Реферат Фазовые превращения первого и второго рода
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
7.4. Фазовые переходы первого рода
Для описания фазового перехода первого рода необходимо определить зависимость давления от температуры в точках фазового перехода:
Предположим, что при подводе к одной из фаз двухфазной среды некоторого количества теплоты
Переход вещества из первой фазы во вторую изображен на рис. 7.5 как участок 1-2 некоторого кругового процесса, с помощью которого количество вещества массой
|
Рис. 7.5. Диаграмма к расчету фазового перехода первого рода |
На основании первой теоремы Карно можно записать выражение для к.п.д. рассматриваемого цикла
, | (7.43) |
где
С учетом бесконечной малости величины
. | (7.44) |
Фазовые переходы первого рода количественно характеризуются величиной удельной теплоты фазового перехода, которая численно равна количеству теплоты сообщаемой единице массы вещества для осуществления фазового перехода:
. | (7.45) |
Тогда с учетом формул (7.44) и (7.45) выражение (7.43) можно преобразовать к виду
| (7.46) |
или
. | (7.47) |
Это выражение называется уравнением Клапейрона-Клаузиуса. Оно позволяет определить производную давления от температуры при равновесном фазовом переходе первого рода в зависимости от удельной теплоты перехода, его температуры и удельных объемов начальной и конечной фаз.
Уравнение Клапейрона-Клаузиуса можно получить также с помощью удельного термодинамического потенциала. Для этого вычислим полные дифференциалы от правой и левой частей выражения (7.4)
| (7.48) |
или (см. формулу (4.51))
, | (7.49) |
где:
Из выражения (7.49) имеем
. | (7.50) |
Так как процесс перехода вещества из одной фазы в другую считается равновесным и происходящим при постоянной температуре, то разность удельных энтропий этих фаз можно определить следующим образом
. | (7.51) |
Подстановка этого выражения в формулу (7.50) приводит её к виду уравнения Клапейрона-Клаузиуса (7.47).
В соответствии с уравнением Клапейрона-Клаузиуса знак производной
Задача 7.3. Найти давление, с которым конькобежец должен давить коньком на лед, чтобы расплавить его в отсутствие трения при температуре -
. При какой температуре
лед расплавится, если давление конькобежца равно 4 атм (
; удельная теплота плавления:
.
Решение: Используя уравнение Клапейрона-Клаузиуса
и считая удельные объемы и теплоту фазового перехода постоянным величинами, получим
,
,
где:
,
.
Из полученных формул следует
,
.
Таким образом для расплавления льда при температуре незначительно меньшей нуля градусов Цельсия необходимо создать достаточно большое давление (в рассматриваемом случае порядка 400 атм). Лед под коньком конькобежца плавится за счет его нагревания из-за трения.
.
7.6. Фазовые переходы второго рада
Описание фазовых переходов второго рода проведем в соответствии с методом, предложенным в 1933 году физиком-теоретиком Паулем Эренфестом (1880 - 1933). Для таких переходов уравнение Клапейрона-Клаузиуса не применимо, так как из условия равенства первых производных удельного термодинамического потенциала
, | (7.59) |
| (7.60) |
в соответствии с формулами (4.52) и (4.53) следует равенство удельных энтропий и объемов
, | (7.61) |
. | (7.62) |
Это приводит к тому, что в правой части уравнения (7.50) одновременно обращаются в нуль числитель и знаменатель, и в уравнении Клапейрона-Клаузиуса возникает неопределенности вида
Найдем полные дифференциалы удельных энтропий и объемов, и в соответствии с формулами (7.61) и (7.62) приравняем их
, | (7.63) |
. | (7.64) |
Проведем преобразование полученных выражений. Производная удельной энтропии по температуре в обратимом процессе может быть представлена в виде
, | (7.65) |
где:
Так как для второй производной удельного термодинамического потенциала может быть записано равенство
, | (7.66) |
то (см. формулы (4.52) и (4.53))
. | (7.67) |
С учетом выражений (7.65) и (7.67) формулы (7.63) и (7.64) дают
| (7.68) |
, | (7.69) |
где символом
Полученные выражения позволяют записать уравнения, связывающие производную давления от температуры
| (7.70) |
и коэффициентом изотермической сжимаемости
. | (7.71) |
Эти уравнения называются уравнениями Эренфеста, и они имеют вид
, | (7.72) |
. | (7.73) |
Наиболее иллюстративным примером фазового перехода второго рода является превращение жидкого Не I в жидкий Не II при температуре 2,2 К и ниже (см. рис. 7.7). С этим фазовым переходом связано квантовое явление сверхтекучести, возникающее в Не II. Это явление было открытое в 1938 г. П.Л. Капицей и теоретически объяснено советским физиком-теоретиком Львом Давыдовичем Ландау (1908 - 1968). Феноменологическая теория сверхтекучести основывается на предложении о том, что Не II представляет собой смесь двух жидкостей, хотя с точки зрения квантовой физики атомы Не II нельзя разделить на два различных вида. Однако классическая аналогия наиболее удобна для восприятия и согласно ей одна компонента Не II является сверхтекучей, а другая - нормальной (не сверхтекучей). Таким образом течение Не II можно представить в виде потоков двух жидкостей, при этом вязкость сверхтекучей компоненты равна нулю.
Именно в отсутствии вязкости у Не II и состоит явление сверхтекучести. Отсутствие вязкости приводит к тому, что Не II может проникать через очень узкие капилляры (П.Л. Капица ставил опыты по протеканию Не II между двумя шлифованными стеклами), а также к тому, что уровни Не II, налитого в два разделенных перегородкой сосуда, постепенно выравниваются из-за образования ползущей пленки (см. рис. 7.12).
|
Рис. 7.12. Образование ползущей пленки в сосудах с Не II |
Ползущая пленка имеет толщину менее 10-7 м. При её движении со скоростью несколько десятков сантиметров в секунду жидкость перетекает из одного сосуда в другой.
Нормальная компонента переносит при своем движении теплоту, а сверхтекучая компонента - нет. При протекании Не II через узкую щель, перетекает главным образом сверхтекучая часть Не II. Поэтому вытекающий Не II должен иметь более низкую температуру, чем Не II в сосуде из которого происходит вытекание. Это явление было использовано для получения сверхнизких температур, составляющих десятые доли кельвина.
К фазовым переходам второго рода относятся также переход некоторых веществ в сверхпроводящее состояние при низких температурах. Такой переход сопровождается падением до нуля электрического сопротивления сверхпроводников.
Примером фазового перехода второго рода является переход железа из ферромагнитного в парамагнитное состояние в точке Кюри. К ним относятся также переходы, связанные с изменением симметрии кристаллической решетки, в тех случаях, когда тип симметрии решетки при переходе становится другим (например, переход от кубической к тетрагональной решетке).
При фазовом переходе второго рода все свойства вещества изменяются непрерывным образом во всем объеме вещества. Поэтому при фазовых переходах второго рода невозможно существование метастабильных состояний, характерных для фазовых переходов первого рода.