила знак с минуса на плюс,значит эта точка минимума. В точке х2=…производная сменила знак с плюса на минус, значит эта точка максимума.

Хmin1min(х1)=…; Хmax2max2)=…

Ответ
:
Хmin1min(х1)=…-минимум фун-и; Хmax2max2)=…-максимум фун-и.

Исследовать фун-ю и построить график.

Решение:

Рассмотрим фун-ю f(x)=…

1)Д (f)=…..

2) f(x)-нечетная (четная, ни нечетная), так как                                                                     f(-x)=…=-f(x)

3)Точки пересечения с осями.ОУ:х=0,у=…(х;у)

    ОХ: у=0,х=…(х;у)

4)Находим производ f(x)=….

5)Приравниваем производ к нулю и

находим критич точки: f’(x)=0, ……=0

х1=;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю.

Эти точки разбивают числовую прямую на промежутки в каждом из которых производная сохр свой знак в силу непрерывности.
Х      (-беск;x1)   x1 1;х2)    x2     (x2;+беск)




f”(x)        -           0       +        0           -




f(x)                                   

                           min             max                       

f(x1)=…; f(x2)=….

На промеж (-беск;х1):f(x)=<0 и т.д.

6) В точке х1=производ сменила знак с минуса на плюс, значит эта точка минимума. В точке х2=…производная сменила знак с плюса на минус, значит эта точка максимума.

7) Т.к. в точках x1=..,  x2=..фун-я определена, то она возростает на промежетке (x1;x2) и убывает на промеж (-беск;х1)$(x2;+беск).

СТРОИШЬ ГРАФИК


Ответ: все полученные значения.

Решить методом интервалов.

Решите нер-во: …><0

Решение:

1)Рассмотрим функцию и решим ее методом интервалов ...><0.

2)Д(у)=…и ОДЗ

3)Находим нули фун-и f(x)=0, …..=0

x1=…,x2=…-эти точки разбивают числовую прямую на промежутки в каждом из которых фун-я сохраняет свой знак в силу непрерывности.

       +    x1           -           x2  +              

4)f(..)=...>0;

   f(..)=…<0; f(..)=…>0;

Т.к. фун-я принимает неотриц-е (неполож.) значения на промеж. (-бескон;…),(…,+бескон), то решением нерав-ва будет их объед-е.

Ответ:(-..;…)$(…;+…).

Составить ур-е касат-й в точке х0=..Найдите коор-ты всех точек граф. этой фун-и параль-но найденной касатель.

Решение:

у=f(x0)(x-x0)+f(x0)-общий вид ур-я касатель.

Рассмотрим фун-ю f(х)=…

1)Д(f)=…..

2)Найдем произв. фун-ии f(х)=…

    f(х)=….

3)Д(f)=….

4)f(x0)=…;f(x0)=…След-но ур-е касатель имеет вид: y=f(x0)(x-x0)+f(x0)

Производная фун-и  в точке х0=.., есть угловой коэф-т касатель провед к граф фун-и в точке 0;f(x0)) т.к. надо найти парал-е касатель, значит угловые коэф-ты долны быть одинаковыми(т.е. равны).

 Дополнительно: у=f(x0)(x-x0)+f(x0) и у=кх

Ответ
:
у=ур-е касатель   0;f(x0))  


1. Реферат Статистика инвестиций
2. Реферат на тему Сексуальные расстройства
3. Реферат на тему Use Of Symbolism In Charlotte Perkins Gilman
4. Доклад Пищевые добавки, разрешенные при производстве органических продуктов
5. Реферат на тему Chil Abuse Essay Research Paper
6. Реферат Анализ финансовых результатов деятельности предприятия 13
7. Реферат на тему The NCAAs Perspective On Sports Gambling Essay
8. Реферат План рахунків бух обліку бюджетних установ нормативні документи казначейства
9. Реферат на тему Xyz Quick Lube Co Essay Research Paper
10. Контрольная работа на тему Сущность инфляции ее виды и типы