Реферат Как возникло и развивалось понятие функции
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
КАК ВОЗНИКЛО И РАЗВИВАЛОСЬ ПОНЯТИЕ ФУНКЦИИ
Писцы и таблицы. Понятие функции уходит своими корнями в ту далекую эпоху, когда люди впервые поняли, что окружающие их явления взаимосвязаны. Они еще не умели считать, но уже знали, что, чем больше оленей удастся убить на охоте, тем дольше племя будет избавлено от голода, чем сильнее натянута тетива лука, тем дальше полетит стрела, чем дольше горит костер, тем теплее будет в пещере.
С развитием скотоводства и земледелия, ремесла и обмена увеличилось количество известных людям зависимостей между величинами. Многие из них выражались с помощью чисел. Это позволило формулировать их словами «больше на», «меньше на», «больше во столько-то раз». Если за одного быка давали 6 овец, то двух быков обменивали на 12 овец, а трех быков — на 18 овец; если из одного ведра глины изготовляли 4 горшка, то из двух ведер глины можно было сделать 8 горшков, а из трех ведер — 12 горшков. Такие расчеты привели к возникновению понятия о пропорциональности величин.
В те времена редко приходилось сталкиваться с более сложными зависимостями. Но когда возникли первые цивилизации, образовались большие (по тогдашним масштабам) армии, началось строительство гигантских пирамид, то понадобились писцы, которые учитывали поступающие налоги, определяли количество кирпичей, необходимое для возведения дворцов, подсчитывали, сколько продовольствия надо заготовить для дальних походов. От одного поколения писцов к другому переходили правила решения задач, и чем лучше писец справлялся с ними, тем большим почетом он пользовался.
Вот, например, послание, направленное египетским писцом своему менее образованному коллеге:
«Я хочу объяснить тебе, что это такое, когда ты говоришь: «Я писец, дающий приказы армии». Ты приходишь ко мне, спрашиваешь о запасах для солдат и говоришь: «Сосчитай мне это». Ты оставляешь свою работу, и на мои плечи сваливается задача — учить тебя, как ее надо выполнить. Я ставлю тебя в тупик, когда приношу тебе повеление от твоего господина, тебе — его царскому писцу... мудрому писцу, поставленному во главе этого войска. Должно сделать насыпь для подъема в 730 локтей длины и 55 локтей ширины. Она состоит из 120 отдельных ящиков и покрывается перекладинами и тростником. На верхнем конце она имеет высоту в 60 локтей, а в середине 30 локтей; уклон ее — дважды по 15 локтей, а настил — 5 локтей. Спрашивают у военачальников, сколько понадобится кирпичей, и у всех писцов, и ни один ничего не знает. Все они надеются на тебя и говорят: «Ты искусный писец, мой друг, сосчитай это для нас поскорей. Смотри, имя твое славится. Сколько же надо для этого кирпичей?»
Чтобы решить такую задачу, надо было знать, как зависят объемы геометрических фигур от их размеров, уметь учитывать наклон насыпи. Некоторые египетские задачи показывают, что в то время умели даже вычислять объем пирамиды.
Высокого уровня достигла математика в Древнем Вавилоне. Чтобы облегчить вычисления, вавилоняне составили таблицы обратных значений чисел, таблицы квадратов и кубов чисел и даже таблицы для суммы квадратов чисел и нх кубов. Говоря современным языком, это было табличное задание функций
Пользуясь такими таблицамн, вавилоняне могли решать и обратные задачи — по заданному объему куба находить длину его стороны, т. е. извлекать кубические корни. Они умели даже решать уравнения вида хг + х2 = = а. Были у вавилонян и таблицы функций двух переменных, например таблицы сложения и умножения. Пользуясь различными таблицами, они могли вычислять и длину гипотенузы по длинам катетов, т.е. находить значения функции z
= -у/ х +у2.
Разумеется, путь от появления таблиц до создания общего понятия функциональной зависимости был еще очень долог, но первые шаги по этому пути уже были сделаны.
В Древней Греции наука приняла иной характер, чем в Египте и Вавилоие. Появились профессиональные ученые, которые изучали саму математическую науку, занимались строгим логическим выводом одних утверждений из других. Многое из того, что делали древнегреческие математики, тоже могло привести к возникновению понятия о функции. Они решали задачи на построение и смотрели, при каких условиях данная задача имеет решение, изучали, сколько решений может иметь эта задача, и т.д. Древние греки нашли много различных кривых, неизвестных писцам Египта и Вавилона, изучали зависимости между отрезками диаметров и хорд в круге, эллипсе и других линиях.
Но все же древнегреческие математики не создали общего понятия функции. Возможно, здесь оказало влияние то, что к практическим приложениям математики они относились свысока. Одна из дошедших до нас легенд гласит, что когда какой-то человек попросил Евклида обучить его геометрии и задал вопрос: «А какую практическую пользу я получу, выучив все эти теоремы?», тот сказал, обращаясь к своему рабу: «Дай ему обол (мелкую греческую монету), бедняжка пришел искать пользу».
Вопросами практической математики в Греции больше занимались астрономы. Они придумали, например, долготу и широту, с помощью которых определяли положение звезд на небосводе. Астрономам приходилось решать сферические треугольники. Это послужило началом сферической тригонометрии, которая, как ни странно, была создана раньше, чем плоская. Чтобы решать тригонометрические задачи, пришлось составить таблицы зависимости между длиной хорды и величиной стягиваемой ею дуги. По сути дела, это уже были таблицы функции y
=
sinx
(длина хорды, стягивающей дугу 2х, равна 2
Rsinx
).
Когда византийский император Юстиниан в 529 году н.э. запретил под страхом смертной казни математические исследования (он видел в них наследие языческой
науки, противостоявшей христианской религии), центр научных исследований переместился в арабские страны. Арабские ученые ввели новые тригонометрические функции и усовершенствовали таблицы хорд, составленные Птолемеем. Работая с тригонометрическими таблицами, они прибегали к интерполяции, т. е. к «чтению между строк таблицы». Чаще всего применяли линейную интерполяцию, считая, что между двумя известными значениями функция меняется линейно. Но живший в XI веке хорезмиец аль-Бируни разработал более точный способ интерполяции, основанный на замене данной функции квадратичной. Он применил свой способ только к таблицам синусов и тангенсов, но в одном месте указал, что этот способ «применим ко всем таблицам». Здесь впервые встречается мысль о «всех таблицах», т. е. о всевозможных зависимостях между величинами.
Графическое изображение зависимостей. Исследование общих зависимостей началось в XIV веке. Средневековая наука была чисто словесной, она опиралась на рассуждения, высказывания древних философов или на цитаты из религиозных книг. Поэтому и научные результаты выражались словесно как утверждения о связи между собой различных качеств предметов. Тогда же возникла научная школа, которая утверждала, что качества могут быть более или менее интенсивными (платье человека, свалившегося в реку, мокрее, чем у того, кто лишь попал под дождь).
Французский ученый Николай Оресм стал изображать интенсивности длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им «линией ин-тенсивностей» или «линией верхнего края». Современный читатель сразу узнает в ней график соответствующей функциональной зависимости. Оресм изучал даже «плоскостные» и «телесные» качества, т. е. функции, зависящие от двух или трех переменных.
Важным достижением Оресма была попытка классифицировать получившиеся графики. Он выделил три типа качеств: равномерные (т. е. с постоянной интенсивностью) , равномерно-неравномерные (для которых скорость изменения интенсивности постоянна) и неравномерно-неравномерные (все остальные), а также указал характерные свойства графиков таких качеств.
В работах Оресма и его предшественника Суайнсхеда встречаются понятия мгновенной скорости и ускорения. Оресму удалось даже с помощью геометрических соображений найти путь, проходимый телом при равноускоренном движении. Разумеется, точного определения мгновенной скорости и ускорения он не давал, но понимал, что путь при равноускоренном движении можно геометрически изобразить площадью треугольника.
Идеи Оресма намного обогнали тогдашний уровень науки. Чтобы развивать их дальше, нужно было уметь выражать зависимости между величинами не только графически, но и с помощью формул, а буквенной алгебры в то время не существовало. Лишь после того, как в течение XVI века была постепенно создана буквенная алгебра, удалось сделать следующий шаг в развитии понятия функции.
Переменные величины. На протяжении XVI и XVII веков в естествознании произошла революция, приведшая к глубочайшим изменениям не только в технике, но и в мировоззрении людей. После того как Коперник создал гелиоцентрическую систему, «остановив Солнце и двинув Землю», нельзя уже было верить, что Земля — центр мироздания, а библейские сказания непогрешимы. Казалось, что мир сорвался со своих опор, что разрываются прочнейшие связи.
Астрономия, которая до этого в основном обслуживала астрологию (лженауку, пытавшуюся предсказывать судьбы людей и государств по положению планет и звезд), стала чуть не каждый день приносить новые сведения о мире — люди узнали о спутниках Юпитера, фазах Венеры, пятнах на Солнце и т. д. Инженеры придумывали новые машины, усовершенствовали часы, мореплаватели возвращались из дальних странствий и рассказывали о новых континентах и таинственных странах, которые они открыли во время путешествий.
Все это привело к изменению мировоззрения людей — они стали смотреть на мир не как на поле приложения божественной воли, а как на механизм, управляемый своими законами. И основной задачей науки стало открытие этих законов, описание их в терминах математики. Перед математикой возникли новые задачи, недоступные для существовавшей тогда науки, имевшей дело лишь с постоянными, неподвижными объектами. Нужны были новые математические методы, которые позволили бы описывать мир, полный движения и перемен.
Одним из первых задумался над такими задачами
основатель динамики Галилео Галилей (1564—1642).
Он размышлял о том, как меняется скорость падающего
тела, как движется точка на ободе колеса, как качается
маятник. Но решить такие задачи ему удалось лишь в
простейших случаях. Чтобы создать математический
аппарат для изучения движений, понадобилось понятие
переменной величины.
Это понятие было введено в науку французским философом и математиком Рене Декартом (1596—1650). Жизнь Декарта до того, как он начал заниматься научными исследованиями, была весьма бурной: получив образование в иезуитском коллеже, он сначала вел рассеянную жизнь светского человека в Париже, потом стал наемным солдатом в войсках голландского полководца Морица Нассауского, принимал участие в битвах Тридцатилетней войны, а вернувшись во Францию, участвовал в осаде гугенотской крепости Ла-Рошели, знакомой читателям по роману Александра Дюма «Три мушкетера». Но потом он оставил военную службу и погрузился в занятия наукой.
Еще во время военной службы Декарт пришел к идеям о единстве алгебры и геометрии и о роли переменных величин. Значение его работ Фридрих Энгельс охарактеризовал следующим образом:
«Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление, которое тотчас и возникает и которое было в общем и целом завершено, а не изобретено, Ньютоном и Лейбницем»1.
Декарту удалось уничтожить пропасть, лежавшую со времен древнегреческой математики, между геометрией и арифметикой. После того как в школе Пифагора открыли существование несоизмеримых отрезков, был наложен запрет на использование чисел в геометрии. Вместо этого греческие математики применяли отношения отрезков, плоских фигур и пространственных тел, не выражая их числами. Действия над числами в такой геометрической алгебре заменяли действиями над отношениями; вместо произведения чисел греки говорили о площади прямоугольника, построенного на данных отрезках, а произведение трех чисел истолковывали как объем прямоугольного параллелепипеда. Разумеется, ни о произведении более чем трех чисел, ни о сложении «площадей» с «объемами» в. этой алгебре не было и речи. Любопытно, однако, что греческий математик Папп, живший в III веке н. э., писал: «... не существует ничего, что заключало бы больше, чем три измерения. Однако незадолго до нас стали позволять себе выражаться подобным образом, не указывая, впрочем, при этом что-нибудь сколько-нибудь вразумительное».
Чтобы освободить алгебру от несвойственного ей геометрического языка, Декарт ввел фиксированный единичный отрезок и стал рассматривать отношения других отрезков к нему. По сути дела, эти отношения были не чем иным, как положительными действительными числами. Благодаря такому подходу произведение двух чисел х и у удалось выразить не как площадь прямоугольника со сторонами х и у, а как длину z
отрезка, где z
: х = =
у:1.
Это позволило рассматривать и выражения, в которых слагаемые имели разные степени, например: х+ 2у2.
Декарт считал, что в основе познания лежит сравнение между собой предметов одинакового рода, их измерение, а главная роль «человеческого искусства» состоит в установлении равенств между искомыми и данными вещами. При этом отношение между вещами выражалось через отношение их мер, т. е. по сути дела через действительные числа. Тем самым, зависимости между величинами стали выражаться как зависимости между числами. Это была неявно выраженная идея числовой функции числового аргумента.
При записи зависимостей между величинами Декарт стал применять буквы. При этом операциям над величинами соответствовали операции над буквами. Теперь уже для преобразования одной зависимости в другую не надо было писать громоздкие пропорции, изучать подобные треугольники и преобразовывать геометрические фигуры. Достаточно было по твердо установленным правилам делать алгебраические преобразования, причем все эти преобразования производились в общем виде.
Кривые и уравнения. Отношения между известными и неизвестными величинами Декарт выражал в виде уравнений. Чтобы наглядно изображать уравнения, он заменял все величины длинами отрезков. По сути дела, здесь была заложена идея метода координат. Как уже говорилось, еще греческие астрономы задавали положение звезд на небесной сфере долготой и широтой. Но лишь Декарт начал геометрически изображать не только пары чисел, а и уравнения, связывающие два числа. Одновременно с Декартом к мысли о соответствии между линиями и уравнениями пришел другой французский математик — Пьер Ферма (1601 —1665). Он был советником тулузского парламента и занимался математическими исследованиями лишь в свободное время. Тем не менее Ферма получил ряд первоклассных результатов в теории чисел и в других областях математики.
После работ Декарта и Ферма возникла аналитическая геометрия — новая ветвь математики, в которой линии изучались не геометрическими методами, а путем исследования их уравнений.
Алгебраические и трансцендентные кривые. К началу XVII века математики знали такие кривые линии, как эллипс, гиперболу, параболу и т. д. Однако в то время еще не было общего метода изучения линий, и потому исследование каждой кривой превращалось в сложную научную работу.
Открытия Декарта и Ферма дали в руки математиков метод для получения и изучения новых кривых — надо было написать уравнение кривой и делать выводы, исследуя это уравнение. Сам Декарт в 1638 году придумал новую кривую, уравнение которой имеет вид х в 3+ + у3—Заху = 0, а>0 (рис. 1). Ее сейчас называют декартовым листом. Любопытно, что хотя Декарт применял уже в своей алгебре не только отрицательные, но даже мнимые числа, он не рассматривал отрицательных значений координат. Первоначально декартов лист считали симметричным относительно осей координат (рис. 2), т.е. изображали линию |х|3+|у|3—За|ху|=0. Окончательно форма кривой была установлена лишь через полстолетия X. Гюйгенсом (1629—1695) и Иоганном Бернулли (1667—1748).
Декартов лист, эллипс, гипербола, парабола являются алгебраическими кривыми. Так называют кривые, уравнение которых имеет вид Р(х, у) = 0, где Р(х, у) — многочлен от х и у. Но уже Галилей и Декарт изучали циклоиду — кривую, описываемую точкой обода колеса, катящегося без скольжения по прямой дороге (или, говоря математически, траекторию точки окружности, катящейся без скольжения по прямой линии). Эта кривая состоит из бесконечного числа арок, каждая из которых соответствует полному обороту колеса (рис. 3). Можно доказать, что уравнение одной арки циклоиды имеет вид Так как в это уравнение входит обратная тригонометрическая функция, циклоида не является алгебраической кривой.
Рис 1 рис 2 рис 3
К неалгебраическим кривым нельзя было применять алгебраические методы, разработанные Декартом. Поэтому их назвали трансцендентными кривыми (от латинского «трансценденс» — выходящий за пределы). Некоторые трансцендентные кривые были известны еще древнегреческим математикам. Например, в связи с задачей о спрямлении окружности (построении отрезка, длина которого равна длине этой окружности) Архимед построил особую спираль, определив ее на языке механики как траекторию точки, совершающей равномерное и поступательное движение по лучу, который в это же время равномерно вращается вокруг своего начала (рис. 4).
Другие кривые кинематического происхождения приходилось рассматривать астрономам. Как известно, великий астроном древности Птолемей, пытаясь объяснить движение планет по небу, придумал сложную систему мироздания. Он считал, что в центре Вселенной находится Земля; а планеты равномерно вращаются по окружностям, центры которых, в свою очередь, равномерно вращаются вокруг Земли. Если начертить эти траектории, то появятся возвратные движения и петли, которые и хотел объяснить Птолемей. Следует отметить, что при более точном изучении выявились расхождения между теорией Птолемея и наблюдениями, а потому пришлось вводить третьи окружности, а там и четвертые. В результате получилось нагромождение окружностей, в котором невозможно было разобраться. Король Альфонс X, которому попытались объяснить систему Птолемея, сказал: «Жаль, что меня не было, когда бог творил мир: я посоветовал бы ему сделать мироздание проще». Столь непочтительное заявление чуть не стоило ему короны — его обвинили в богохульстве.
Но не только «небесные» причины заставляли математиков изучать различные кривые. Со многими кривыми приходилось иметь дело и в связи с вполне земными заботами. Картографы интересовались формой меридианов и параллелей при различном выборе проекции земного шара на плоскость, мореплаватели — линией, по которой, корабль пересекает все меридианы под одним и тем же углом, инженеры — очертаниями зубчатых колес, кулачковых механизмов и других деталей машин, а также винтовыми кривыми и поверхностями и т. д.
Например, архимедова спираль позволяет преобразовать равномерное вращательное движение в равномерное возвратно-поступательное движение. Для этого надо изготовить эксцентрик, профиль которого состоит из двух дуг архимедовой спирали (рис. 5). При равномерном вращении этого эксцентрика стержень NM
, скользящий концом по его профилю, равномерно движется то вверх, то вниз (у архимедовой спирали расстояние \ОМ\ пропорционально величине угла поворота).
Рис4 рис 5 рис 6
У такого эксцентрика есть недостаток — из-за заострений в точках пересечения спиралей скорость движущейся точки меняется при изменении направления скачком, что приводит к ударам и быстрому разрушению машины. Поэтому предпочитают гладкие эксцентрики, очерченные по так называемой улитке Паскаля. Она получается, если из точки О, лежащей внутри окружности, опустить перпендикуляры на каждую
касательную к окружности и взять кривую, состоящую из оснований этих перпендикуляров (рис. 6). Если очертить эксцентрик по улитке Паскаля, то скорость будет меняться плавно, причем равномерное вращательное движение эксцентрика преобразуется в гармонические колебания стержня (относительно таких колебаний см. с. 155).
После того как были открыты логарифмы, стали изучать свойства графиков логарифмической и показательной зависимостей. Задачи механики требовали отыскания формы провисшего каната (так называемой цепной линии). Поиски кривой, длина дуги которой пропорциональна разности длин векторов, проведенных в ее концы, привели к открытию логарифмической спирали. В течение XVII
столетия было открыто больше кривых, чем за всю предшествующую историю математики, и по-надобились общие понятия, которые позволили бы единым образом трактовать и изучать как алгебраические, так и трансцендентные кривые, как тригонометрические, так и логарифмические зависимости. Выработка этих общих понятий, а именно понятий производной, интеграла и бесконечного ряда, ознаменовала новый этап математики — открытие дифференциального и интегрального исчислений. Об этом будет изложено позже, а здесь расскажем, как было введено общее понятие функции и какие изменения оно потом претерпело.
Рождение термина. После того как в науку вошли переменные величины, были изучены траектории движущихся точек, расцвела вычислительная математика и была создана буквенная алгебра внимание ученых обратилось к изучению соответствий между величинами. С помощью координат удалось изобразить эти соответствия графически. Математика стала языком естествознания, причем в формулировке законов природы использовали не только алгебраические, но и тригонометрические функции.
В своей «Геометрии» Декарт писал: «Придавая линии1 у последовательно бесконечное множество различных значений, мы найдем также бесконечное количество значений х и, таким образом, получим бесконечное количество различных точек...; они опишут требуемую кривую линию». Здесь ясно выражена идея функциональной зависимости величин у и х, идея геометрического выражения этой зависимости, или, как мы сказали бы теперь, графика функции.
Но у Декарта, как и у его современников, понятие функции было изложено на языке геометрии или механики. Это объясняется тем, что запас функций, которые использовали в то время математики для выражения физических законов, был очень узок. Даже логарифмы воспринимались лишь как средство вычислений, а не как значения логарифмической функции. Чтобы охватить с единой точки зрения различные случаи зависимости величин друг от друга, понадобилось новое, весьма общее понятие.
В науке часто бывает так, что ученые длительное время применяют в неявном виде некоторое понятие. Однако из-за отсутствия названия оно встречается под
различными личинами, а одни и те же рассуждения повторяются каждый раз заново. И лишь когда оно получает имя, все замечают, что уже давно работали с ним. Так случилось, например, с терминами «предел», «отображение», а на нашей памяти с такими понятиями, как «обратная связь», «информация» и т. д. Введение нового
термина приводит к уточнению соответствующего понятия, освобождению его от всего случайного и несущественного, к выяснению общности рассуждений, проводившихся независимо друг от друга в различных областях науки.
Так случилось и после того, как в конце XVII века Лейбниц (1646—1716) и его ученики стали применять термин «функция». Вначале этот термин употребляли еще в очень узком смысле слова, связывая лишь с геометрическими образами. Речь шла об отрезках касательных к кривым, их проекциях на оси координат и о «другого рода линиях, выполняющих для данной фигуры некоторую функцию» (от латинского «функтус» — выполнять). Таким образом, понятие функции еще не было освобождено от геометрической формы.
Лишь И. Бернулли дал определение функции, свободное от геометрического языка: «Функцией переменной величины называется количество, образованное каким угодно способом из этой переменной величины и постоянных». Оно привело в восхищение престарелого Лейбница, увидевшего, что отход от геометрических образов, знаме-нует новую эпоху в изучении функций.
Определение Бернулли опиралось не только на работы Лейбница и его школы, но и на исследования великого математика и физика Исаака Ньютона (1643—1727), который изучил колоссальный запас самых различных функциональных зависимостей и их свойств. Вместо слова «функция» Ньютон применял термин «ордината». Он сводил изучение геометрических и физических зависимостей к изучению этих «ординат», а сами «ординаты» описывал различными аналитическими выражениями.
Чтобы определение функции, данное И. Бернулли, стало полноценным, надо было условиться, какие способы задания функций следует считать допустимыми. Обычно считали, что допускаются функции, заданные выражениями, в которые входят числа, буквы, знаки арифметических действий, возведения в степень и извлек чения корней, а также обозначения тригонометрических} обратных тригонометрических, показательных и логарифмических функций. Такие функции называли элементарными. Вскоре выяснилось, что интегралы от них не всегда выражаются через элементарные функции. В связи с этим пришлось добавить новые функции, получающиеся при вычислении интегралов от элементарных функций, при решении дифференциальных уравнений и т.д. Многие из этих функций нельзя было явно выра-зить с помощью ранее известных операций. Поэтому один из самых замечательных математиков XVIII века Леонард Эйлер (1707—1783), вводя в своем учебнике понятие функции, говорит лишь, что «когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых». В одной из работ он даже говорит о графике функции как о кривой, начерченной «свободным влечением руки».
Книги Эйлера содержат результаты исследований Лейбница и его учеников, а также многочисленные результаты самого автора (полное собрание сочинений Эйлера состоит из нескольких десятков громадных томов). Они сыграли важную роль в освобождении математического анализа от языка геометрии и механики. В них впервые теория тригонометрических функций была изложена без ссылки на геометрию, а показа-тельная и логарифмическая функции стали равноправными с алгебраическими. Все книги Эйлера пронизывает идея, что математический анализ есть наука о функциях, что «весь анализ бесконечно малых вращается вокруг переменных количеств и их функций».
Спор о функции. К середине XVIII
века ученые решили многие задачи механики, связанные с движением отдельных точек. Математикам и астрономам удалосьточно предсказать год, когда на небе вновь засияет комета Галлея. До этого астрономы могли предсказывать лишь лунные и солнечные затмения, да и то не путем вычислений, а на основе предшествующих наблюдений. Эйлеру удалось справиться с труднейшей задачей о движении Луны, которую давно мечтали решить многие математики,— от этого решения зависело точное вычисление долгот, необходимое для мореплавателей. Хотя не все задачи механики точек были решены (а некоторые из них, например задача о движении трех точек, притягивающих друг друга по закону Ньютона, не решены и поныне), в центре внимания математиков оказались проблемы механики сплошных тел: колебания струн, мембран и стержней, распространение волн в жидкостях и газах, тепла в стержнях и кольцах и т. д. Простейшей из этих проблем было изучение колебаний струны. Их закон определяется функцией двух переменных u
=
f
(
x
,
t
),
показывающей отклонение точки с координатой х в момент времени t
. Решая эту задачу, Эйлер доказал, что если вначале все точки струны находились в состоянии покоя, а колебания вызваны отклонением струны от положения равновесия, то решение имеет вид
Здесь ф(х) —отклонение струны в точке х при t = 0, ф{х)=и(х, 0).
За год до Эйлера такое же решение получил иным способом французский математик Даламбер (1717— 1783). Между Эйлером и Даламбером вспыхнул спор о том, как надо толковать найденное ими решение. Дело в том, что первоначальное отклонение струны могло на различных участках задаваться различными выражениями. Например, если приподнять струну за середину, то она примет вид равнобедренного треугольника (рис. 7), и функция будет выражаться так:
Эйлер считал эту форму задания начального условия законной и полагал, что найденное им решение относится и к таким случаям. Даламбер же требовал,
чтобы начальное условие задавалось лишь одним выражением для всех значений х.
Спор Эйлера с Даламбером был в самом разгаре, когда в него вмешался еще один математик — Даниил Бернулли (1700—1782), один из крупней-
ших знатоков того времени в области теории упругости. Он дал решение задачи о колебаниях струны с закрепленными концами и длиной l в виде бесконечной суммы:
где коэффициенты а, в, у, ... — функции от времени.
Сам Д. Бернулли был убежден, что его решение охватывает самый общий случай, но с ним не согласились ни Эйлер, ни Даламбер. Эйлер ошибочно считал, что это решение не может быть общим, так как не верил, что одна и та же функция может выражаться и несколькими формулами (как, например, (2)), и одной формулой (3). Ведь это противоречило общему мнению математиков того времени, считавших, что два различных выражения не могут задавать одну и ту же функцию. Ни Эйлер, ни Д. Бернулли не сумели доказать справедливость своей точки зрения. Поэтому в конце XVIII
века математики, давая определение функции, уклонялись от ответа на вопрос, как же она выражается. Например, французский математик Лакруа (1765—1843) писал: «Всякое количество, значение которого зависит от одного или многих количеств, называется функцией этих последних, незави-симо от того, известно или нет, какие операции нужно применить, чтобы перейти от них к первому». Таким образом, Лакруа уже не отождествлял понятия функции и ее аналитического выражения.
Сущность и кажимость функции. Окончательный разрыв между понятиями функции и ее аналитического выражения произошел в начале XIX века. Французскому математику Фурье (1768—1830) удалось доказать, что любые встречающиеся в практических вопросах функции, имеющие период 21, можно представить в виде суммы
бесконечного ряда, похожего на ряд (3), но содержащего еще члены с косинусами и свободный член и имеющего постоянные коэффициенты. Хотя такие ряды употреблялись еще в XVIII веке, их стали называть рядами Фурье, поскольку он показал все многообразие их применений. При этом условия, необходимые для разложимости функции в ряд Фурье, были таковы, что им удовлетворяла, например, функция, график которой получается из графика, изображенного на рисунке 7, путем центральной симметрии относительно начала координат и последующего периодического продолжения на всю ось. Позднее Фурье и его последователи, среди которых следует отметить русского ученого М. В. Остроградского (1801 — 1862), изучили еще более общие разложения функций в ряды и применения таких разложений для решения задач математической физики.
После работы Фурье стало ясно, что несущественно, каким аналитическим выражением задана функция, что это только, как говорят философы, кажимость (от слова «казаться»). А существо дела в том, какие значения принимает функция при заданных значениях аргумента. После длительного уточнения этой идеи, в котором приняли участие Фурье, Н.И.Лобачевский (1792—1856), немецкий математик Дирихле (1805—1859) и другие ученые, общепризнанным стало следующее определение:
Переменная величина у называется функцией пере
менной величины х, если каждому значению величины х
соответствует единственное определенное значение вели
чины у.
Интерес Н. И. Лобачевского и Дирихле к определению понятия функции был связан с тем, что они занимались вопросом о разложении функций в ряды Фурье, обобщив условия разложимости, которые дал Фурье.
Тератология функций. Указанное выше
Эта функция была совсем непохожа на изучавшиеся в XVIII веке. Самое малое
определение функции было очень общим и, как часто бывает в математике, охватывало гораздо больше объектов, чем этого хотелось его авторам. Например, под это опреде-ление попадает и введенная Дирихле функция:
превратить рациональное число в иррациональное, а иррациональное в рациональное и тем самым резко изме-нить значение функции. Иными словами, на сколь угодно малом отрезке эта функция принимает и значение 0, и значение 1, а потому ее график невозможно нарисовать. В то же время ясно, что D(0,75) =1, a D
(корень из 2) = 0. Разумеется, такая функция не может возникнуть в каком-либо практическом вопросе именно из-за «неустойчиво-, сти» своих значений. Дирихле пытался выяснить, могут ли такие всюду разрывные функции быть разложены в, ряды Фурье, но не смог получить ответа на этот вопрос,
В течение 25 лет после появления работы Дирихле изучение столь «патологических» функций не вызывало особого интереса. Во всяком случае, когда немецкий математик Бернгардт Риман (1826—1866) вновь занялся изучением подобных функций, он писал:
«При всем несовершенстве наших знаний о том, как изменяются в бесконечно малом силы и состояния материи в зависимости от места и времени, все же мы можем с уверенностью сказать, что те функции, на которые не распространяются условия Дирихле, в природе не встре-чаются. Тем не менее нужно думать, что случаи, не рассмотренные Дирихле, заслуживают внимания по двум причинам. Во-первых, как указывает сам Дирихле в заключение своей работы, этот вопрос стоит в теснейшей связи с основными принципами исчисления бесконечно малых и может служить для того, чтобы придать этим принципам большую ясность и определенность. С этой точки зрения исследование упомянутых случаев представляет непосредственный интерес.
Во-вторых, область применения рядов Фурье не огра-ничивается одними лишь физическими задачами; эти ряды применяются теперь с успехом также в области чистой математики, а именно в теории чисел, и можно думать, что здесь как раз те функции, представимость которых с помощью тригонометрических рядов не была выяснена Дирихле, должны играть важную роль».
Научный авторитет Римана был очень велик. Поэтому после появления его работы возник интерес к функциям со столь необычным поведением. Но эти исследования приветствовались далеко не всеми учеными. Математики классического направления считали, что наука не должна иметь дело с объектами, столь далекими от реального мира. Их мнение об исследованиях функций, подобныхфункциям Дирихле D
(
x
), или функций, нигде не имеющих производной (их график имеет излом в каждой точке), ярко выразил один из крупнейших математиков того времени Анри Пуанкаре (1854—1912). Он сказал: «Раньше, когда изобретали новую функцию, то имели в виду какую-нибудь практическую цель. Теперь их изобретают, не извлекая из них никакой пользы, а только для того, чтобы обнаружить недостатки в рассуждениях наших отцов». Еще резче выразился на эту тему руководитель французской математики конца XIX века Шарль Эрмит (1822—1901), который написал своему другу голландскому математику Стилтьесу (1856—1894), что он «с ужасом и отвращением отворачивается от этой разрастающейся язвы функций, не имеющих производной». Новую математику, математику разрывных функций, классики называли «тератологией» функций (наукой об уродствах функций).
Но молодежь тянулась к новым областям науки, не обращая внимания на ворчание математиков предыдущего поколения. Во Франции их вдохновляли лекции Жюля Таннери (1848—1910) и Камилла Жордана (1838—1922), строивших курс математического анализа на твердой основе точных определений, безупречных доказательств и железной логики. Они усваивали на этих лекциях, что хотя разрывные функции и не встречались в существовавших тогда приложениях математики, их надо изучать, так как этого требуют правильно понимаемые интересы математики. Эти идеи накапливались, переходили в убеждения, становились стимулом к научной работе. И в 1898 году молодой французский ученый Ренэ Бэр (1874—1932) защитил диссертацию, в которой дал глубокую классификацию разрывных функций. В том же году появилась книга одного из самых ярких лидеров молодежи двадцатисемилетнего математика Эмиля Боре-ля (1871 —1956), посвященная новой теории функций. Замечательные работы по интегрированию разрывных функций написал Анри Лебег (1875—1941), начинавший в то время свою научную деятельность.
Интерес к разрывным функциям не ограничивался Францией. Активнейшую роль в этих исследованиях играли русские математики. Глубокие свойства разрывных функций открыли Д. Ф. Егоров (1869—1931) и И. Н. Лузин (1883—1950).^рв^зин стал основателем московской школы теории функций действительного пере-
менного, которую ее участники называли «Лузита-нией».
Функции, отображения и соответствия. Но и определение функции, восходящее к Лакруа и Фурье, Лобачевскому и Дирихле, стало казаться математикам второй половины XIX века недостаточно строгим и общим. Изощренные в исследовании функций, не заданных никаким аналитическим выражением, функций, нигде не имеющих производной, они подвергли сомнению слова «переменная величина», входившие в это определение.1 Ведь понятие переменной величины было не столько ма-тематическим, сколько физическим, его трудно было пояснить, не прибегая к наглядным образам. А главное, это определение говорило лишь о числах, о соответствиях между числами. Но если отказаться от аналитического задания функций, то можно рассматривать соответствия между любыми объектами. Ведь даже когда дают имена вещам, то устанавливают соответствие между множеством вещей и множеством имен. А при вычислении площадей фигур, длин линий, объемов тел устанавливают соответствия между геометрическими фигурами и числами.
Столь общий подход к понятию функции, при котором отождествляются понятия функции, отображения, оператора, мог возникнуть лишь после того, как во второй половине XIX века было введено общее понятие множества. И именно творцы теории множеств Г. Кантор (1845—1918) и Р. Дедекинд (1831 — 1916) дали общее определение отображения. Его можно сформулировать:
Пусть X
и У — два множества; говорят, что задано отображение
f
множества X
в множество У, если для каждого элемента х из X
указа» соответствующий ему элемент у из У. Этот элемент у называют образом элемента х при отображении f
и обозначают f
(
x
). Таким образом, числовые функции числового аргумента являются отображениями одного числового множества в другое. Введение в математику общего понятия об отображеиии множеств позволило прояснить и ряд вопросов, относя-щихся к функциям, например уточнить, что такое обратная функция, сложная функция и т. д.
В начале XX века на базе теории функций возникла новая ветвь математики — функциональный анализ В нем изучают множества, состоящие из функций, по-следовательностей, линий, в которых определены опера ции сложения и умножения на числа. Эти операции обладают свойствами, похожими на свойства операций над векторами. Однако в отличие от нашего пространства, имеющего лишь три измерения, изучаемые в функциональном анализе пространства могут быть бесконечномерными. Это не мешает специалистам по функциональному анализу применять в своих исследованиях геометрический язык.
В функциональном анализе спокойно говорят об ортогональных системах функций, обобщая тем самым на функции привычное понятие перпендикулярных (ортогональных) векторов, разлагают по таким системам функций любую другую так же, как геометры разлагают векторы по базисным векторам, используют понятие расстояния точки от гиперплоскости и т. д. Это использование геометрического языка позволяет делать наглядными применявшиеся ранее методы математического анализа, использовать геометрическую интуицию для решения тех проблем, где ранее ей не было места.
Разумеется, тот факт, что работать приходится в бесконечномерном пространстве, налагает свой отпечаток и приводит к тому, что для некоторых построений функционального анализа нет аналогов в обычной геометрии. Например, известный американский математик Н. Винер построил в бесконечномерном пространстве спираль, для которой касательные, проведенные в любых двух точках, перпендикулярны друг другу. Но несмотря на причудливость такого геометрического образа, он оказался очень полезным при изучении столь важного для практики раздела математики, как теория случайных процессов.
Хотя функциональный анализ кажется очень абстрактной наукой, он находит многочисленные приложения в вычислительной математике, физике, экономике, позволяя с единой точки зрения трактовать самые различные вопросы и вскрывать геометрическую сущность проблем, которые на первый взгляд очень далеки от геометрии. Говоря о связи абстрактной науки с практикой, видный математик Р. Курант (1888—1972) писал:
«Мы стартуем с Земли и, сбросив балласт излишней информации, устремляемся на крыльях абстракции в заоблачные высоты, разреженная атмосфера которых облегчает управление и наблюдение. Затем наступает решающее испытание — приземление; теперь нужно установить, достигнуты ли поставленные цели...»
А Лебег говорил: ■
«Те люди, которым мы обязаны отвлеченной научной! мыслью, могли, занимаясь абстрактными вещами, делать; тем не менее полезное дело, именно потому, что они| имели особенно обостренное чувство действительности».;
В XX веке понятие функции подверглось дальнейшим; обобщениям. Возникло понятие функции, отражавшее, свойства физических.величин, сосредоточенных в отдельных точках, на линиях или поверхностях. Потребности; физики привели к изучению функций, принимавших слу-чайные значения (например, числа телефонных разгово-J ров, состоявшихся в течение данного промежутка вре-. мени). Но методы математического анализа позволили; справиться и с проблемами теории случайных функций,' нашедшей многочисленные приложения в физике и технике.
Но как бы далеко ни отходило то или иное обобщение понятия функции от казавшихся столь наивными определений Бернулли и Эйлера, к каким бы сложным объектам оно ни прилагалось, в основе всех замысловатых построений лежала одна и та же мысль о существовании взаимозависимых величин, знание значения одной иэ»которых позволяет найти значение другой величины. И поскольку измерение величин является отправным пунктом всех применений математики, а математика в значительной L степени является наукой о взаимосвязи величин, то в ходе \ развития понятия функции нашел свое отражение беспрес-1 тайный процесс эволюции математики, которая все время [■ включает в себя новые проблемы, обрабатывает их, отбрасывает устаревшие, и, таким образом, все вновь и вновь омолаживается.
Жизненные соки математики поступают в нее из кор-
ией, которые уходят своими бесчисленными разветвления- [
ми в реальность, т. е. в механику, в физику, биологию, [
экономику и т. д. И если какая-то область математики в |
своем развитии разливается иа множество мелких ручьев, [
превращаясь в хаос запутанных частностей, единственным |
лекарством является возвращение к истокам, т. е. новое ;
приближение к более или менее явным эмпирическим иде- \-
ям. Это всегда было необходимым условием сохранения L
свежести и жизненной силы математики.