Реферат

Реферат КЭС 6х300 МВт электрическая станция

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 13.1.2025





4. Электротехническая часть

4.1 Выбор структурной схемы КЭС

Проектируемая конденсационная электрическая станция предназначена для выдачи мощности в электроэнергетическую систему на напряжение 500 кВ и для энергоснабжения промышленного района - на напряжение 220 кВ. КЭС будет выполнена по блочной схеме. При этом возможны несколько вариантов структурной схемы, различающихся количеством присоединенных к распределительным устройствам (РУ) 500 и 200 кВ электрических блоков и типом связи между РУ. На основе технико-экономического сопоставления вариантов выбирается самый экономичный.

При составлении структурной схемы электрической станции в РУ повышенных напряжений обычно учитывают лишь ячейки выключателей трансформаторных связей, причем принимают один выключатель на присоединение.

Укрупнение или объединение энергоблоков на КЭС не рассматривались, так как при расчетных авариях в этом случае одновременный сброс генерирующей мощности на электрической станции будет равен мощности двух энергоблоков, что составит 600 МВт, что больше аварийного резерва мощности системы который равен 5 % от мощности системы:

 МВт           (4.1)

Графики нагрузки одного из работающих генераторов показан на рис. 4.1. Графики нагрузки собственных нужд показаны на рис.4.3.

К РУ среднего напряжения электрической станции должно подключатся столько энергоблоков, чтобы в нормальном режиме полностью обеспечить электроснабжение потребителей промышленного района при минимальном перетоке мощности по связи между РУ повышенных напряжений. В соответствии с исходными данными максимум нагрузки составит 400  МВт. Поэтому исходя из вышеизложенного критерия к РУ 220 кВ должно быть подключено не менее одного энергоблока (ЭБ) установленной мощностью 300 МВт.

Возможна установка двух энергоблоков к РУ 220 кВ, при этом увеличится переток мощности через автотрансформатор (АТС) и запираемая мощность при повреждении АТС. Целесообразность того или иного варианта структурной схемы будет рассмотрена при технико-экономическом сопоставлении вариантов.

Во всех вариантах структурной схемы предусмотрена установка генераторных выключателей с целью уменьшить число коммутаций в цепи высокого напряжения и для повышения надежности выдачи мощности в энергосистему.

В соответствии с рекомендациями представленными в [5] и [6] намечен ряд вариантов.

Вариант 1.

В этом варианте структурной схемы к РУ 220 кВ подключены два энергоблока (рис.4.8), а к РУ 500 кВ - четыре энергоблока. Расчетная мощность блочного трансформатора:

340,87 МВА           (4.2)

Исходя из условия      ,выбираем блочный трансформатор типа ТДЦ-400000/220-73У1, для энергоблоков, подключенных к РУ 220 кВ и трансформатор типа  ТДЦ-400000/500 для энергоблоков, подключенных к РУ 500 кВ.

Для связи между РУ 500 и РУ 220 кВ в этом варианте структурной схемы предполагается использовать два автотрансформатора. Переток мощности через автотрансформаторы в этом случае определяется выражением:

                              (4.3)

График перетока мощности через  автотрансформаторы представлен на рис.4.5. Максимальная мощность протекающая через один автотрансформатор будет равна половине максимальной мощности протекающей через оба автотрансформатора, т.е. 199,87 МВА200 МВА. Исходя из этого значения намечается к выбору два автотрансформатора типа АТДЦТН-500000/500/220 с номинальными мощностями  напряжениями 500/230 кВ. Других вариантов АТС промышленность не предлагает. Индивидуальный заказ АТС приводит к резкому удорожанию проекта, поэтому окончательно выбираем два автотрансформатора типа АТДЦТН-500000/500/220, так как этот тип автотрансформатора полностью покроет переток мощности при отключении одного из них.

Исходя из графиков нагрузки собственных нужд в качестве рабочих трансформаторов собственных нужд выбираются трансформаторы типа ТРДН-25000/20. Резервный трансформатор собственных нужд будет подключен к РУ 220 кВ, так как у автотрансформаторов связи АТДЦН-500000/500/220 отсутствует третичная обмотка.

Вариант II

Во втором варианте структурной схемы в отличии от первого, связь между РУ повышенных напряжений (рис.4.9) осуществляется с помощью одной группы однофазных трансформаторов типа АОДЦТН-167000/500/220 с резервной фазой. Максимальный переток мощности через автотрансформаторы 399,74 МВА меньше номинальной мощности АТС:

 

При повреждении одной из фаз автотрансформатора теряется связь между РУ 500 кВ и РУ 220 кВ на время замены поврежденной фазы автотрансформатора резервной.

Распределение энергоблоков между РУ 500 и 220 кВ аналогично первому варианту структурной схемы. Число, тип и мощность блочных трансформаторов остается неизменными.

Резервный трансформатор собственных нужд подключен к обмоткам низшего напряжения автотрансформаторов.

В отличии от варианта 1 в этом варианте имеет место ущерб в системе за счет потери выдаваемой через автотрансформаторы мощности при замене поврежденной фазы резервной. Однако в этом варианте уменьшается количество ячеек РУ 500 и 220 кВ.
Вариант III

Вариант 3 отличается от варианта 1 тем, что количество блоков 220 кВ уменьшено до одного и соответственно увеличено до пяти количество блоков  500 кВ. Блочные трансформаторы 500 и 220 кВ выбраны такими же, как и в вариантах 1 и 2 (рис.4.10).

Связь между РУ 500 и 220 кВ осуществляется двумя автотрансформаторами. В нормальном режиме наибольший переток мощности через них составляет 130 МВА (Рис.4.6). Для дальнейшего рассмотрения принимается автотрансформатор АТДЦН-500000/500/220.

При аварии или ремонте блока 220 кВ максимальная нагрузка автотрансформаторов определяется максимальной нагрузкой потребителей 220 кВ - 471 МВА (рис.4.2), что меньше суммарной мощности АТС 2х500 МВА. Окончательно принимаем для рассмотрения в этом варианте трансформатор АТДЦН-500000/500/220.

Резервный трансформатор собственных нужд может быть подключен к РУ 220 кВ, так как у этих АТС отсутствует третичная обмотка.
Вариант IV

Вариант 4 (рис.4.11) отличается от варианта 3 только тем, что вместо двух трехфазных автотрансформаторов предлагается использование одной группы из трех однофазных автотрансформаторов АОДЦТН-167000/500/220 с резервной фазой, которая позволяет восстановить связь между РУ 500 кВ и РУ 220 кВ после повреждения одной из рабочих фаз. Недостаток этой схемы, так же, как и варианта 2 состоит в возможности нарушения связи между РУ 500 и 220 кВ и наличие ущерба в системе во время замены поврежденной фазы резервной.

Резервный трансформатор собственных нужд в этом варианте может быть подключен к обмоткам низшего напряжения автотрансформаторов связи.

Параметры трансформаторов и автотрансформаторов, выбранных для рассматриваемых вариантов структурной схемы, в соответствии с [4], приведены в табл. 4.1.-4.4.

Таблица 4.1.

Параметры трансформаторов варианта 1 структурной схемы

Тип трансформатора

Количество









ТДЦ-400000/500

4

315

790

418

1,35

ТДЦ-400000/220

2

330

880

389

1,3

АТДЦН-500000/500/220

2

220

1050

470

1,35

ТРДН-25000/220

1

45

150

119,6

1,4

Таблица 4.2.

Параметры трансформаторов варианта 2 структурной схемы

Тип трансформатора

Количество









ТДЦ-400000/500

4

315

790

418

1,35

ТДЦ-400000/220

2

330

880

389

1,3

АОДЦТН-167000/500/220

4

90

315

206

1,3

ТРДН-25000/220

1

45

150

119,6

1,4

Таблица 4.3.

Параметры трансформаторов варианта 3 структурной схемы

Тип трансформатора

Количество









ТДЦ-400000/500

5

315

790

418

1,35

ТДЦ-400000/220

1

330

880

389

1,3

АТДЦН-500000/500/220

2

220

1050

470

1,35

ТРДН-25000/220

1

45

150

119,6

1,4


Таблица 4.4.

Параметры трансформаторов варианта 4 структурной схемы

Тип трансформатора

Количество









ТДЦ-400000/500

5

315

790

418

1,35

ТДЦ-400000/220

1

330

880

389

1,3

АОДЦТН-167000/500/220

4

90

315

206

1,3

ТРДН-25000/220

1

45

150

119,6

1,4



Определение технико-экономических показателей

Для каждого варианта структурной схемы проектируемой электрической станции определяют: капиталовложения К; ежегодные издержки производства И; народнохозяйственный ущерб от недоотпуска электроэнергии У.

Затем на основании этих основных показателей определяют значение целевой функции приведенных затрат З, которая дает комплексную оценку экономичности и надежности сопоставляемых вариантов структурной схемы:

                          (4.4)

где  - нормативный коэффициент эффективности капитальных вложений, 1/год.

Капиталовложения складываются из двух составляющих:

                                         (4.5)

где Кт - суммарная расчетная стоимость трансформаторов и автотрансформаторов;

      Кру - суммарная расчетная стоимость ячеек выключателей, необходимых для присоединения трансформаторов к РУ.

Расчетная стоимость трансформатора характеризует полные капитальные затраты . ее определяют умножением заводской цены трансформатора на коэффициент  , учитывающий дополнительные расходы на его доставку и монтаж.

В расчетную стоимость ячейки выключателя входит не только стоимость электрических аппаратов присоединения , но и стоимость строительно-монтажных работ.

Ежегодные издержки И определяются стоимость амортизационных отчислений Иa, затратами на обслуживание Иo трансформаторов и РУ, а также стоимость годовых потерь энергии в трансформаторах и автотрансформаторах Ипот. Ежегодные потери:

                         (4.6)

Суммарные издержки на амортизацию и обслуживание в среднем составляют:

         (4.7)

Годовые потери энергии в трансформаторах (автотрансформаторах) определяются в соответствии с предполагаемыми нормальным режимом  их работы по выражениям:

     ;                          (4.8)

        (4.9)

где n - число трансформаторов и автотрансформаторов;

    m - число ступеней в графиках нагрузки;

     потери холостого хода, кВт;

 потери короткого замыкания, кВт;

Затем определяется стоимость годовых потерь энергии:

 ,             (4.10)

где  - средние стоимости потерь в стали и меди в энергосистеме, руб/(кВт ч);

       Для энергосистемы Западной Сибири принимаются:

       руб/(кВт ч) и  руб./(кВт ч) в ценах 1990 года;

      - годовые потери холостого года и нагрузочные потери, кВт ч.

Для определения ущерба рассматриваются нормальный, ремонтные и послеаварийные режимы их работы. В нормальном режиме все элементы схемы находятся в работе, в ремонтных - один или более элементов отключены для проведения планового ремонта.

Послеаварийные режимы характеризуются отказом одного или более элементов. Анализ нормального и ремонтных режимов позволяет выбрать параметры элементов схем выдачи мощности. Для уточнения их значений рассматриваются послеаварийные режимы.

В послеаварийных режимах при обосновании и выборе схем развития ЭЭС и параметров оборудования электростанций допускается экономически целесообразное ограничение выдачи мощности. При этом анализу подвергаются режимы расчетных аварий. Для схем выдачи мощности таковыми являются единичные отказы оборудования и  отказ одного элемента во время планового ремонта другого. Совместный отказ двух и более элементов не рассматривается - вероятность такого события незначительна.

В общем случае ущерб из-за ненадежности схем складывается из системного ущерба, ущерба конкретного потребителя и ущерба из-за недовыработки электроэнергии станцией (недоиспользования основных фондов). Первый из них включает в себя ущерб от снижения частоты в ЭЭС и ущерб отключенных автоматической частотной разгрузкой потребителей.

Дефицит мощности приведет к снижению частоты в системе. Снижение частоты, , Гц, определяется выражением:

,                              (4.11)

где fном  = 50 Гц - номинальная частота в системе;

    = Pнедоотп  - дефицит мощности;

    Кн = 2 -  коэффициент регулирующего эффекта нагрузки;

    Рс = 6000/0,85 = 7059 МВт - мощность системы.

Если частота в ЭЭС в результате возникшего дефицита больше уставки срабатывания  автоматической частотной разгрузки (АЧР), будет иметь место ущерб потребителей от снижения частоты, вызванный уменьшением производительности предприятий и ухудшением качества продукции:

,                    (4.12)

где -удельный ущерб в i-час из-за снижения частоты в ЭЭС при дефиците мощности ;

     - число часов использования максимальной нагрузки ЭЭС;

    - вероятность снижения частоты (вероятность возникновения дефицита мощности в ЭЭС).

Усредненный удельный ущерб из-за снижения частоты определяется выражением, руб./(кВт ч):

у f = 0,0071f 2 ,                       (4.13)

При снижении частоты в ЭЭС до уставки срабатывания АЧР f АЧР отключаются потребители мощностью:

Роткл=Р-Рс×К н×(fном - f АЧР)/fном ,            (4.14)

При этом ущерб потребителей ЭЭС

,                      (4.15)

где уп f - удельный ущерб отключаеых потребителей. Его среднее значение для ЕЭЭС равно 0,6 руб./(кВт ч).

При ограничении нагрузки местного района ущерб конкретного потребителя:

,                          (4.16)

где уп - удельный ущерб конкретного потребителя;

    ti - длительность ограничения мощности потребителей при Рi = const по графику нагрузки;

    S - вероятность ограничения.

Станционный ущерб из-за недовыработки электроэнергии:

,                           (4.17)

где с - себестоимость выработки электроэнергии на станции без учета топливной составляющей;

    ti - длительность ограничения на выдачу мощности Рi = const по графику нагрузки;

    S - вероятность ограничения на выдачу мощности.

По номинальному напряжению и току предполагается выбор воздушных выключателей. Стоимость ячейки воздушного выключателя в РУ 500 кВ - 350 тыс.руб., в РУ 220 кВ - 85 тыс.руб., в РУ 35 кВ - 19 тыс.руб.
Вариант 1

Суммарная расчетная стоимость трансформаторов:





Суммарная расчетная стоимость ячеек выключателей:



Капиталовложения, согласно формуле (4.5):



Суммарные издержки на амортизацию и обслуживание по формуле (4.7):



Годовые потери холостого хода по формуле (4.8):



Годовые нагрузочные потери определяются по (4.9) в соответствии с графиками нормальных режимов работы трансформаторов. Для трансформаторов ТДЦ-400000/500 и графиков нагрузки (рис.4.4):



Для трансформаторов ТДЦ-400000/220 и графиков нагрузки (рис.4.4):



Для автотрансформаторов АТДЦН-500000/500/220 и графиков нагрузки (рис.4.5):                 .            Суммарные нагрузочные потери:

ч

    

Стоимость годовых потерь энергии, согласно формуле (4.10):



Ежегодные издержки, согласно формуле (4.6):



Приведенные затраты без учета ущерба составят, согласно формуле (4.4):



Далее определяется ущерб. Необходимо рассмотреть все случаи, которые могут привести к ущербу.

В случае аварийного отключения АТС электроснабжение местного потребителя не нарушается, так как второй АТС полностью и без перегрузки покроет потребление. Следовательно ущерб отсутствует.

При отказе энергоблока, подключенного к РУ 220 кВ, во время планового ремонта АТС ( и наоборот), ущерб также отсутствует, так как оставшееся  оборудование полностью покроет потребность местного потребителя и обеспечит необходимый переток мощности через АТС. Следовательно ущерб также отсутствует.

Системный и станционный ущерб будет иметь место при отказе АТС 1 при плановом ремонте АТС 2. При этом мы должны учитывать лишь тот ущерб, который невозможно покрыть дозагрузкой работающих блоков. Для определения этого случая необходимо построить графики располагаемой мощности Pрасп , т.е. мощности которую могут выдать оставшиеся в работе агрегаты если их загрузить до максимума за вычетом мощности которую они должны выдавать в соответствии с графиком нормального режима работы:

Pрасп = Рбл макс - Рбл                      (4.18)

где Рбл макс = 289,74 МВт - номинальная мощность генератора за вычетом мощности собственных нужд;

   Рбл - мощность генератора в данный момент времени в соответствии с графиком нормального режима работы за вычетом мощности собственных нужд.

В соответствии с (4.18) построен график располагаемой мощности рис. 4.7.

Соотнеся располагаемую мощность и мощность которую мы не выдаем при данном аварийном событии определяем моменты времени при которых будет присутствовать недовыработка электроэнергии, а следовательно системный и станционный ущерб.

Зима.

1) 6 - 16 ч    Рн.в. = РАТС - Ррасп = 339,78 - 0 = 339,78 МВт

2) 16 - 22 ч   Рн.в. = 179,13 - 0 = 179,13 МВт

Лето.

3) 6 - 16 ч    Рн.в. = 262,19 - 235,08 = 27,11 МВт

В остальное время недовыработка будет отсутствовать.

Используя (4.11), оценивается снижение частоты для каждого периода времени:

 Гц

 Гц

 Гц

Во всех случаях новое установившееся значение частоты в ЭЭС больше уставки АЧР(50 - 1,2 = 48,8 > 48,5 Гц), поэтому здесь возникнет лишь системный ущерб от снижения частоты и станционный ущерб из-за недовыработки электроэнергии. Согласно (4.12) определяется удельный ущерб из-за снижения частоты:

 руб/(кВт ч)

 руб./(кВт ч)

 руб./(кВт ч).

Далее рассчитаем вероятность отказа АТС 1 во время планового ремонта АТС 2. Для удобства характеристики надежности в соответствии с [5] занесены в табл.4.5.

Таблица 4.5

Характеристики надежности автотрансформатора связи

, 1/год

Тв, ч

кап, 1/год

Ткап, ч

тек, 1/год

Ттек, ч

0,03

500

0,1

400

1

60

Вероятность данного события в соответствии с [5]:

.                         (4.19)

Подставляя значения получим:





Вероятность отказа АТС 1 во время планового ремонта АТС 2:

 

 

Математическое ожидание ущерба из-за снижения в ЭЭС частоты:



 руб.

Аналогично проводится расчет для остальных интервалов времени.

Из-за низкой вероятности события, а также незначительного снижения выдаваемой мощности системным ущербом можно пренебречь.

Математическое ожидание станционного ущерба:



 тыс.руб.

Суммарное математическое ожидание ущерба:

 тыс.руб

Ущерб удвоен, так как возможна два расчетных случая: наложение отказа АТС 1 на плановый ремонт АТС 2 и наоборот.

Так как ущерб слишком мал им пренебрегаем. Приведенные затраты для этого варианта будут определятся капиталовложениями и издержками. Приведенные затраты:



Аналогично проводится расчет остальных вариантов структурной схемы. Результаты расчетов сведены в табл. 4.6.

Итак, по приведенным затратам выбираем вариант 2.

4.2. Выбор схем распределительных устройств

4.2.1. Введение

Согласно нормам технологического проектирования выбор схем РУ определяется напряжением РУ, числом присоединений, мощностью генераторов и наличием аварийного резерва в системе. Намеченные варианты схемы электрических соединений РУ отличаются друг от друга количеством выключателей и порядком соединения элементов схемы: присоединений и выключателей. Критерием оптимальности является минимум приведенных затрат с учетом ущерба от недоотпуска электроэнергии с шин ЭС из-за отказов оборудования РУ. Методика расчета описана в [7].

Капитальные вложения в оборудование РУ определяются стоимостью ячеек выключателей.

Условный недоотпуск электроэнергии:

         (4.20)

Для определения вероятности ремонтного режима схемы РУ выявляются элементы, вывод в ремонт которых влияет на надежность схемы. К числу таких элементов относятся выключатели и системы шин, непосредственно соединенные с источниками, то есть с генераторными блоками, поэтому:

,                   (4.21)

где n - количество ремонтируемых выключателей;

    m - количество ремонтируемых систем шин.

С достаточной степенью точности можно ограничиться учетом только первого слагаемого, тогда :

,

а вероятность нормального режима схемы РУ

.                                (4.22)

За расчетный элемент примем блок генератора, вероятность состояния отказа которого зависит от вероятности отказов элементов РУ:

, (4.23)

Вероятность состояния отказа схемы РУ в нормальном режиме:

,                                (4.24)

где n - число блоков.

,                               (4.25)

где m - число ремонтируемых выключателей.

Необходимо учесть также одновременные отказы двух РЭ из-за ненадежности Оборудования РУ в нормальном и ремонтных режимах, когда теряемая мощность равна сумме мощностей двух блоков (генераторов). Вероятность состояния отказа двух РЭ:

          (4.26)

Показатели надежности элементов схем в соответствии с [7] представлены в табл. 4.7.

Таблица 4.7.

Показатели надежности элементов

Элемент

Средний параметр потока отказов

,1/год

Среднее время восстановления

Тв, ч

Частота капитальных ремонтов

, 1/год

Продолжительность капитального ремонта

Тр, ч

Относительная частота отказа выключателей при отключении короткого замыкания

а

Трансформатор с высшим напряжением 500 кВ

0,072

220

1

50

-

Трансформатор с высшим напряжением 220 кВ

0,035

60

1

30

-

Сборные шины 500 кВ (на присоединение)



0,013

5

0,166

5

-

Сборные шины 220 кВ (на присоединение)



0,013

5

0,166

3

-

Выключатель воздушный(с разъединителем) 500 кВ

0,170

60

0,200

122

0,003

Выключатель воздушный (с разъединителем) 220 кВ

0,040

55

0,200

122

0,006

Воздушная линия электропередач 500 кВ (на 100 км)

0,210

14,3

3,100

18

-

Воздушная линия электропередач 220 кВ (на 100 км)

0,360

9,3

1,800

24

-

В соответствии с [8] для каждого уровня напряжений намечены наиболее вероятные варианты схем распределительных устройств.
4.2.2. Выбор схемы распределительного устройства 220 кВ

Общее количество присоединений к РУ 220 кВ равно девяти - два энергоблока, два автотрансформатора связи, четыре воздушных линий и резервный трансформатор собственных нужд. В ходе расчета отказы элементов за вторым выключателем не рассматриваются, поскольку .

Вариант I

К рассмотрению принята схема одна секционированая система сборных шин с обходной системой шин. Для повышения надежности и предотвращения потери обоих секций в случаи отказа секционного выключателя, в данной схеме используется два последовательно включенных секционных выключателя. Для уменьшения количества выключателей в РУ между секционными выключателями присоединяется резервный трансформатор собственных нужд.

Вероятность состояния отказа блока 1 в нормальном режиме (время   переключенийTп=1ч):

Вероятность состояния отказа блока 2 в нормальном режиме из-за симметрии схемы равна вероятности состояния отказа блока 1.

Вероятность состояния отказа блоков при ремонте (время переключений Тп = 1ч). Время восстановительного ремонта:

  ч

Ремонт выключателя 20


При ремонте выключателя 21 для блока 2 аналогично выше приведенному:



Вероятность состояния одновременного отказа двух блоков в нормальном и ремонтном режимах ничтожно мала, так как между блоками находятся три выключателя.

Вероятность ремонтного режима выключателя и соответственно схемы:

 

Вероятность нормального режима:



Вероятность состояния отказа схемы в нормальном режиме:



Вероятность состояния отказа схемы в ремонтном режиме:



Условный недоотпуск электроэнергии из-за ненадежности оборудования РУ в соответствии с формулой (4.20):



Ущерб от недоотпуска электроэнергии при :



Принимая стоимость ячейки одного выключателя равной 85 тыс.руб., можно рассчитать капитальные вложения в РУ.



Приведенные затраты:



Вариант 2

К рассмотрению принята схема две системы сборных шин с обходной системой шин. Для повышения надежности и предотвращения потери обоих систем сборных шин в случаи отказа шиносоединительного выключателя, в данной схеме используется два последовательно включенных шиносоединительных выключателя. Для уменьшения количества выключателей в РУ между шиносоединительными выключателями присоединяется резервный трансформатор собственных нужд.

Расчет проводится аналогично варианту 1. Результаты расчетов сведены в табл. 4.8.

Таблица 4.8.

Результаты расчетов схем распределительных устройств 220 кВ

Вариант схемы

Одна секционнированая система сборных шин с обходной системой шин

Две системы сборных шин с обходной системой шин

Вероятность состояния отказа блока 1 в нормальном режиме





Вероятность состояния отказа блока 2 в нормальном режиме





Вероятность состояния отказа блока 1 в ремонтном режиме





Вероятность состояния отказа блока 2 в ремонтном режиме





Вероятность ремонтного режима схемы





Вероятность нормального режима схемы





Вероятность состояния отказа схемы в нормальном режиме





Вероятность состояния отказа схемы в ремонтном режиме





Условный недоотпуск электроэнергии из-за ненадежности оборудования РУ, кВт ч





Ущерб от недоотпуска электроэнергии, тыс.руб.





Ущерб от недоотпуска электроэнергии, %





Капитальные вложения в РУ, тыс.руб.





Приведенные затраты, тыс.руб.





Приведенные затраты, %

100,04



варианта находятся в равноэкономической зоне. Предпочтительным выглядит вариант 1, так как в капитальных вложениях учитывается только стоимость ячейки выключателя и их количество, но в варианте 2 большее количество разъединителей, протяженность шинопроводов. Следовательно разница капитальных затрат увеличиться.

Итак окончательно принимаем схему одна секционнированая система сборных шин с обходной.
4.2.3. Выбор схемы распределительного устройства 500 кВ

 Общее количество присоединений к РУ 500 кВ равно девяти - четыре энергоблока, два автотрансформатора связи и три воздушных линий.

В качестве рассматриваемых вариантов приняты схемы 3/2 и 4/3. Расчет вариантов схем аналогичен расчету при выборе схемы распределительного устройства 220 кВ. Результаты расчета сведены в табл.  4.9.

Таблица 4.9.

Результаты расчетов схем распределительных устройств 500 кВ

Вариант схемы

4/3

3/2

Вероятность ремонтного режима схемы





Вероятность нормального режима схемы





Вероятность состояния отказа схемы в нормальном режиме





Вероятность состояния отказа схемы в ремонтном режиме





Вероятность состояния отказа 2 блоков в нормальном режиме





Вероятность состояния отказа 2 блоков в ремонтном режиме





Условный недоотпуск электроэнергии из-за ненадежности оборудования РУ, кВт ч





Ущерб от недоотпуска электроэнергии, тыс.руб.

65,85

66,18

Ущерб от недоотпуска электроэнергии, %



100,5

Капитальные вложения в РУ, тыс.руб.





Приведенные затраты, руб.

922,65

1065,78

Приведенные затраты, %



115,5

Итак, по приведенным затратам выбирается вариант со схемой  4/3.



4.3. Выбор схемы питания собственных нужд

4.3.1. Общие положения

Схемы рабочего и резервного питания собственных нужд КЭС являются важнейшей частью главной схемы электрических соединений, от которой зависит работа блоков КЭС.

Общие требования к схемам собственных нужд крупных КЭС:

1. Схемы рабочего и резервного питания собственных нужд должны обеспечивать надежную работу отдельных блоков и электрической станции в целом.

2. В схемах собственных нужд при любых режимах работы на станции не должно быть таких узлов, повреждение которых могло бы привести к отключению больше чем одного блока, то есть схема собственных нужд должна быть такой же блочной, как и основная электрическая схема.

3. Схема собственных нужд не должна препятствовать расширению КЭС и не должна требовать при расширении изменения ранее выполненной части схемы собственных нужд.

4. Схема собственных нужд должна быть достаточно экономичной.
4.3.2. Описание схемы питания собственных нужд

Приводы механизмов собственных нужд станции получают питание от РУ собственных нужд. Согласно “Нормам технологического проектирования тепловых электрических станций” (НТП) электродвигатели собственных нужд принимаются в основном асинхронными с короткозамкнутым ротором. Их конструкция относительно проста, поэтому они надежны в работе и несложны в обслуживании.

Напряжение питания крупных электродвигателей (мощностью более или равной 200 кВт) принимается равным 6 кВ, для остальных электродвигателей переменного тока принимается напряжение питания 380 В.

Электроснабжение собственных нужд осуществляется путем отбора мощности от генераторов с помощью понижающих трансформаторов. Резервное питание электродвигателей собственных нужд осуществляется отбором мощности сети 220 кВ при соблюдении условия, что места присоединения цепей резервного питания должны быть независимы от мест присоединения цепей рабочего питания.

Число рабочих ТСН соответствует числу блоков. Подключаются они на ответвлении между генераторным выключателем и повышающим трансформатором. Выбранные ТСН трансформируют напряжение с 20 на 6 кВ, причем обмотка низкого напряжения берется расщепленной для уменьшения токов короткого замыкания на шинах 6 кВ.

Число резервных ТСН зависит от числа блоков, их мощность, от наличия генераторных выключателей. На проектируемой КЭС генераторные выключатели предусмотрены, поэтому для шести блоков 300 МВт, по НТП, необходимо установить два резервных ТСН, питающихся от РУ 220 кВ.

Из соображений резервирования и ограничения токов короткого замыкания ТСН должны иметь одинаковую мощность.

РУ 6 кВ выполняется по схеме с одной секционнированой системой шин. Сборные шины разделяются на секции, исходя из условия, что для каждого блока установлен один котел типа Пп-1000-25-545-ГМ, состоящий из двух корпусов и допускающий их раздельную работу; таким образом, на каждый блок приходится по две секции, которые попарно присоединяются к трансформатору собственных нужд. Каждая секция присоединяется к ТСН через отдельный выключатель.

Питание собственных нужд каждого блока от двух секций дает возможность при отказе или ремонте  на  одной  из  секций  сохранить  в  работе блок,  хотя  бы и при  пониженной  нагрузке (50 - 60 %). На каждой секции предусматривается ввод автоматически включаемого резервного питания (АВР).

Общестанционная нагрузка по рабочим секциям распределяется равномерно. При этом не выделяются отдельные секции и трансформаторы для питания общестанционной нагрузки.

Для питания шин 0,4 кВ, к которым подключаются мелкие двигатели, электроприемники и прочие нагрузки, необходима установка понижающих трансформаторов 6/0,4 кВ.

С учетом всех требований и рекомендаций составлена схема питания собственных нужд 6 кВ и 0,4 кВ.

 

4.3.3. Выбор рабочих и резервного трансформаторов собственных нужд

Мощность рабочего трансформатора собственных нужд блока выбирается на основании подсчетов действительной нагрузки секций, присоединенных к этому трансформатору, с учетом как электродвигателей и ТСН блока, так и общестанционных нужд, которые обслуживают не только данный блок, но и потребителей относящихся ко всей станции в целом.

Для определения мощности ТСН мощность каждого электродвигателя принимается равной мощности на валу. Все электродвигатели - рабочие и резервные - принимаются присоединенными к секции. Для различных групп механизмов вводятся различные поправочные коэффициенты, которые учитывают неодновременность работы, реальную недогрузку электродвигателей, КПД, а также то, что некоторые из этих двигателей являются резервными.

Таким образом, умножая суммарную мощность отдельных групп на данный коэффициент, получают нагрузку на трансформаторах собственных нужд 20 кВ.

С учетом повышения требований надежности, предъявляемых к системе собственных нужд, перегрузка рабочих трансформаторов не допускается.

Расчетная мощность трансформаторов определяется суммой мощностей всех электроприемников, которые присоединены к данному трансформатору. Эта мощность определяется блочной и общестанционной нагрузкой. Состав этих нагрузок представлен в табл. 4.10-4.13

Таблица 4.10

Мощность блочной нагрузки собственных нужд

Наименование механизма

Расчетная мощность на валу, кВт

Каталожная мощность двигателя, кВт

Количество







присоединенных, шт.

работающих, шт.

Питательный электронасос

5500

8000

6

-

Бустерный насос

400

500

18

12

Циркуляционный насос

805

1000

12

12

Мазутный насос

500

500

4

4

Конденсатный насос

250

450

18

12

Насос подъемный эжекторный

500

570

12

6

Сливной насос ПНД

250

320

12

6

Трансформатор блока машинного отделения

1000

1000

12

12

Дутьевой вентилятор

650/290

800/2900

12

12

Дымосос

1880/1150

2000/1150

12

12

Трансформатор блока котельного отделения

1000

1000

6

6

Трансформатор электрофильтра

1000

1000

12

12

Таблица 4.11

Мощность общестанционной нагрузки собственных нужд

Наименование механизма

Каталожная мощность, кВт

Количество





присоединенных, шт.

работающих, шт.

Трансформатор топливного хозяйства

750

2

2

Трансформатор ОСН рабочий

1000

2

2

Трансформатор ОРУ

1000

2

2

Трансформатор ХВО

1000

1

1

Трансформатор ОСН резервный

1000

1

-

Резервный возбудитель

1600

2

2

Резервный трансформатор мазутного хозяйства

1000

1

1

Пожарный насос 1 ст.

250

1

1

Пожарный насос 2 ст.

500

1

1

Насос кислотной промывки

2900

1

1

Трансформатор ЦРМ

1000

3

2

Резервный трансформатор блочный

1000

2

-

Трансформатор вспомогательного корпуса

750

1

1

Резервный трансформатор вспомогательного корпуса

750

1

-

Суммарная блочная нагрузка составляет:

  кВт

Максимальная  общестанционная нагрузка из расчета на один блок:

 кВт

Итого расчетная мощность трансформатора собственных нужд:



Выбирается трансформаторы собственных нужд типа ТРДНС - 25000/35.

Мощность резервных трансформаторов, согласно НТП, должна обеспечивать замену источников питания собственных нужд одного работающего блока. Для блоков с ВГ мощность резервного ТСН равна мощности рабочего ТСН. Таким образом, выбран резервный трансформатор собственных нужд типа ТДТН - 25000/220, присоединенный к РУ 220 кВ и ТРДНС - 25000/35, присоединенный к низшей обмотке АТС.

Расчетная нагрузка трансформаторов второй ступени 6/0,4 кВ складывается из мощностей многочисленных, но мелких электроприемников.

Опираясь на опыт проектирования электростанций, для обеспечения технологического процесса и надежности электроснабжения, предусмотрена установка цеховых трансформаторов собственных нужд 6/0,4 кВ, которые распределяются следующим образом. В зависимости от мощности потребителей на 0,4 кВ блока, на каждом блоке устанавливается 2 или 3 трансформатора 6/0,4 кВ мощностью 1000 кВА. Один питает потребителей машинного отделения , другие - котельного. Устанавливают также дополнительные трансформаторы для питания нагрузок, расположенных на ОРУ, вентиляторов, системы охлаждения трансформаторов, освещения, компрессоров и.т.д. Резервирование рабочих трансформаторов 6/0,4 кВ осуществляется установкой дополнительных трансформаторов. Основные секции РУ 0,4 кВ питаются от трансформаторов 6/0,4 кВ через автоматические выключатели.

Должна быть обеспечена бесперебойность питания секций и сборок 0,4 кВ. Электродвигатели ответственных секций и сборок 0,4 кВ механизмов собственных нужд питаются от разных секций 0,4 кВ.

Для особо ответственных потребителей предусматриваются  отдельные секции, получающие питание и от резервных трансформаторов, и от дизель-генераторов.
4.4. Расчет токов короткого замыкания и выбор коммутационных аппаратов

4.4.1. Введение

Аппараты электроустановок, в том числе РУ электростанций должны удовлетворять всем режимам функционирования соответствующих электроустановок или их отдельных частей: нормальному, ремонтному, аварийному, послеаварийному режимам.

В нормальном режиме все элементы находятся в работе и функционируют в соответствии с запланированными для них нагрузками и качественными показателями.

Ремонтный режим обусловлен выводом оборудования в плановый ремонт. Аварийный режим наступает при внезапном нарушении нормального режима. При выборе аппаратов за расчетный аварийный режим принимается режим короткого замыкания (КЗ). После отключения КЗ наступает послеаварийный режим.

Для проверки аппаратов данного присоединения по аварийному режиму необходимо прежде всего оценить расчетные условия КЗ: составить расчетную схему, наметить места расположения расчетных точек КЗ, определить расчетное время протекания токов КЗ и расчетный вид КЗ.

Расчетная схема - это однолинейная электрическая схема проектируемой электроустановки, в которую включены все источники питания и все возможные связи между ними. Расчет токов КЗ производился на ЭВМ и дан в п приложении 1. Результаты расчета приведены в табл. 4.14 .

Таблица 4.14

Расчетные значения токов КЗ

Точка КЗ

Iк, кА

iуд, кА

В,

Наименование присоединения

К1

10,02

26,55

42,6

ТСН (500 кВ)

К2

58,26

162,95

2376,1

генератор (500 кВ)

К3

11,87

31,22

58,6

шины (500кВ)

К4

13,28

27,15

63,9

ТСН (220 кВ)

К5

58,26

162,95

2376,1

генератор (220 кВ)

К6

17,34

39,43

111,3

шины (220 кВ)

К7

17,21

39,35

109,8

РТСН



4.4.2. Условия выбора коммутационных аппаратов

В соответствии с ГОСТом выбор выключателей осуществляется по следующим условиям:

По номинальному напряжению:

                                (4.27)

По номинальному току:

 Iнорм расч                                  (4.28)

где Uном - номинальное напряжение выключателя, кВ;

Uсети ном - номинальное напряжение сети, которой устанавливается выключатель, кВ;

Iном - номинальный ток выключателя, кА;

Iнорм расч - расчетный ток нормального режима, кА;

kп - нормированный коэффициент возможной перегрузки выключателя при данном продолжительном режиме его работы;

Iпрод расч - расчетный ток продолжительного режима, кА.

Затем выбранный выключатель проверяется по включающей способности по условиям:

Iвкл ³ Iпо;

iвкл ³ iуд = kуд×Iпо ,

где Iвкл - начальное действующее значение периодической составляющей номинального тока включения, кА (под номинальным током включения понимают наибольший ток КЗ, который выключатель способен надежно включить);

Iпо - начальное действующее значение периодической составляющей тока КЗ, кА;

iвкл - наибольший пик номинального тока включения, кА

iуд - ударный ток КЗ, кА;

kуд - ударный коэффициент.

После этого выполняется проверка на симметричный ток отключения по условию:

Iоткл ном ³ Iпt,

где Iоткл ном - номинальный ток отключения выключателя, кА;

Iпt - периодическая составляющая тока КЗ в момент начала расхождения контактов выключателя, кА.

Возможность отключения апериодической составляющей тока КЗ определяется из соотношения:

ia ном ³ iat,

где ia ном =  - номинальное значение апериодической составляющей тока отключения, кА;

bн - нормированное процентное содержание апериодической составляющей в токе отключения;

iat - апериодическая составляющая тока КЗ в момент начала расхождения дугогасительных контактов выключателя, кА

Если расчетное значение апериодической составляющей тока КЗ превышает номинальное значение, а периодическая составляющая тока КЗ в момент начала расхождения дугогасительных контактов выключателя меньше номинального тока отключения, то следует сопоставить условные значения полных токов, а именно:

.

Расчетное время отключения выключателя t или tоткл, с, вычисляется как сумма собственного времени отключения выключателя tc в откл и 0,01 с в соответствии с выражением:

t = tоткл = 0,01 + tc в откл.

Собственное время отключения выключателя указывают заводы-изготовители. Его определяют от момента подачи команды на отключение до момента начала размыкания дугогасительных контактов.

На электродинамическую стойкость выключатель проверяется по предельным сквозным токам КЗ:

Iпр скв ³ Iп0;

iпр скв ³ iуд,

где Iпр скв - начальное действующее значение периодической составляющей предельного сквозного тока, кА;

iпр скв - наибольший пик предельного сквозного тока, кА.

Условия проверки выключателя на термическую стойкость зависит от соотношения между tтер - предельно-допустимым временем воздействия нормированного тока термической стойкости и расчетным временем отключения выключателя tоткл, определяющим длительность термического воздействия токов КЗ на выключатель. Если tтер  ³ tоткл, то условие проверки выключателя на термическую стойкость имеет вид:

,

где Iтер - номинальный ток термической стойкости выключателя (равный, как правило, Iоткл ном);

Bк - интеграл Джоуля с пределами интегрирования 0 - , кА2×с.

Если tоткл ³ tтер, то условие проверки выключателя на термическую стойкость:

.

Разъединители выбираются по следующим условиям:

;

 Iнорм расч;

kпIном ³ Iпрод расч = Iраб нб;

iдин ³ iуд;

,при tтер  ³ tоткл и ,при tоткл ³ ³ tтер.

4.4.3. Выбор выключателей

Выбор  выключателей  производится  в  соответствии  с  условиями  выбора приведенными в 4.4.2.

Для установки в РУ 220 кВ предполагается выключатель типа  ВВБ-220Б-31,5/2000У1. При выборе электрических аппаратов РУ с Uном ³ 35 кВ все выключатели РУ устанавливаются однотипными. Проверку выключателей по отключающей способности можно осуществлять без учета затухания периодической составляющей тока КЗ, т.е. Iпt=Iп0. Это определяется значительной удаленностью РУ 220 кВ от генераторов станции.

Производится проверка в соответствии со следующими условиями:

По номинальному напряжению:







Максимальный ток будет в присоединении АТС:





Проверим выбранный выключатель по включающей способности:

Iвкл=35 кА > Iп0=17,34 кА

iвкл=80 кА > iуд=39,43 кА

Проверим выбранный выключатель по отключающей способности:

Iоткл ном=31,5 кА > Iп0=Iпt=17,34 кА

Расчетное время отключения:

t=0,06+0,01=0,07 с

Апериодический ток в момент t:

 кА

 кА

Так как Iоткл ном > Iпt и  < ,  то проверку отключающей способности по полному току КЗ не проводим.

Проверим выбранный выключатель на электродинамическую стойкость:

Iпр скв=40 кА > Iп0=17,34 кА

iпр скв=102 кА > iуд=39,43 кА

Так как tоткл = t = 0,07 с < tтер=3 с, то проверку на термическую стойкость выполним по условию:

Iтер2×tоткл = 402×0,07 = 1372 кА2×с > Bк = 111,3 кА2×с

Данный тип выключателя удовлетворяет условиям выбора.

Выбор остальных выключателей производится аналогично выше приведенному и его результаты приведены в табл. 4.15.

Таблица 4.15

Результаты выбора выключателей

Наименование присоединения

Тип выключателя

Uном, кВ

Iном, кА

Iдин, кА

iдин, кА

Iт, кА

Шины 500 кВ

ВНВ-500Б-40/3150У1

500

3,2

40

90

40

генератор 500 кВ

ВВГ-20-160/20000У3

20

20

150

385

160

ТСН 500 кВ

ВМПЭ-10-1600-31,5У3

10

1,6

31,5

80

31,5

Шины 220 кВ

ВВБ-220Б-31,5/2000У1

220

2

35

80

40

генератор 220 кВ

ВВГ-20-160/20000У3

20

20

150

385

160

ТСН 220 кВ

ВМПЭ-10-1600-31,5У3

10

1,6

31,5

80

31,5

РТСН

ВМПЭ-10-1600-31,5У3

10

1,6

31,5

80

31,5



  

 4.4.4. Выбор разъединителей

Выбор разъединителей производится в соответствии с условиями приведенными в 4.4.2.

Для установки в РУ 220 кВ предполагается разъединитель типа РНД-220/2000У1. Производится проверка по следующим условиям:

По номинальному напряжению:



По номинальному току:

   

По динамической стойкости:

  

По термической стойкости:

Так как tоткл = t = 0,07 с < tтер=3 с, то проверку на термическую стойкость выполним по условию:

Iтер2×tоткл = 402×0,07 = 1372 кА2×с > Bк = 111,3 кА2×с

Данный тип разъединителя удовлетворяет всем условиям выбора.

Аналогично производится выбор разъединителей для остальных присоединений. Результаты выбора приведены в табл. 4.16.

Таблица 4.16.

Результаты выбора разъединителей

Наименование присоединения

Тип разъединителя

Uном, кВ

Iном, кА

iдин, кА

Iт, кА

Шины 500 кВ

РПДБ-500/3200У1

500

3,2

160

63

генератор 500 кВ

РВП-20/1250У3

20

12,5

490

180

ТСН 500 кВ

КРУ типа КМ-1

10

1,6

80

31,5

Шины 220 кВ

РНД-220/2000У1

220

2

100

40

генератор 220 кВ

РВП-20/1250У3

20

12,5

490

180

ТСН 220 кВ

КРУ типа КМ-1

10

1,6

80

31,5

РТСН

КРУ типа КМ-1

10

1,6

80

31,5

Примечание.

Для присоединения ТСН к РУ 6кВ предполагается установка ячейки КРУ типа КМ1 с выключателем типа ВМПЭ-10-1600-31,5.

1. Контрольная работа на тему Методы эмпирического и теоретического уровней научного познания
2. Реферат на тему Охорона праці користувачів компютерів
3. Реферат на тему Pbx Hybrid Networks Essay Research Paper PBX
4. Реферат Українська держава в період руїни 1657-1676 рр
5. Реферат Система макроэкономических показателей 3
6. Сочинение Защита родины есть защита и своего достоинства
7. Контрольная работа на тему Государственный бюджет и его место в финансовой системе государства
8. Реферат на тему Memory Intro Essay Research Paper IntroductionMemory is
9. Реферат на тему The Glass Menagerie Essay Research Paper Tom
10. Реферат Оценка организационной культуры ОАО Продтовары