Реферат

Реферат Исследования

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024



Исследовать на наибольшее и наименьшее значение по заданному отрезку.

Решение:

Рассмотрим фун-ю у=…. и исследуем ее на промеж при хэ[..;..] на наиб, наимень значения.

1)Д(у)=…

2)Найдем производ фун-и у=…

3)Д(у)=….

4)Найдем критич точки у=0, ……=0

х1=…;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю. Эти точки принадлежат (или нет) нашему промеж […;…].

х1э
[…;…]; x2
э
[…;…]
.

Найдем значения в кртич точках и на концах отрезка: f(…)=…;f(x1)=…;f(x2)=…;f(…)=…

Наиболь знач фун-я принимает при х=…,а наимень при х=…

Max[…;…] f(x)=……;min[...;…] f(x)=….

Ответ
:
наиб знач фун-я принимает при х=..,а наимень при х=…

Найти область определения фун-и.

Решение:

Рассмотрим фун-ю f(x)=

1)Д (f) (т.к. многочлен)


2)Найдем нули функции: f(x)=0, …..=0

х1=…;х2=…-эти точки разбив числовую прямую на промеж в каждом из которых фун-я сохран свой знак в силу непрерывности.

        +         х1                    -                   х2           +

На промеж (-беск;х1):f(x)=>0 и т.д.

Т.к. функция приним все знач больше или равно нулю,то Д(f
)=(-беск
;
х1)
$(x2;
+беск).


Ответ
:
Д(f)=(-беск;х1)$(x2;+беск).

Исследовать на монотонность.

Решение:

Рассмотрим фун-ю f(x)=…

1)Д (f)=…..

2)Находим производ f(x)=….

3)Приравниваем произв к нулю находим критич точки: f’(x)=0, ……=0

х1=…;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю.

Эти точки разбивают числовую прямую на промежутки в каждом из которых производная сохр свой знак в силу непрерывности.

     +    x1           -           x2  +              

На промеж (-беск;х1):f(x)=>0 и т.д.

4)Т.к. в точках x1=..,  x2=..фун-я определена, то она возростает на промежетке (-беск; x1]$                [x2;+беск)и убывает на промеж [x1 ;х2].

Ответ
:
возростает на промежетке (-беск; x1]$                [x2;+беск) и убывает на промеж [x1 ;х2].

Исследовать на экстремум.

Решение:

Рассмотрим фун-ю f(x)=…

1)Д (f)=…..

2)Находим производ f(x)=….

3)Приравниваем произв к нулю находим критич точки: f’(x)=0, ……=0

х1=;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю.

Эти точки разбивают числовую прямую на промежутки в каждом из которых производная сохр свой знак в силу непрерывности.

     -   x1           +          x2    -             

На промеж (-беск;х1):f(x)=>0 и т.д.

4)В точке х1=производ сменила знак с минуса на плюс,значит эта точка минимума. В точке х2=…производная сменила знак с плюса на минус, значит эта точка максимума.

Хmin1min(х1)=…; Хmax2max2)=…

Ответ
:
Хmin1min(х1)=…-минимум фун-и; Хmax2max2)=…-максимум фун-и.

Исследовать фун-ю и построить график.

Решение:

Рассмотрим фун-ю f(x)=…

1)Д (f)=…..

2) f(x)-нечетная (четная, ни нечетная), так как                                                                     f(-x)=…=-f(x)

3)Точки пересечения с осями.ОУ:х=0,у=…(х;у)

    ОХ: у=0,х=…(х;у)

4)Находим производ f(x)=….

5)Приравниваем производ к нулю и

находим критич точки: f’(x)=0, ……=0

х1=;х2=…-критич точки т.к. эти точки яв-ся внутр точками области опред-я, в которых произв равна нулю.

Эти точки разбивают числовую прямую на промежутки в каждом из которых производная сохр свой знак в силу непрерывности.
Х      (-беск;x1)   x1 1;х2)    x2     (x2;+беск)




f”(x)        -           0       +        0           -




f(x)                                   

                           min             max                       

f(x1)=…; f(x2)=….

На промеж (-беск;х1):f(x)=<0 и т.д.

6) В точке х1=производ сменила знак с минуса на плюс, значит эта точка минимума. В точке х2=…производная сменила знак с плюса на минус, значит эта точка максимума.

7) Т.к. в точках x1=..,  x2=..фун-я определена, то она возростает на промежетке (x1;x2) и убывает на промеж (-беск;х1)$(x2;+беск).

СТРОИШЬ ГРАФИК


Ответ: все полученные значения.

Решить методом интервалов.

Решите нер-во: …><0

Решение:

1)Рассмотрим функцию и решим ее методом интервалов ...><0.

2)Д(у)=…и ОДЗ

3)Находим нули фун-и f(x)=0, …..=0

x1=…,x2=…-эти точки разбивают числовую прямую на промежутки в каждом из которых фун-я сохраняет свой знак в силу непрерывности.

       +    x1           -           x2  +              

4)f(..)=...>0;

   f(..)=…<0; f(..)=…>0;

Т.к. фун-я принимает неотриц-е (неполож.) значения на промеж. (-бескон;…),(…,+бескон), то решением нерав-ва будет их объед-е.

Ответ:(-..;…)$(…;+…).

Составить ур-е касат-й в точке х0=..Найдите коор-ты всех точек граф. этой фун-и параль-но найденной касатель.

Решение:

у=f(x0)(x-x0)+f(x0)-общий вид ур-я касатель.

Рассмотрим фун-ю f(х)=…

1)Д(f)=…..

2)Найдем произв. фун-ии f(х)=…

    f(х)=….

3)Д(f)=….

4)f(x0)=…;f(x0)=…След-но ур-е касатель имеет вид: y=f(x0)(x-x0)+f(x0)

Производная фун-и  в точке х0=.., есть угловой коэф-т касатель провед к граф фун-и в точке 0;f(x0)) т.к. надо найти парал-е касатель, значит угловые коэф-ты долны быть одинаковыми(т.е. равны).

 Дополнительно: у=f(x0)(x-x0)+f(x0) и у=кх

Ответ
:
у=ур-е касатель   0;f(x0))  


1. Реферат Основы архитектуры
2. Курсовая Дивидендная политика и право ее выбора
3. Статья Применение современного оборудования и технологий при строительстве метрополитена в г. Алматы
4. Реферат на тему Frank Llyod Wright Essay Research Paper Frank
5. Реферат на тему Review Sexual Selections And Stud Essay Research
6. Шпаргалка Шпаргалка по Статистике 4
7. Курсовая Биологические и социальные потребности человека
8. Контрольная работа Общество как социокультурная система и его структурирование
9. Статья на тему Налогообложение прибыли предприятий и корпораций Принципы и методика расчета
10. Реферат Муса-бий