Реферат Вопросы для самоподготовки к зачетам и экзаменам по материаловедению
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
1. Понятие о Ме. Природа Ме связи. Осн. св-ва Ме . Роль рус ученых в развитие науки о Ме. од Ме понимают в-ва, обладающие характерным блеском, в той или иной степени присущей всем Ме, и пластичностью. Кроме того все Ме обладают высокой электро- и теплопроводностью, положительным темпер коэфф-м линейного расширения, термоэлектронной эмиссией, около 30 Ме сверхпроводимостью Наличие этих св-в характеризуют Ме состояние в-ва. Для Мех харак-ны Ме связи, кот-е возникают при образовании из внешних электронов(ел-в) «-» заряженный эл-й газ. В рез-те чего «+» ионы образуют плотную, но пластичную крист.реш-ку. При Ме связи м/у ионами и Эл-м газом возникают электростатич-е силы притяжения, кот-е связывают ионы. Ионы в тв.Ме расположены на таком расстоянии друг от друга, в кот-х силы взаимного притяжения и отталкивания= Основоположником материалов стал П.П.Аносов – раскрыл секрет булатной стали, применил микроскоп, работал над качеств. сталью. Научный основопол-к матер-ия Д.К.Чернов – обнаружил, что в процессе нагрева и последующего охлаждения изм-ся стр-ра стали, обнаружил диапазон этих температур(критические точки Чернова), сделал наброски диаграммы Fe-C.
Материаловедение – это наука, изучающая строение и свойства металлов и устанавливает связь между составом, структурой и свойствами.
Определение металлам дают с точки зрения той науки, с позиции которой ее рассматривают.
Металлы с точки зрения физики и техники обладают общностью атома кристаллического строения и характерными физическими свойствами.
3. Кристаллизация.
Объемная составляющая свободной энергии:
где U - внутренняя энергия системы, TS - связанная энергия системы, представляющая собой произведение температуры T на энтропию S.
С ростом температуры свободная энергия любой системы снижается по кривой направленной выпуклостью вверх.
Энтропия жидкости выше энтропии кристаллов.
Для начала кристаллизации необходимо переохлаждение, а для начала плавления необходим перегрев. Только в этом случае уменьшение объемной составляющей свободной энергии превысит увеличение поверхностной составляющей свободной энергии. Для этого требуются два условия:
1. Температура должна быть ниже температуры кристаллизации
2. Объем, самопроизвольно образующегося зародыша, должен быть достаточно большим.
Кристаллизация жидкости возможна при условии:
Величина переохлаждения чистых жидкостей малого объема, при которых активно образуются устойчивые зародыши кристаллов, достаточно велика ~ 0,2 Тпл. Именно при таких переохлаждениях должна начаться кристаллизация. Но опыт показывает, что в действительности кристаллизация жидкостей начинается при существенно меньших переохлаждениях. что жидкости, как правило, содержат примеси. Наличие поверхностно-активных примесей, растворенных в жидкости, снижает поверхностное натяжение на границе раздела «кристалл-жидкость», и, тем самым, уменьшает объем критического зародыша. Наличие в жидкости нерастворенных частиц, обеспечивает появление готовых поверхностей раздела, от которых начинается кристаллизация.
5.Кристаллическая решетка.
Элементарная ячейка кристалла – та минимальная конфигурация атомов, кот. сохраняет свойства кристалла и при трансляции которой можно заполнить сколь угодно большой кристалл.
Координационное число – число ближайших соседей атома.
У элементов четвертой группы ковалентная насыщенная и направленная связь, и у каждого атома четыре соседа. К=4. Элементарную решетку можно представить в виде тетраэдра с одним атомом в центре и четырьмя атомами по вершинам тетраэдра. Кристаллическую решетку с такой элементарной ячейкой имеют элементарный кремний, германий, углерод в модификации алмаза. Этот тип кристаллической решетки принято называть решеткой алмаза.
При образовании ионной связи кристаллические решетки получаются более компактными. К=6. NaCl:
При образовании металлической связи кристаллические решетки становятся еще более компактными. К=8 или К=12. ГЦК, ОЦК, ГПУ:
ОЦК решетку имеют такие металлы, как вольфрам, молибден, ниобий, низкотемпературные модификации железа, титана, щелочные металлы и ряд других металлов. Серебро, медь, алюминий, никель, высокотемпературная модификация железа и ряд других металлов имеют ГЦК решетку. ГП решетка у магния, цинка, кадмия, высокотемпературной модификации титана.
(5) Металлы, описываемые пространственной кристаллической решеткой, под которой понимают наименший комплекс атомов, при многократной трансляции которых по всем направлениям воспроизводится пространственная кристаллическая решетка.
В узлах кристаллической решетки располагаются атомы.
Пространственную кристаллическую решетку легче всего представить в виде элементарной кристаллической ячейки. Ячейка – это та часть решетки, при многократной трансляции которой она и воспроизводится.
Три основные вектора элементарной ячейки называются трансляционными плоскими осевыми единицами.
Абсолютная величина трансляции – это период кристаллической решетки.
Период кристаллической решетки измеряют в анкстреммах
1А=10-
1кХ=1,00202 А
На одну элементарную ячейку приходится различное количество атомов; при чем атомы занимают определенные места в ячейке.
В зависимости от расположения атомов в ячейке различают простые, кубические, объемно-центрированные кубические, гранецентрированные кубические, гексагональные решетки.
1.Простая решетка представляется в виде куба, в узлах которой располагаются атомы.
Простейшая решетка описывается одним параметром, которым является ребро куба а.
2.Объемно-центрированная кубическая решетка (ОЦК) представляет собой также куб, внутри которого дополнительно расположен еще один атом.
Параметры решетки определяются длиной ребра куба а.
3.Гранецентрированная кубическая решетка (ГЦК) представляет собой куб, В центре каждой грани которого расположены дополнительно по одному атому.
4.Гексагональная плотно упакованная решетка. В отличие от кубической характеризуется двумя параметрами а и с.
В случае, если отношение с/а=1,666, то решетка считается плотноупакованной, а иначе – неплотно упакованной.
Примеры:
ОЦК – вольфрам, молибден, железо Fea;
ГЦК – алюминий, медь, никель, железо Feg;
ГПУ – бериллий … .
Некоторые металлы, например индий, имеют тетрагональную решетку.
Свойства металлов при прочих равных условиях определяются типом кристаллической решётки, т.е. количеством атомов, приходящихся на одну элементарную ячейку. На простую ячейку приходит с один полный атом.
На ОЦК ячейку приходится два атома: один атом вносится атомом и один принадлежит только этой ячейке.
Для ВЦК на одну ячейку приходится четыре атома.
Плотность кристаллической решетки определяется, так называемым координатным числом. Под координатным числом понимается число атомов, находящихся на кратчайшем расстоянии от данного атома. Для ОЦК решетки К=8, для ГЦК – К=12 и для ГПУ – К=12.
От величины координатного числа зависит компактность (плотность укладки) кристаллической решетки. Так в простой кристаллической решетки плотность укладки атомов в ячейке составляет менее 50%. В ОЦК – 50%, в решетках с координатным числом 12 – порядка 75%.
8. Дефекты кристаллических решеток.
Всякая система стремится к минимуму свободной энергии (F), где F является разностью между внутренней энергией системы U и связанной энергией системы ТS.
F = U - TS (1)
Внутренняя энергия системы является разностью между энергией атомов в дне потенциальной ямы и истинной энергией системы. Повышение температуры материала или появление упругих напряжений вследствие смещения атомов из равновесного состояния повышает энергию системы. Связанная энергия системы является произведением температуры (Т) на энтропию (S) системы, или меру ее беспорядка.
При смещении атома из равновесного положения, с одной стороны, возрастает внутренняя энергия системы, а с другой стороны, растёт связанная энергия, поэтому появление в кристаллической решетке дефектов может оказаться энергетически выгодным.
Все дефекты кристаллической решетки принято делить на две большие группы: геометрические дефекты и энергетические дефекты. При появлении в решетке геометрических дефектов кристаллическая решетка локально искажается. При наличии энергетических дефектов атомы остаются на своих местах, но энергия одного или группы атомов оказывается повышенной.
В свою очередь, геометрические дефекты принято делить на точечные, линейные, поверхностные и объемные. Протяженность точечных дефектов во всех направлениях мала. Протяженность линейных дефектов велика в одном направлении и мала в двух других направлениях. Поверхностные дефекты имеют большую протяженность по двум направлениям и малую по одному, и объемные дефекты имеют большую протяженность по всем направлениям.
Точечные дефекты.
К ним относятся атомы инородных элементов (легирующих элементом или примесей), межузельные атомы (атомы основного элемента, по каким-либо причинам покинувшие узлы кристаллической решетки и застрявшие в междоузлиях), вакансии или не занятые атомами узлы кристаллической решетки.
Представление о вакансиях было впервые введено Я. И. Френкелем для объяснения процессов диффузии в металлах - материалах с плотноупакованной кристаллической решеткой.
При наличии в кристаллической решетки вакансии атом может перескочить из узла решетки в вакантное место. Тем самым вакансия смещается, и процесс диффузии можно описывать как последовательное перемещение атомов или как движение вакансий.
Согласно модели Френкеля, при образовании вакансий атом из узла кристаллической решетки перепрыгивает в междоузлие, и появляется пара дефектов - вакансия и межузельный атом, или пара Френкеля.
В материалах с ионной связью между атомами основным носителем заряда являются ионы. При появлении вакансий перемещение ионов облегчается, а следовательно, падает удельное электросопротивление. При появлении в материале примесей кристаллическая решетка искажается, энергия материала локально повышается, что способствует облегчению выхода иона из потенциальной ямы. Таким образом, появление любых точечных дефектов ведет к снижению электросопротивления материалов с ионной связью.
В материалах с ковалентной связью присутствие вакансий приводит к обрыву ковалентной связи и появлению на валентной оболочке атома неспаренного электрона. Наличие неспаренных электронов энергетически невыгодно, и атом теряет его. Таким образом, в материале появляются два носителя заряда: отрицательно заряженный свободный (делокализованный) электрон и положительно заряженная дырка. Следовательно, увеличение концентрации вакансий ведет к падению удельного электрического сопротивления материалов с ковалентной связью.
Присутствие неизовалентных примесей ведет к появлению в материале дырок или свободных электронов, то есть к повышению концентрации носителей заряда.
Линейные дефекты.
Дислокации - линейные дефекты кристаллической решетки.
Краевая дислокация. В кристалле имеется оборванная плоскость - экстраплоскость. Вблизи обрыва экстраплоскости остальные плоскости кристаллической решетки изгибаются. Таким образом, вблизи края экстраплоскости кристаллическая решетка искажена. Величина искажений кристаллической решетки быстро снижаются при удалении от края экстраплоскости, но сохраняется при движении вдоль линии обрыва.
Винтовая дислокация:
Особенности вектора Бюргерса:
1) вектор Бюргерса нонвариантен, то есть неизменен. Следовательно, дислокация не может оборваться в кристалле;
2) энергия упругих искажений решетки пропорциональна квадрату модуля вектора Бюргерса;
3) при движении решеточной дислокации с вектором Бюргерса, равным периоду трансляции решетки, кристаллическая решетка не изменяется.
При приложении внешних напряжений дислокации смещаются и выходят на поверхность кристалла, и таким образом осуществляется пластическая деформация.
Влияние дислокаций на свойства:
При полном отсутствии дислокаций прочность кристаллов была бы равна теоретической. Важно отметить, что при повышении плотности дислокаций в обычных материалах их прочность возрастает. Повышение прочности металлов в ходе холодной пластической деформации называют наклепом, или нагартовкой.
Наличие в материале дислокаций резко повышает скорость диффузии.
Искажение кристаллической решетки за счет присутствия дислокаций повышает удельное электрическое сопротивление металлических материалов и снижает удельное электрическое сопротивление неметаллических материалов.
Поверхностные дефекты.
К поверхностным дефектам решетки относятся дефекты упаковки и границы зерен.
Дефект упаковки. При движении обычной полной дислокации атомы последовательно становятся из одного равновесного положения в другое, а при движении частичной дислокации атомы переходят в новые положения, нетипичные для данной кристаллической решетки. В результате в материале появляется дефект упаковки. Появление дефектов упаковки связано с движением частичных дислокаций.
В том случае, когда энергия дефекта упаковки велика, расщепление дислокации на частичные энергетически невыгодно, а в том случае, когда энергия дефекта упаковки мала, дислокации расщепляются на частичные, и между ними появляется дефект упаковки. Материалы с низкой энергией дефекта упаковки прочнее материалов с высокой энергией дефекта упаковки.
Границы зёрен представляют собой узкую переходную область между двумя кристаллами неправильной формы. Ширина границ зерен, как правило, составляет 1,5-2 межатомных расстояния. Поскольку на границах зерен атомы смещены из равновесного положения, то энергия границ зерен повышена. Энергия границ зерен существенно зависит от угла разориентации кристаллических решеток соседних зерен. При малых углах разориентации (до 5°) энергия границ зерен практически пропорциональна углу разориентировки. При углах разориентировки, превышающих 5°, плотность дислокаций на границах зерен становится столь высокой, что ядра дислокаций сливаются.
Рис.20. Зависимость энергии границ зерен (Егр) от угла разориентации (q). qсп1 и qсп2 – углы разориентации специальных границ.
При определенных углах разориентации соседних зерен энергия границ зерен резко снижается. Такие границы зерен называются специальными(Sn). Соответственно углы разориентации границ, при которых энергия границ минимальна, называют специальными углами.
Измельчение зерен ведет к росту удельного электрического сопротивления металлических материалов и падению удельного электрического сопротивления диэлектриков и полупроводников.
10. Понятие о наклепе, текстуре деформации и анизотропии мех. св-в. Холодная пласт. деформация.
Упрочнение Ме при деформировании наз-ют наклепом. Наклеп Ме увел-ся до момента разрыва образца, хотя растягивающ. Нагрузка изменяется от Рmax до Рк. Это объясняется появлением местного утонения. В образце участки в которых сосредотачив. пластич. деформация. При значительности деформации в Ме появляется кристаллографическая ориентация зерен, кот наз-ся текстура деформации. Текстура деформации – это результат одновременного деформирования зерен по нескольким системам скольжения. Она зависит от вида деформирования, кристалич стр-ры Ме, наличия примесей и условий деформирования. При прокатке получ-ся более сложная текстура. В этом случае параллельно плоскости прокатки лежит кристаллогафич пл-ть и направление которой образует с напрвлением прокатки опред угол a. Текстура деформации делает Ме анизотропным. Анизотропия – различие св-в кристаллов в различн направлениях. Все св-ва, кот зависят от сил в/д атомов спр-ся кристаллограф направл. Анизотропия резче выражена в кристаллах с несиметричной крист решеткой. В этом случае зависит от направления натл-ся для всех св-св. В рез-те ХПД и тех явл происх гуменен .
Наклёп – это совокупность структурных изменений и связанных с ними св-в при холодной пластичной деформации.
В рез-те деф-ции зёрна выстраиваются (вытягиваются в направлении действующей нагрузки. Развивается анизотропия в металле. Под анизотропией понимают различие св-в по различным направлениям в металле. Выше св-ва в направлении пластической деформации (действующей нагрузки).
При холодной пластической деформации прочностные хар-ки (твёрдость, предел прочности и растяжений) увеличиваются в 2-3 раза, тогда как хар-ки пластичности (относит. удлинение, относит. сужение) снижаются 30-40 раз.
Упрочнение металлов при холодной пластической деф-ции обусловлена увелич. дефектов кристаллич. решётки (вакансий, дислакаций), увеличением числа дислокаций одного знака, а также увеличением угла разориентации м/у блоками.
Изменение стр-ры при дорекристаллизационном отжиге.
Пластическая деф-ция приводит к переводу металлов в неравновесное состояние, т.е. с повышенным запасом свободной энергии. Как и любая другая сис-ма металл стремиться к уменьшению свободной энергии. Это уменьшение протекает тем интенсивнее, чем выше тем-ра. В зав-ти от тем-ры отжига различают процессы возврата и процессы рекристаллизации.
11.Возврат.
Возврат явл-ся самой низкой температурной обработкой позволяющей воздействовать на структурные состояния деформированного металла. Различают две стадии возврата: низкотемпературную (отдых) и высокотемпературную. (полигонизация).
В процессе отдыха происходит перераспределение точечных дефектов. Перемещаются по кристаллу и дислокации, однако эти перемещения носят локальный хар-р. Дислокации различного знака встречаясь друг с другом взаимно аннигилируют, т.е. взаимоуничтожаются. Рез-ом этого являются некоторые снижения плотности дислокации. В процессе полигонизации происходит перемещение дислокации по кристаллу. Дислокации перемещ-ся хаотич. по объёму кристалла. Под воздействием тем-ры дислокации перемещаясь концентрир-ся в определённых участках стр-ры с образованием стенок и т.наз. полигонов.
После полигонизации происходит некоторый возврат св-в к св-вам металла до деф-ции.
Рекристаллизация.
После достижения опред. тем-р происходит изменение уже на микроскопическом уровне. Под микроскопом на фоне вытянутых зёрен можно наблюдать мелкие зёрна равноосной формы. По мере увеличения длительности отжига или повышении тем-ры происходит рост мелких зёрен за счёт вытянутых деформируемых зёрен. Образование и рост новых зёрен за счёт деформированных зёрен той же фазы наз-ся первичной рекристаллизацией или рекристаллизацией обработки.
При дальнейшем увелич. тем-ры и длительности отжига происходит «поедание» одними зёрнами других зёрен. Следствием явл-ся разнозёренность стр-р. В пределе можно достичь того, что стр-ра металла будет состоять только зи очень крупных зёрен. Это так наз. собирательная рекристаллизация. Тем-ра начала рекристаллиз. не явл-ся постоянной физ. величиной как, например, тем-ра плавления металла. Тем-ра начала рекристаллиз. будет зависеть от степени предварительной деф-ции металла, длительности процесса и ряда др. факторов.
Тем-ра рекристаллиз. для чистых металлов м.б. рассчитана исходя из соотношения предложенного Бочваром А.А.: Tp=aTпл , а=0,2…0,6.
Отжиг, обеспечивающий получение рекристаллиз. стр-ры после холодной пластической деформации наз-ся рекристаллизационным отжигом. Рекрист. отжиг проводиться как межоперационная обработка после операций холодной пластической деформации.
От размера зерна вообще и после рекристаллиз отжига в частности зависят св-ва металла. Чем мельче зерно, тем выше механические св-ва. Чем крупнее зерно, тем ниже мех-кие св-ва, но выше магн. или электр. св-ва. Поэтому, например, трансформаторную сталь после холодной деф-ции подвергают рекрист. отжигу с тем, чтобы как можно больший размер зерна можно было получить.
Холодная и горячая деформация.
Холодная деф. проводиться при тем-рах ниже тем-ры рекристаллиз. и сопровождается наклёпом (наготовка).
Гор. деф. провод-ся при тем-рах выше тем-ры рекристаллиз. При горячей деф. наклёп не происходит поскольку этот наклёп сразу устраняется рекристаллизацией.
12.
Сплавы - это вещества, состоящие из нескольких элементов, взятых в произвольных соотношениях. Сплавы получаются главным образом путем сплавления различных элементов в жидком состоянии, но могут быть получены и за счет диффузии в твердом состоянии, и путем совместной конденсации паров или другими способами. Компонентами сплава называют химические элементы или химические соединения, входящие в состав сплава. В зависимости от химической природы элементов, размера их ионов и типа кристаллической решетки компоненты могут растворяться друг в друге (ограниченно или неограниченно), могут быть нерастворимыми друг в друге или образовывать новые химические соединения. Отдельные однородные части сплавов, отделенные от других частей поверхностью раздела, при переходе через которую химический состав и свойства меняются скачком, называются фазами. Графическое изображение фазовых равновесий в зависимости от температуры и состава принято называть диаграммой состояния.
Как правило, в жидком состоянии компоненты сплавов хорошо растворяются друг в друге. При понижении температуры и кристаллизации из жидкой фазы выделяются твердые фазы, которые могут быть твердыми растворами либо чистыми компонентами. Твердые растворы бывают трех видов: замещения, внедрения и вычитания. Твердыми растворами замещения называют фазы, в которых часть узлов кристаллической решетки заполнены атомами одного сорта, а часть узлов атомами другого сорта. Твердые растворы замещения могут быть ограниченными и неограниченными (непрерывными). Твердыми растворами внедрения называют фазы, в которых атомы растворенного компонента внедрены между атомами второго компонента - растворителя. Твердые растворы внедрения всегда ограниченны. Твердыми растворами вычитания называют фазы на основе химических соединений. В кристаллических решетках таких сплавов часть узлов не занята атомами того или иного сорта, то есть часть атомов как бы вычтена из кристаллической решетки, и в вместо них в решетке остаются вакансии.
Фазовые превращения:
Наиболее важными из фазовых превращений являются:
· кристаллизация - переход жидкой фазы в твердую;
· конденсация - переход газообразной фазы в твердую;
· превращения структуры в твердом состоянии (изменение типа решетки - полиморфные превращения, изменение растворимости фаз при изменении температуры, мартенситное превращение, упорядочение твердых растворов и так далее);
· изменение плотности дислокаций и размера зерен при нагреве деформированных материалов.
Любое фазовое превращение можно рассматривать как результат развития двух процессов: образования зародышей новых фаз и рост этих зародышей. Любое фазовое превращение можно рассматривать как результат развития двух процессов: образования зародышей новых фаз и рост этих зародышей. Термодинамической движущей силой любого фазового превращения является стремление системы к уменьшению свободной энергии F или изобарно-изотермического потенциала G.
15.
Построение диаграмм состояния сплавов ,Критические точки, Изотермы свободной энергии.
Диаграммы состояния строятся в координатах t-оси ординат и концентрация компонентов – ось абсцисс. Линия АДВ – линия ликвидус. а представляет собой геометрическое место точек соответствующих температурам, при которых из жидкости начинают выпадать кристаллы, следовательно выше линии ликвидус сплав находится в жидком состоянии. Линия СДЕ называется солидус. Она представляет собой геометрическое место точек, соответствующих температурам, при которых жидкая фаза исчезает, следовательно ниже линии солидус сплав находится в твердом состоянии. Между линиями ликвидус и солидус сплав находится в жидко- твердом состоянии, и чем ниже температура относительно линии ликвидус, тем больше кристаллов и меньше жидкой фазы в сплаве. В точке Д из жидкости одновременно начинают выпадать кристаллы компонентов (фаз). Для диаграмм этого типа компонент и фаза являются синонимами. Для диаграмм другого типа необходимо говорить только о фазах, поскольку компонент и фаза не являются синонимами. Механическая смесь, состоящая из двух или более фаз, одновременно кристаллизующаяся в жидкости называется эвтектикой. Ниже точки Д на диаграмме структура представляет собой чисто эвтектической.
Правило отрезков.
Посредством правила отрезков можно определить состав фаз в любой двухфазной области и количественное их соотношение. Правило отрезков состоит из двух частей. Первая часть: для того чтобы определить состав фаз через заданную точку в двухфазной области (точка соответствует конкретной температуре) проводят горизонтальную линию до пересечения с линиями, ограничивающими эту область. Проекция точек пересечения на ось концентрации даст нам состав фаз. Вторая часть: для того чтобы определить количество фаз через заданную точку проводят горизонтальную линию до пересечения с линией, ограничивающей эту область. Отрезки между заданной точкой и точками с соответствующим составом фаз обратно пропорциональны их количеству. Правило фаз действует только в двухфазной области.
16.Диаграмма состояния сплава с неограниченной растворимостью компонентов в твердом состоянии. Дендритная ликвация.
Диаграммы состояния показывают изменения фазового состояния сплавов при изменении их состава и температуры, а также позволяют предсказывать свойства сплавов. Связь между составом сплава и его свойствами для различных типов диаграмм состояния впервые была установлена Н. С. Курнаковым и получила название закономерностей Курнакова.
При изоморфности кристаллических решеток, близости строения валентных электронных оболочек атомов и малой разнице в размерах атомов в твердом состоянии элементы образуют неограниченные твердые растворы.
Диаграммы состояния и зависимость свойств от состава для случаев:
а), б) неограниченной растворимости компонентов в твердом состоянии;
в), г) отсутствия растворимости компонентов в твердом состоянии;
д), е) ограниченной растворимости компонентов в твердом состоянии.
Верхняя линия на диаграмме состояния представляет собой геометрическое место точек начала кристаллизации или конца плавления - линию ликвидус. Выше этой линии все сплавы находятся в однофазном - жидком состоянии. Нижняя линия является геометрическим местом точек конца кристаллизации или начала плавления - линия солидус. Ниже этой линии все сплавы также в однофазном - твердом состоянии.
Когда компоненты полностью не растворяются друг в друге в твердом состоянии и растворимы в жидком состоянии, показана на рис. в). В данном случае линия ликвидус выглядит в виде ломаной, причем при некотором составе, называемом эвтектическим (от греческого слова эвтектикос - легкоплавкий), линия ликвидус касается линии солидус. Линия солидус представляет собой горизонтальную линию. Ниже линии солидус в сплава имеется две твердые фазы, являющиеся чистыми компонентами сплава. Поскольку компоненты не растворимы друг в друге, то свойства линейно меняются при изменении состава в соответствии с тем, как меняется количество фаз. Однако вблизи эвтектического состава наблюдается отклонение от линейного закона. Это связано с тем, что при кристаллизации эвтектических сплавов из жидкости одновременно выпадают две твердые фазы, и формируется мелкозернистая структура. Измельчение зерен ведет за собой увеличение электрического сопротивления и прочности эвтектических сплавов.
Ликвация – хим неоднородность состава в различных частях слитка. Дендритная ликвация - .хим неоднородность в пределах каждого дендрита.( В центре кристалла больше всего содержится твердых компонентов.Это измененим сотава внутри кристалла и наз дендритн ликв) Устраняется термообраб-кой и диффузионным отжигом (гомоденизация).
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
1
7. Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии и эвтектикой
Диаграмма состояния для двухкомпонентной системы, компоненты в которой образуют ограниченные твердые растворы, при этом в зависимости от типа диаграммы, диаграммы подразделяются на диаграммы с эвтектикой и диаграммы с перитектикой.
Диаграммы с эвтектикой: компоненты А и В. Фазы: жидкость a,b;a- твердый раствор компонента В в компоненте А;b - твердый раствор компонента А в компоненте В.
Линия АВС – ликвидус. ADCFB – солидус, т.к. компоненты вступают во взаимодействие в твердом состоянии с правой и с левой стороны диаграммы будут находиться так называемые области ограниченной растворимости.
Линия ДК- указывает на то, что растворимость компонента В в А увеличивается с повышением температуры. Растворимость В в А при комп. Температуре будет соответственна на диаграммы. При температуре плавления эвтектики точка Д на диаграмме. Противоположность растворимость компонента А в В не изменяется (линия FL) при комнатной температуре растворимость компонента А в В соответственна точке L при температуре плавления эвтектики в точке L. Горизонтальная линия DCF соответствует температуре, при которой происходит эвтектическая реакция.
Эвтектика – это механическая смесь двух или более фаз одновременно кристаллизующихся из жидкости. В точке С происходит чисто эвтектическая реакция, которая записывается как жидкость точки С распадается на a - твердый раствор точки Д и b - в точке F.
Кривые охлаждения.
С=К-Ф+1
С0-1=2-1+1=2 С1-2=2-2+1=1
Диаграмма с перлитом.
Компоненты А,В, жидкост, a,b.
В отличие от эвтектической реакции при перитектической реакции жидкость взаимодействует с кристаллами выпавшей фазы с образованием кристаллов новой фазы.
Диаграммы состояния и зависимость свойств от состава для случаев: а), б) неограниченной растворимости компонентов в твердом состоянии;
в), г) отсутствия растворимости компонентов в твердом состоянии;
д), е) ограниченной растворимости компонентов в твердом состоянии
Для систем сплавов с ограниченной растворимостью характерны диаграммы состояния, показанные на рис. д). В таких системах имеются две области существования фаз, представляющих раствор одного компонента в другом, и область существования смеси двух фаз. При составах, соответствующих областям существования твердых растворов на основе какого-либо компонента, изменения свойств аналогично изменению свойств в системах с неограниченной растворимостью компонентов, а в областях составов, соответствующих двухфазным смесям, изменение состава ведет к изменению свойств, характерному для систем с нерастворимыми в твердом состоянии компонентами
--------------------------------------------------------------------------------------------------------------------------------------
18.Диаграмма состояния сплавов, компоненты которых имеют полиморфные превращения.
19.Связь между типом диаграммы состояния и свойствами сплава.
Строение сплава определяет его св-ва,поэтому важно знать как будет изменяться строение при изменении температуры и состава сплава. Зависимость между структурой сплава,его составом и температурой определяется с помощью диаграммы состояния. Т.е. Диаграмма состояния (д.с.) представляет собой графическое изображение состояния сплава, показывает устойчивое состояние, (т.е. состояние ,которое при данных условиях имеет минимум свободной энергии,поэтому д.с наз-ют еще диаграммой равновесия. По д.с. можно определить для конкретного сплава температуру кристаллизации и превращений в твердом состоянии при заданной темп-ре, что позволяет примерно определить механические, физич и др свойства сплава; и справедливо назначить режимы т.о.(термоообраб),ОМ2,сваркой и т.д. Д.с. строятся по критическим точкам,полученным на кривых охлаждения сплавов данной системы. Критические точки при етом стараются получить при оч медленном нагреве или охлаждении,т.е. почти в равновесном состоянии.
--------------------------------------------------------------------------------------------------------------------------------------
20.Упругая и пластическая деформация. Механизмы пластической деформации.Под воздействием приложенных из вне нагрузок металлы могут деформироваться в упругой области (без остаточных явлений), а именно без изменения размеров и деформироваться пластически, когда изменяется форма и размеры деформируемого металла.
Упругая деформация характеризуется двумя модулями: модуль Гука (модуль нормальной упругости) и модуль Юнга (модуль касательной упругости). В модуле Гука атомы стремятся по нормали, во втором случае – по касательной.
Естественно, учитывая силы межатомного взаимодействия, модуль Гука будет в несколько раз больше модуля Юнга и они не являются структурно-чувствительными свойствами.
Пластическая деформация может проходить по двум механизмам: скольжения и двойникования.
При реализации механизма скольжения часть кристалла смещается по отношению к другой под воздействием напряжений, превышающих критическую величину.
При чем это скольжение осуществляется по так называемым плоскостям скольжения. Каковыми являются плоскости наиболее упакованные атомами.
Деформация по механизму двойникования заключается в смещении одной части кристаллов в зеркальное отражение по отношению к другой по, так называемым, плоскостям двойникования. Точнее в этом случае смещение происходит за счет разворота части кристаллической решетки.
Деформация двойникования также как и скольжения осуществляется при прохождении дислокации через кристалл. Практически любой металл деформируется сразу по двум механизмам с преобладанием какого-либо одного.
--------------------------------------------------------------------------------------------------------------------------------------
21. Горячая деформация слитка.Влияние горячей пластической деформации на структуру и свойства металла.
Холодная деф. проводиться при тем-рах ниже тем-ры рекристаллиз. и сопровождается наклёпом (наготовка).Гор. деф. провод-ся при тем-рах выше тем-ры рекристаллиз. При горячей деф. наклёп не происходит поскольку этот наклёп сразу устраняется рекристаллизацией.
Тем-ра рекристаллиз. для чистых металлов м.б. рассчитана исходя из соотношения предложенного Бочваром А.А.: Tp=a*Tпл , а=0,2…0,6.
Отжиг, обеспечивающий получение рекристаллиз. стр-ры после холодной пластической деформации наз-ся рекристаллизационным отжигом. Рекрист. отжиг проводиться как межоперационная обработка после операций холодной пластической деформации.От размера зерна вообще и после рекристаллиз отжига в частности зависят св-ва металла. Чем мельче зерно, тем выше механические св-ва. Чем крупнее зерно, тем ниже мех-кие св-ва, но выше магн. или электр. св-ва. Поэтому, например, трансформаторную сталь после холодной деф-ции подвергают рекрист. отжигу с тем, чтобы как можно больший размер зерна можно было получить.
--------------------------------------------------------------------------------------------------------------------------------------
22. Деформационное упрочнение поликристаллов.
23.Компоненты,фазы и структурные составляющие в системе
Fe-
C (
Fe-
Fe3
C)
выше линии АБСД-жидкость, Ф – феррит, А-аустенит, Ц – цементит, П – перлит, Л – ледобурит (эвтектика,А+Ц,при низк температурах П+Ц). Компонента 2: жидкость + С, L+ Ц;
фазы: L, Ф, А, Ц, графит, П – эвтектоид (Ф+Ц,перлит)
Вид линий диаграммы Fe-
C зависит от типа образующихся в процессе кристаллизации фаз и от того,какие превращения происходят при охлаждении твердого сплава. Поск-ку С обладает способностью в атомарном виде размещаться в крист решетке железа, то при затвердевании расплава могут образовываться твердые растворы внедрения на основе решеток 2х высокотемпературных модификаций железа: δ-Fe, (гамма) γ- Fe . Если углерода меньше 0,5 %,то в начале из расплава кристализ-ся δ – твердый раствор, который при последующем охлаждении перекристализ-ся в γ-тверд раствор. В сплавах, содержащих больше 0,5 % ,но меньше 4,3 %, из расплава сразу кристалл-ся γ-тверд раствор. Поскольку он так же как и δ – твердый раствор не может существовать при низких температурах,то γ-тверд раствор при охлаждении превращается в твердый раствор α (альфа). Т.о. сплавы железа с углеродом могут существовать кристаллы 3х тверд растворов: δ,γ и α, образующихся на основе 3х аллотропических модификаций чистого железа. Алоферрит тверд наз-ся ферритом и содержит больше 0,025 % углерода при темп 727 градусов. По своим св-вам он близок к чистому железу. γ-тверд раствор наз-ся аустенитом и он может содержать в себе до 2,14 % углерода. Помимо тверд раст-ров железа и углерода образуется тверд хим соед-ния Fe3
C – карбид железа (цементит).
--------------------------------------------------------------------------------------------------------------------------------------
24 25
. Диаграмма состояния железо-цементит (
Fe
-
Fe
3
C
)
Ж+F – ферритная область.
F+A – ферритная + аустенитная.
Л – ледебурит
ЦI – цементит первичный.
Железо
– металл, плавящийся при температуре 1539оС и относящийся к полиморфным.
Полиморфизм – это возможность существования металлов в различных кристаллических модификациях.
В интервале 1539 оС – 1392 оС железо имеет ОЦК решетку.
В интервале 1392 оС – 911 оС железо имеет ГЦК решетку.
При температуре менее 911 оС железо имеет ОЦК решетку.
При температуре 768 оС железо из ферромагнитного переходит в паромагнитном состояние, т.е. становится немагнитным. Это т.н. точка Кюри.
Железо сравнительно мягкий металл: sв=250 МПа, НВ 80.
Цементит – химическое соединение, отвечающее формуле Fe3C. Образуется при строго определенном количестве атомов Fe и C, причем доля C составляет 6,67%. Цементит является наиболее твердой фазой железоуглеродистых сплавов (НВ 800). При нагреве в определенных условиях цементит может распадаться с образованием железа и углерода в свободном состоянии в виде графита. Способность цементита к разложению положена в основу получения чугунов.
На диаграмме состояния железа-цементит линия ABCD – линия липидус, а AHIECF – солидус.
На диаграмме состояния есть две области, прилегающие к ординате, на которых откладывают температуру компонента железа, область феррита и область аустенита. Вообще на диаграмме можно выделить 4 фазы: жидкость, феррит, аустенит и цементит.
Феррит
– твердый раствор углерода в a-железе. Феррит имеет ОКЦ решетку. Чисто ферритные области: AHN (1539 оС – 1392 оС) (высоко температурный феррит) и AGPQ (911 оС и до комнатной).
Аустенит
– твердый раствор углерода в g-железе. Имеет ГЦК решетку. Область чистого аустенита MIESG.
На диаграмме видно три горизонтальных линии, при температуре которых протекают нонвариантные рекации (С=0).
По линии HIB при Т=1499 оС протекает перитектическая реакция, в результате которой жидкость состава точки B взаимодействует с кристаллами феррита в точке Н с образованием кристаллов аустенита в точке I.
По линии ECF при Т=1147 оС протекает эвтектическая реакция, в результате которой жидкость в точке C распадается на аустенит в точке E и цементит. Механическая смесь аустенита и цементита в интервале T=1147 оС – 727 оС получила название ледебурит.
По линии PSK при Т=727 оС протекает эвтектоидная реакция, в результате которой аустенит в точке S распадается на феррит в точке P и цементит. Механическая смесь феррита и цементита получила называние перлит.
Эвтектика отличается от эвтектоида тем, что первая протекает с участием жидкой фазы. Вторая является результатом распада твердого раствора. В связи с тем, что при температуре меньше 727 оС аустенита быть не может, ледебурит видоизменяется и в интервале T=727 оС – 20 оС ледебурит – механическая смесь из перлита и цементита.
На диаграмме видны линии ограниченной растворимости (PQ и SE).
При Т=20 оС количество углерода, способного раствориться в ОЦК решетке феррита составляет 0,01% (в точке Q). При Т=727 оС количество углерода, способного раствориться в ОЦК решетке феррита составляет 0,02% (в точке P). Следовательно, при охлаждении избыток атомов углерода должен выделиться из ОЦК решетки, но не в чистом виде, а в виде цементита третичного. Аналогичное наблюдается и при растворении углерода в ГЦК решетке, если при Т=727 оС (точка S) углерод составляет 0,8%, то при Т=1147 оС (точка Е) – 2,14%. При охлаждении избыток атомов углерода должен выделиться из ГЦК решетки, но не в чистом виде, а в виде цементита вторичного. По химическому составу цементит первичный, вторичный и третичный не отличаются. Это для того, чтобы отличить цементит, выделившийся из жидкости, из аустенита и из феррита.
Сплавы железа с углеродом с содержанием углерода до 2,14% называют сталь. Стали подразделяются на доэвтектоидные, с содержанием углерода до 0,8% (феррит + перлит), эвтектоидные – 0,8% (перлит), заэвтектоидные –от 0,8% до 2,14% (перлит + цементит II). Сплавы железа с углеродом с содержанием углерода более 2,14% называют чугунами: доэвтектоидные –от 2,14% до 4,3% (перлит + ледебурит + цементит), эвтектический –4,3% (ледебурит), заэвтектический – от 4,3% до 6,67% (ледебурит + цементит I).
по лекции
: Линии,образующие треуг-ки в левом углу связана с аллотропическим превращением железа и перекристализ-ей δ – тверд раствора в γ-тверд раствор. эта фаза-переход не играет почти никакой роли при тех обработке стали. Диагр сост-я Fe – Ц представляет собой как бы 2 совмещенные и немного сдвинутые одна относит-но другой диаграммы с ограниченной растворимостью. Верхняя диагр относится к процессам первичной кристал-ции выше линии ЕСF, а ниже – к процессам вторичной крист-ции, т.к. эти процессы происходят в тверд состоянии. Поск-ку С способен растворяться в решетке γ-Fe до 2,14 %,то при кристалл-ции жид сплавов,содержащих не более 2,4 % углерода, из жид-сти будут появляться кристаллы трерд раствора аустенита γ-Fe различной концентр-ции в зависимости от состава сплава. Линии ВС будет соответствовать началу кристалл-ции аустенита,а линия JЕ – концу кристалл-ции. При концентрации сплава более чем 2,14% С, т.е. правее точки Е, избыточный С уже не может размещаться в крист-кой решетке железа; образует кристаллы Fe3C. Т.о для сплавов,расположен-х правее т-ки Е, в результате кристалл-ции должна появл-ся мех смесь аустенита и цементита.Если состав сплава будет точно соответствовать 4,3% С, то при крист-ции при t=1147 одновременно будут возникать кристаллы аустенита и цементита,образуя эвтектическую смесь,наз-мую ледебуритом. Кристал-ция сплавов,лежащих по составу между точками Е и С, начнется с образования аустенита. В процессе охлаждения состав как жидкой так и твердой фазы будет меняться и при достижении t=1147 линии ЕСF состав жидкости будет соответствовать 4,3% С.а тверд фаза аустенита – 2,14%. Это положение справедливо для любых сплавов из линии ЕСF. На линии солидус ЕСF из жидкости будет кристаллизоваться ледебурит. Аналогично будет происходить кристалл-ция сплавов,лежащих правее тоски С ,с той лишь разницей,что вместо аустенита будет выделяться Цементит1; состав жид-сти будет меняться по кривой ДС, и при достижении t=1147 из оставш-ся жид-сти будет о5 кристал-ся ледебурит.Линия ЕСF наз эвтектической линией.
Сплавы железа и С, содержащие с менее чем 2,14% С, наз-ся сталями. Все стали при высокой температуре имеют структуру аустенита и, ввиду его хорошей пластичности, стали обабатыв-ся давлением.Если содержание С будет больше,чем 2,14%, то в струк-ре появл-ся хрупкая ледебуритная эвтектика, и обработка давлением обычными способами становится невозможной.Но существуют способы…Понижение температуры вызывает ряд превращений аустенита,вследствие которых он перестает существовать. Превращения происходят по-разному ,в зависимости от содержания С в сплаве.Если сталь содержит менее,чем 0,8 %,т.е. правее точки S , то при охлаждении до температуры,соответствующей линии GS, начинается перекристал-ция аустенита с образованием зерен перлита. Точка G на температурной оси чистого железа (911 градусов) соответствует температуре аллотропического превращения γ-Fe в α-Fe.Увеличение конц-ции С снижает температуру аллотропического превращения. По мере охлаждения сплавов кол-во феррита увелич-ся , а аустенита-уменьшается. Одновременно увел-ся концентр-ция С в аустените,что можно определить,используя правило отрезков;Но при этом увел-ся так же и соед-ние С и в феррите до 0,025%. Содержание С в аустените (А) будет 0,8%,а в феррите (Ф) – 0,025%.В А с С 0,8% при охлаждении до 727 гр одновременно происходит образование Ф, вследствие аллотропного превращения и образование Ц.Поск-ку С уже не может находиться в решетке железа в прежнем количестве,то образование смеси Ф и Ц происходит по тем же законам,что и эвтектические смеси, с тем же различием,чтов данном случае эта дисперсная механич смесь разнотипных кристаллов возникает из тверд,а не из жидкого состояния,поэтому такая мех смесь наз эвтектоидом. Эвтектоид,состоящий из мех смеси Ф и Ц, наз перлитом. Т.о образом происходит превращение и для сплавов, содержащих > чем 0,8%С, за исключением сплавов,лежащих левее точки Р,т.к. в етой области содержание С не превышает 0,025% и струк-ра будет представлять из ся Ф. При температуре ниже 727 гр РQ из перлита будет выделяться ЦIII 1%. Подобным образом превращения будут происходить в сплавах,лежащих правее точки Е. При охлаждении сплавов с 1147 до 727 гр концентр-ция С в избыточном А, не входящем в эвтектику и в А эвтектичного состава, будет изменяться в соответ-вии с линией ЕS, в результате чего образ-ся кристалл ЦII, а концентрация С снизится до 0,8% при 727гр,т.е. А приобретает перлитную конц-цию и превращ-ся в эвтектоид.На линии РSK 727гр образуется перлит и онаназ-ся перлитной линией. Точка С и S, в которых весь объем сплава превращается в эвтектику, наз-ся (С) эвтектической точкой и эвтектоидной (S).
Классификация сплава системы железо-Ц. Все сплавы данной системы делят на 3 большие группы: 1)технической железо;2)стали и 3)чугуны. Рассмотрим 2)стали – Fe с С, в котором содержание С больше предельной растворимости в α-Fe 0,025% и меньше его предельной растворимости в γ-Fe 2,14% между точками Р и Е. Принципиальное отличие технического железа от стали заключаеца в том,что в стали присутствует эвтектоидная смесь- перлит,а в тех железе его нет.
Стали в свою очередь делятся на 3 группы: 1)0,025-0,8% - в структуре присутствует Ф+П (доэвтектоидные стали); 2) 0,8% С , структура- чистый П (эвтектоидные стали); 3) 0,8-2,14 %, состоит из П и ЦII (заэвтектоидные стали).
--------------------------------------------------------------------------------------------------------------------------------------
25. 3)чугуны – сплавы Fe с С , в которых соединение С больше его растворимости в γ-Fe,т.е. все что правее точки Е. принципиальное отличие чугунов от стали заключается в том,что в их струтуре находится эвтектоидная смесь- ледебурит, а в стали – нет. Исключение: в некоторых сталях содержане С м.б. больше 2,14%, - это стали ледебуритного класса.
Чугуны так же делятся на 3 группы: 1)2,14-4,3% С – состоит из П+Л -(доэвтектические); 2)4,3% С – только Л (ледебурит) – (эвтектические) самые легкоплавкие; 3)больше 4,3 % С – содержит ЦII+Л – (заэвтектические чугуны).
--------------------------------------------------------------------------------------------------------------------------------------
26.
Примеси в стали и влияние их на свойства стали.
В сталях всегда присутствуют примеси, которые делятся на четыре группы. 1.Постоянные примеси: кремний, марганец, сера, фосфор.Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями.Содержание марганца не превышает 0,5…0,8 %. Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы. Он способствует уменьшению содержания сульфида железа FeS, так как образует с серой соединение сульфид марганца MnS. Частицы сульфида марганца располагаются в виде отдельных включений, которые деформируются и оказываются вытянутыми вдоль направления прокатки.Содержание кремния не превышает 0,35…0,4 %. Кремний, дегазируя металл, повышает плотность слитка. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести,. Но наблюдается некоторое снижение пластичности, что снижает способность стали к вытяжке Содержание фосфора в стали 0,025…0,045 %. Фосфор, растворяясь в феррите, искажает кристаллическую решетку и увеличивает предел прочности и предел текучести, но снижает пластичность и вязкость.Располагаясь вблизи зерен, увеличивает температуру перехода в хрупкое состояние, вызывает хладоломкость, уменьшает работу распространения трещин, Повышение содержания фосфора на каждую 0,01 % повышает порог хладоломкости на 20…25oС.Фосфор обладает склонностью к ликвации, поэтому в центре слитка отдельные участки имеют резко пониженную вязкость.Для некоторых сталей возможно увеличение содержания фосфора до 0,10…0,15 %, для улучшения обрабатываемости резанием.S – уменьшается пластичность, свариваемость и коррозионная стойкость. Р–искажает кристаллическую решетку.Содержание серы в сталях составляет 0,025…0,06 %. Сера – вредная примесь, попадает в сталь из чугуна. При взаимодействии с железом образует химическое соединение – сульфид серы FeS, которое, в свою очередь, образует с железом легкоплавкую эвтектику с температурой плавления 988oС. При нагреве под прокатку или ковку эвтектика плавится, нарушаются связи между зернами. При деформации в местах расположения эвтектики возникают надрывы и трещины, заготовка разрушается – явление красноломкости. Красноломкость – повышение хрупкости при высоких температурахСера снижает механические свойства, особенно ударную вязкость и пластичность, а так же предел выносливости. Она ухудшают свариваемость и коррозионную стойкость.2. Скрытые примеси - газы (азот, кислород, водород) – попадают в сталь при выплавке.Азот и кислород находятся в стали в виде хрупких неметаллических включений: окислов (FeO, SiO2, Al2O3 ) нитридов (Fe 2N), в виде твердого раствора или в свободном состоянии, располагаясь в дефектах (раковинах, трещинах).Примеси внедрения (азот N, кислород О) повышают порог хладоломкости и снижают сопротивление хрупкому разрушению. Неметаллические включения (окислы, нитриды), являясь концентраторами напряжений, могут значительно понизить предел выносливости и вязкость.Очень вредным является растворенный в стали водород, который значительно охрупчивает сталь. Он приводит к образованию в катанных заготовках и поковках флокенов.Флокены – тонкие трещины овальной или округлой формы, имеющие в изломе вид пятен – хлопьев серебристого цвета.Металл с флокенами нельзя использовать в промышленности, при сварке образуются холодные трещины в наплавленном и основном металле.Если водород находится в поверхностном слое, то он удаляется в результате нагрева при 150…180, лучше в вакууме мм рт. ст.Для удаления скрытых примесей используют вакуумирование.3. Специальные примеси – специально вводятся в сталь для получения заданных свойств. Примеси называются легирующими элементами, а стали - легированные сталями.
--------------------------------------------------------------------------------------------------------------------------------------
27. Классификация сталей по содержанию углерода,назначению и качеству.
Стали в свою очередь делятся на 3 группы: 1)0,025-0,8% - в структуре присутствует Ф+П (доэвтектоидные стали); 2) 0,8% С , структура- чистый П (эвтектоидные стали); 3) 0,8-2,14 %, состоит из П и ЦII (заэвтектоидные стали).
Углеродистые стали.
Сплавы железа с углеродом с содержанием углерода до 2,14% называют сталями. Помимо углерода в углеродистые стали при выплавке попадают посторонние примеси: обусловленные тезнологическими процессами (Mn, Si), невозможностью их удаления при плавке (P, S), случайными обстоятельствами (Ni, Cu). Если перечисленные элементы входят в больших количествах, чем предусмотренные ГОСТом на углеродистые стали, эти стали считают легирующими.
Влияние постоянных примесей на структуру с свойства стали.
К постоянным относятся Mn, Si, S, P и газы O, N, H. Верхний предел присутсвия S, P ограничивается 0,05%, Mn, Si – 0,08%.
Марганец вводят в сталь для раскисления, т.е. для устранения вредного влияния закиси железа FeO+Mn®MnO+Fe. При введении марганца происходит восстановление железа из закиси, тем самым несколько увеличиваются характеристики пластичности стали.
Кремний вводится для раскисления 2FeO+Si®2Fe+SiO2.
Фосфор – вредная примесь, попадает в сталь вместе с рудой. Присутствие фосфора повышает порог хладноломкости стали, т.е. повышает температуру перехода стали в хрупкое состояние. Его удаляют в процессе выплавки стали путем изменения состава шлаков и флюсов.
Сера – как и фосфор, попадает с рудой. Взаимодействуя с железом образует сульфид (FeS), входящий в состав эвтектики плавящейся при Т=988 оС. наличие легкоплавкой эвтектики приводит к охрупчиванию стали при температурах красного коления (»800 оС). Это явление называют красноломкость. Введение в сталь марганца устраняет красноломкость в виду того, что марганец обладает большим сродством к сере, чем железо:
Газы. Основные газы, которые попадают в сталь – O, N, H. O и N образуют оксиды и нитриты, которые охрупчивают сталь. Особенно вредно присутствие в стали H, который приводит к внутренним надрывам в металле с образованием, т.н. флокены. Устранение газов возможно при выплавке стали в электропечах или вакууме.
!Углеродистые конструкционные стали подразделяются на стали обыкновенного качества и качественные. Буквы «Ст» в марке стали обозначают «сталь», цифры — условный номер марки (с увеличением номера возрастает в стали содержание углерода. В зависимости от условий и степени раскисления различают стали: 1) спокойные «сп» Ст1сп) 2) полуспокойные «ПС» (Стпc); 3) кипящие «кп» (Сткп). В их составе разное массовое содержание кремния и кислорода: в спокойных 0,15—0,3 % Si и —0,002 % О2; в полуспокойных 0,05—0,15 % Si и —0,01 % 02 и в кипящих — не более 0,05 % Si и ~0,02 % О2. Спокойные стали получают полным раскислением стали ферромарганцем, ферросилициумом, алюминием в печи, а затем в ковше. Они застывают спокойно без газовыделения. Кипящие стали раскисляют только ферромарганцем и до затвердевания в них содержится повышенное количество FeO. При застывании в изложнице FeO взаимодействует с углеродом стали, образуя СО, который выделяется в виде пузырьков, создавая впечатление, что металл кипит. Стали обыкновенного качества, особенно кипящие, наиболее дешевые. В процессе выплавки они меньше очищаются от вредных примесей. Массовая доля серы должна быть не более 0,05 % , фосфора — не более 0,04 % и азота — не более 0,008 %. Стали отливают в крупные слитки, вследствие чего в них раз-вита ликвация и они содержат сравнительно большое количество неметаллических включений. С повышением условного номера марки стали возрастает пре дел прочности и текучести и снижается пластичность. Из сталей обыкновенного качества изготовляют горячекатаный рядовой прокат: балки, швеллеры, уголки, прутки, а также листы, трубы и поковки. Стали в состоянии поставки широко применяют в строительстве для сварных, клепаных и болтовых конструкций, реже для изготовления малонагруженных деталей машин (валы, оси, зубчатые колеса и т. д.). Кипящие стали (Ст1кп), содержащие повышенное количество кислорода, имеют порог хладноломкости на 30— 40 °С выше, чем стали спокойные (Ст1сп). Поэтому для ответственных сварных конструкций, а также работающих при низких климатических температурах применяют спокойные, стали (Ст1сп, Ст2сп, СтЗсп). С повышением содержания в стали углерода свариваемость ухудшается. Поэтому стали Ст5 и Ст6 с более высоким содержанием углерода применяют для элементов строительных конструкций, не подвергаемых сварке. Стали, предназначенные для сварных конструкций, должны обладать малой чувствительностью к термическому старению, а стали, подвергаемые холодной правке и гибке, — малой склонностью к деформационному старению. Стали обыкновенного качества нередко имеют специализированное назначение (моего- и судостроение, сельскохозяйственное машиностроение и т. д.) и поступают по особым техническим условиям. Низкоуглеродистые стали СтЗ, Ст4 и другие обладают малой устойчивостью переохлажденного аустенита ' (высокой критической скоростью закалки)» поэтому после закалки мартенсит не образуется. Качественные углеродистые стали. Эти стали (ГОСТ 1050—74) выплавляют с соблюдением более строгих условий в отношении состава шихты и ведения плавки и разливки. К ним предъявляют более высокие требования по химическому составу и структуре: содержание S<0,04%, P < 0,035-0,04 %, а также меньшее количество неметаллических включений, регламентированные макро- и микроструктура. Качественные углеродистые стали маркируют цифрами 08, 10, 15, 20, ..., 85, которые указывают среднее содержание углерода в сотых долях процента. Низкоуглеродистые стали (содержание углерода <0,25 %) 05кп, 08, 07кп, 10, 10кп обладают невысокой прочностью и высокой пластичностью. sв = 330-340 МПа, s0,2= 200-210 МПа и δ = ЗЗ-31 % . Эти стали без термической обработки применяют для малонагруженных деталей. Тонколистовую холоднокатаную низкоуглеродистую сталь используют для холодной штамповки изделий. Стали 15, 15кп, 20, 25 чаще применяют без термической обработки или в нормализованном состоянии. Низкоуглеродистые качественные стали используют и для ответственных сварных конструкций, а также для деталей машин, упрочняемых цементацией. Среднеуглеродистые стали (0,3—0,5 % С) 30, 35, 40, 45, 50, 55 применяют после нормализации, улучшения и поверхностной закалки для самых разнообразных деталей во всех отраслях машиностроения. Эти стали в нормализованном состоянии по сравнению с низкоуглеродистыми имеют более высокую прочность при более низкой пластичности (sв = 500-5-610 МПа, s0,2= 300-360 МПа, δ = 21 -16 %). Стали в отожженном состоянии хорошо обрабатываются резанием. Наиболее легко обрабатываются доэвтектоидные стали со структурой пластинчатого перлита. Прокаливаемость сталей невелика; критический диаметр после закалки в воде не превышает 10—12 мм (95 % мартенсита). В связи с этим их следует применять для изготовления небольших деталей или более крупных, но не требующих сквозной прокаливаемости. Для повышения прокаливаемости стали добавочно легируют марганцем (40Г, 50Г). Стали с высоким содержанием углерода (0,6—0,85 % С) 60, 65, 70, 80 и 85 обладают повышенной прочностью, износостойкостью и упругими свойствами; применяют их после закалки и отпуска, нормализации и отпуска и поверхностной закалки для-j деталей, работающих в условиях трения при наличии высоких! статических вибрационных нагрузок. Из этих сталей изготовляют пружины и рессоры, шпиндели, замковые шайбы, прокатные, валки и т. д.
Способы производства стали.
Различают бессемеровский, кислородно-конверторный, мартеновский и способ выплавки в дуговых и индукционных печах.
Бессемеровский способ в настоящее время практически не применяется в связи с низким качеством полученной стали. Сущность способа состоит продувке жидкого чугуна воздухом. Кислород воздуха окисляет углерод, доводя его содержание до количества, необходимого в стали. Низкое качество стали обусловлено тем, что в процессе продувки воздухом сталь насыщается азотом. Кроме того, вредные примеси (сера, фосфор) не удаляются.
В отличие от бессемеровского способа, при кислородно-конверторном способе продувку жидкого чугуна осуществляется чистым кислородом. При этом, равно как и в мартеновском способе, в зависимости от состава шлаков и флюсов, футеровка печи бывает основной (магнезит, хромомагнезит) или кислой (динас). Футеровку выбирают так, чтобы не проходила реакция между шлаком и футеровкой. При основном процессе из стали в большей степени удаляется фосфор, в меньшей -- сера. Однако при этом сталь содержит большее количество газов. Более дорогой кислый процесс проводят в том случае, когда нужно получить чистую по газам сталь.
Наиболее качественная сталь получается при выплавке в дуговых и индукционных печах.
В зависимости от степени раскисления различают стали спокойные, кипящие и полуспокойные. Спокойные стали получают при раскислении марганцем, алюминием, кремнием и обозначают СП. Кипящую сталь получают при раскислении только марганцем. Обозначают такие стали КП. Полуспокойные стали раскисляют марганцем и кремнием и обозначаются ПС.
Углеродистые стали общего назначения (обыкновенного качества).
Потребителю с металлургических заводов стали поставляются в виде проката (ленты, прутки, швеллеры, трубы ). Раньше по ГОСТу стали обыкновенного качества поставляли по трем группам:
- А - с гарантированными механическими свойствами;
- Б - с гарантированным химическим составом;
- В - с гарантированными механическими свойствами и химическим составом.
Стали маркировались : группа А - Ст.0,Ст.1,..,Ст.6; группа Б - с указанием способа выплавки - БСт.1,МСт.1 , где
Б - бессемеровский , а М - мартеновский способы выплавки; группа В: - ВСт.1.
В соответствии с ГОСТом , вступившим в действие с
Классификация сталей по качеству:Стали обыкновенного кач-ва. Дешевые стали, в них допускается повышенное содержание вредных примесей, а также газонасыщенность и загрязненность неметаллическими включениями, т.к. они выплавляются по нормам массовой технологии. Стали обыкн. кач-ва выпускают в виде проката (балки, прутки, листы, уголки, трубы, швеллеры и т.д.), а также поковок. В зав-ти от гарантированных св-в бывают трех групп: А, Б, В. Стали маркируются сочетанием букв «Ст» и цифрой (от 0 до 6), показывающие номер марки. Стали групп Б и В имеют перед маркой Б и В, указывающие на их принадлежность к этим группам. Группа А в обозначениях марки стали не указывается. Степень раскисления обозначается добавлением индексов: спокойные – сп; полуспокойные – пс; кипящие – кп (Ст3сп; БСт3пс; ВСт3кп). Широко прим. Ст3. Стали группы А поставляются с гарантированными мех. св-вами. Хим. состав не указывается. Стали группы А используют в горячекатаном состоянии для изделий, изготовление которых не сопровождается горячей обработкой. Стали гр. Б поставляются с гарантир. хим. составом. Мех. св-ва не гарантируются. Их прим. для изделий, изготовляемых с прим. горячей обработки, при кот. исходная структура и мех. св-ва не сохраняются. Стали гр. В поставляются с гарант. мех. и хим. св-ми. Их широко прим. для произ-ва сварных конструкций. В этом случае важно знать исходные мех. св-ва стали, т.к. они сохран-ся неизменными в участках, не подвергаемых нагреву при сварке. Углеродистые стали обыкн. кач-ва предназнач. для изготовления различных металлоконструкций, а также слабонагруженных деталей машин и приборов. Их прим. когда работоспособность деталей и конструкций определяется жесткостью. Из сталей номеров 1-4 изготавливают сварные фермы, рамы, и др. строительные металлоконструкции. Среднеуглеродистые стали номеров 5, 6 обладают большой прочностью, прим. для рельсов, ж.д. колес, а также валов, шестерен, шкивов.
Стали качественные и высококачественные
Эти стали характеризуются более низким, чем у сталей обыкновенного качества, содержанием вредных примесей (0,03 S и P). Они поставляются в виде проката. Поковок др. полуфабрикатов с гарантированным хим. составом и мех. св-вами. Маркируются двухзначными числами 05, 08, 10, 15, 20,…,85, обозначающими среднее содержание углерода в сотых долях % (ГОСТ 1050-88). Спокойные стали маркируются без индекса, полуспокойные – пс, кипящие – кп. Если сталь высококач-венная, то в конце ставится буква А (Сталь45А). Содержание S и P не более 0,02%. Кач-венные стали находят многостороннее применение в технике, т.к. в зав-ти от содерж. С и термической обработки обладают разнообразными мех. и технологич. св-вами. Стали 05, 08, 10 – малопрочные, высокопластичные, их прим. для холодной штамповки различных изделий. Без т/о в горячекатаном состоянии их используют для шайб, прокладок, кожухов и т.д. Стали 15, 20, 25 – цементуемые, для деталей небольшого размера: кулачки, толкатели, малонагруженные шестерни.
--------------------------------------------------------------------------------------------------------------------------------------
28.. Классификация чугунов. Влияние формы выделений графита на свойства чугуна. Сплав железа с углеродом (>2,14 % С) называют чугуном. Присутствие эвтектики в структуре чугуна обусловливает его использование исключительно в качестве литейного сплава. Углерод в чугуне может находиться в виде цементита или графита, или одновременно в виде цементита и графита. Цементит придает излому специфический светлый блеск. Поэтому чугун, в котором весь углерод находится в виде цементита, называют белым. Графит придает излому чугуна серый цвет, поэтому чугун называют серым. В зависимости от формы графита и условий его образования различают следующие чугуны: серый, высокопрочный и ковкий. 1. СЕРЫЙ И БЕЛЫЙ ЧУГУНЫ Серый чугун (технический) представляет собой, по существу, сплав Fe—Si—С, содержащий в качестве постоянных примесей Mn, P и S. В структуре серых чугунов большая часть или весь углерод находится в виде графита. Характерная особенность структуры серых чугунов, определяющая многие его свойства, заключается в том, что графит имеет в поле зрения микрошлифа форму пластинок. В зависимости от содержания углерода, связанного в цементит, различают: 1. Белый чугун в котором весь углерод находится в виде цементита Fe3C. Структура такого чугуна — перлит, ледебурит и цементит. 2. Половинчатый чугун, большая часть углерода (>0,8 %) находится в виде Fe3C. Структура такого чугуна — перлит, ледебурит и пластинчатый графит . 3. Перлитный серый чугун структура чугуна— перлит и пластинчатый графит. В этом чугуне 0,7—0,8 % С находится в виде Fe3C, входящего в состав перлита.; 4. Ферритно-перлитный серый чугун. Структура такого чугуна - перлит, феррит и пластинчатый графит. В этом чугуне в зависимости от степени распада эвтектоидного цементита в связанном состоянии находится от 0,7 до 0,1 % С 5. Ферритный серый чугун. Структура — феррит и пластинчатый графит. В этом случае весь углерод находится в виде графита. При данном содержании углерода и кремния графитизация протекает тем полнее, чем медленнее охлаждение. В производственных условиях скорость охлаждения удобно характеризовать по толщине стенки отливки. Чем тоньше отливка, тем быстрее охлаждение и в меньшей степени протекает графитизация Механические свойства чугуна обусловлены его структурой, главным образом графитной составляющей. Чугун можно рассматривать как сталь, пронизанную графитом, который играет роль надрезов, ослабляющих металлическую основу структуры В этом случае механические свойства будут зависеть от количества величины и характера распределений включений графита Чем меньше графитных включений, чем они мельче и больше степень изолированности их, тем выше прочность чугуна Чугун с большим количеством прямолинейных крупных графитных выделении, разделяющих его металлическую основу, имеет грубозернистый излом и низкие механические свойства. Чугун с мелкими и завихренными графитными выделениями обладает более высокими свойствами. Пластинки графита уменьшают сопротивление отрыву, временное сопротивление и особенно сильно пластичность чугуна. Относительное удлинение при растяжении серого чугуна независимо от свойств металлической основы практически равно нулю (~0,5 %). Графитные включения мало влияют на снижение предела прочности при сжатии и твердость, величина их определяется главным образом структурой металлической основы чугуна. При сжатии чугун претерпевает значительные деформации и разрушение имеет характер среза под углом 45°. Разрушающая нагрузка при сжатии в зависимости от качества чугуна и его структуры в 3—5 раз больше, чем при растяжении. Поэтому чугун рекомендуется использовать преимущественно для изделий, работающих на сжатие. 2. ВЫСОКОПРОЧНЫЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ Высокопрочными называют чугуны с шаровидным графитом, который образуется в литой структуре в процессе кристаллизации. Шаровидный графит, имеющий минимальную поверхность при данном объеме, значительно меньше ослабляет металлическую основу, чем пластинчатый графит, и не является активным концентратором напряжений. Для получения шаровидного графита чугун модифицируют, чаше путем обработки жидкого металла магнием (0,03—0,07 %) или введением 8—10 % магниевых лигатур с никелем или ферросилицием. Под действием магния графит в процессе кристаллизации принимает не пластинчатую, а шаровидную форму. Чугуны с шаровидным графитом (ЧШГ) имеют более высокие механические свойства, не уступающие свойствам литой углеродистой стали, сохраняя при этом хорошие литейные свойства и обрабатываемость резанием, способность гасить вибрации, высокую износостойкость и т. д. Обычный состав чугуна: 3,2—3,6 % С 3. ковкий чугун Ковкий чугун получают длительным нагревом при высоких температурах (отжигом) отливок из белого чугуна. В результате отжига образуется графит хлопьевидной формы. Такой графит по сравнению с пластинчатым меньше снижает прочность и пластичность металлической основы структуры чугуна. Чугун имеет пониженное содержание углерода и кремния
--------------------------------------------------------------------------------------------------------------------------------------
29. Сверхпластичность металлов и сплавов
. Под сверхпластичностью понимают способность металла к незначительной пластической деформации (s=102-103%) в определенных условиях при одновременно малом сопротивлении деформированию (10° — 101 МПа). Существуют следующие разновидности сверхпластичности. 1. Структурная, которая проявляется при температурах > 0,5 Тпл в металлах и сплавах с величиной зерна от 0,5 до 10 мкм и небольших скоростях деформации2 (10-5 — 10-1 с-1). 2. Субкритическая (свёрхпластичность превращения), наблюдающаяся вблизи начала фазовых превращений, например, полиморфных. Наиболее перспективен процесс структурной сверхпластичности. Сверхпластичность не является свойством каких-то особых сплавов и при соответствующей подготовке структуры и в определенных условиях деформации проявляется у большого числа сплавов, обрабатываемых давлением. Известно много сплавов на основе магния, алюминия, меди, титана и железа, деформирование которых возможно в режимах сверхпластичности. Сверхпластичность может иметь место лишь при условии, когда в процессе деформации (растяжения образца) не образуется локальной деформации. При локализации деформации в образце возникает местное утонение шейки и он сравнительно быстро разрушается. Высокое сопротивление образованию шейки при растяжении образца в условиях сверхпластичности связано с большой чувствительностью напряжения течения а к изменению скорости деформации e: s = kem, где k — коэффициент, зависящий от структуры и условий испытания; т — показатель скоростной чувствительности напряжения течения. Для идеально вязких (ньютоновских) твердых тел т = 1 и удлинение не должно сопровождаться образованием шейки. В случае обычной пластической деформации т < 0,2, а в условиях сверхпластической деформации т > 0,3 (обычно 0,4—0,7). Когда при сверхпластической деформации начинается образование шейки, в этом участке образца возрастает e и из-за высокого значения т увеличивается сопротивление течению а, благодаря чему образование шейки прекращается. Этот процесс непрерывно повторяется, приводя к образованию так называемой бегущей шейки (размытых шеек), когда она перемещается по длине образца, не давая локализованного сжатия. При такой квазиравномерной деформации достигаются очень большие удлинения при растяжении образца. Структурная сверхпластическая деформация протекает главным образом благодаря зернограничному скольжению, хотя в определенной степени существует и внутризеренное дислокационное скольжение. Проблема создания промышленного структурного сверхпластичного материала — это прежде всего получение ультрамелкого равноосного зерна и сохранение его при сверхпластической деформации. Стабилизация размеров зерна достигается: 1) применением двухфазных сплавов с объемным соотношением фаз 1:1; в этом случае имеет место максимальное развитие межфазовой поверхности, что обеспечивает взаимное торможение роста зерен фаз; 2) использованием дисперсных выделений, являющихся барьером для перемещения границ зерен. В настоящее время для обработки в состоянии сверхпластичности чаще используют цинкоалюминиевый сплав ЦА22 (22 % А1), титановые а α+β-сплавы, двухфазные – α+γ’-сплавы меди и цинка (латунь), алюминиевый сплав, состоящий из α-раствора и дисперсных частиц Al3Zr, и некоторые другие. Явление сверхпластичности в промышленности используют при объемной изотермической штамповке и при пневмоформовке. Сверхпластичность позволяет в процессе штамповки за одну операцию получить детали сложной формы, повысить коэффициент использования металла, уменьшить трудоемкость и стоимость изготовления изделий. Недостатком является необходимость нагрев штампов до температуры обработки и малая скорость деформаций.
--------------------------------------------------------------------------------------------------------------------------------------
30. Механические свойства металлов, определяемые при статических, динамических и циклических испытаниях
. Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин). В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала. При оценке механических свойств металлических материалов различают несколько групп их критриев. 1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания). Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по Форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной. 2. Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях, эксплуатации. Критерии конструктивной прочности металлических материалов можно разделить на две группы: а) критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.)- В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микро несплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений; б) критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).
Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина остаточных напряжений, дефектов технологии изготовления и конструирования металлоизделий и т. д. Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.
Если специально приготовленный образец подвергнуть растяжению на машине и записать на диаграммной ленте все изменения, которые будут происходить с ним, то получим кривую, которая называется кривой растяжения.
В первоначальный момент образец растягивается без деформации, т.е. в упругой области. Это имеет место при напряжении sпц. При растяжении большем sпц. Пропорциональность степени напряжения и деформации нарушается. sпц – получила название предел пропорциональности, который равен: sпц=Рпц/Fо, Мпа При деформации металла, в процессе повышения нагрузки, на кривой растяжения может появиться площадка, нагрузка при которой металл деформируется без приложенных дополнительных усилий, называется пределом текучести (физический): sт=Рт./F о, МПа
Деформированием сплавов, у которых отсутствует площадка текучести вводят характеристику, называемую условным пределом текучести. s02 – это усилие, которое вызывает остаточную деформацию 0,2%; sв – предел прочности на растяжение – это максимальная нагрузка, предшествующая разрушению образца. Помимо характеристик прочности из кривой растяжения можно выделить характеристики пластичности: d - относительное удлинение; y - относительное сужение К характеристикам прочности материалов относятся также и твердость. Под твердостью понимается сопротивление материалов проникновению в него посторонних тел (индентора).
Из наиболее распространенных методов измерения твердости металлических материалов можно выделить метод измерения твердости по Бренеллю, по Роксвеллу и по Виккерсу. В случае если необходимо измерить твердость отдельных структурных составляющих, применяют метод измерения микро-твердости.
Твердость по Бренеллю измеряют на прессе Бренелля. В качестве индентора применяют шарик 5-
Измерение твердости по Роксвеллу проводят на приборе – твердометр Роксвелла. В качестве индентора используют шарик или алмазную пирамиду. Нагрузка на индентор 60,100 и
Твердость по Виккерсу определяется на приборе Виккерса. В качестве индентора используют алмазную пирамидку. Нагрузка на индентор измеряется в граммах. Твердость определяется на специально приготовленных образцах микрошлиф.
После вдавливания и снятия нагрузки с индентора в микрошлифе остается лунка. С помощью линейку, встроенной в окуляр прибора и затем с помощью специальных таблиц переходят от диагонали отпечатки к числу твердости по Виккерсу HV.
Если необходимо измерить твердость отдельных структурных составляющих, используют метод измерения микро-твердости на ПМТ-приборах.
В качестве индентора также используют алмазную пирамидку. Нагрузка на индентор измеряется в граммах. Твердость определяют на микрошлифах. При увеличении в 400 раз на микрошлифах находят ту структурную составляющую, твердость которой необходимо определить. Под действием нагрузки индентор вдавливается в эту структурную составляющую и оставляет в ней отпечаток. После снятия нагрузки проводят измерение диагонали отпечатка и затем по таблицам переходят к числу твердости.
Ударная вязкость является динамической характеристикой. Образец помещается в крепление и с определенной высоты на него падает маятник, работа тратиться на разрушение образца; ударная вязкость обозначается КСU или КС. Обозначение зависит от формы образца, если образец с подрезом (U-образным), то принимается первое обозначение, если без надреза – второе. С надрезом изготавливаются образцы сравнительно вязких материалов, без надреза – хрупких материалов.
--------------------------------------------------------------------------------------------------------------------------------------
31.Основными видами термической обработки, различно изменяющими структуру и свойства стали и назначаемыми в зависимости от требований, предъявляемых к полуфабрикатам (отливкам, поковкам, прокату и т. д.) и готовым изделиям, являются отжиг, нормализация, закалка и отпуск.1. ОТЖИГ I
РОДА Отжиг I рода в зависимости or исходного состояния стали и температуры ею выполнения может включать процессы гомогенизации, рекристаллизации, снижения твердости ,, снятия остаточных напряжений. Характерная особенность итого вида отжига в том, что указанные процессы происходят независимо от того, протекают ли в сплавах при этой обработке фазовые превращения (а - у) или нет, Поэтому отжиг 1 рода можно проводить при температурах выше или ниже температур фазовых превращений (критических точек А1 и А3). Этот вид обработки в зависимости от температурных условий его выполнения устраняет химическую или физическую неоднородность, созданную предшествующими обработками. Бывает: Гомогенизация (диффузионный отжиг). Рекристаллизацконный отжиг . Высокий отпуск (для уменьшения твердости) Отжиг для снятия остаточных напряжений. 2. ОТЖИГ II
РОДА (ФАЗОВАЯ ПЕРЕКРИСТАЛЛИЗАЦИЯ) Отжиг II рода заключается в нагреве стали до температур выше точек Ас1 или Ac3, выдержке и, как правило, последующем медленном охлаждении. В процессе нагрева и охлаждения в этом случае протекают фазовые превращения (γ - а-превращение), определяющие структуру и свойства стали. Понижая прочность и твердость, отжиг облегчает обработку, резание средне- и высокоуглеродистой стали. Измельчая зерно снимая внутренние напряжения Различают следующие виды отжига: полный, изотермический и неполный. 3. ЗАКАЛКА Закалка — термическая обработка — заключается в нагреве стали до температуры выше критической (А3 для доэвтектоидной и а1—для заэвтектоидной сталей) или температуры растворения избыточных фаз, в выдержке и последующем охлаждении со скоростью, превышающей критическую. Закалка не является окончательной операцией термической обработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после закалки обязательно подвергают отпуску. Инструментальную сталь в основном подвергают закалке и отпуску для повышения твердости, износостойкости и прочности, а конструкционную сталь — для повышения прочности, твердости, получения достаточно высокой пластичности и вязкости, а для ряда деталей также высокой износостойкости. Бывает Непрерывная, Прерывистая, Закалка с самоотпуском, Ступенчатая закалка, Изотермическая, обработка стали холодом.
--------------------------------------------------------------------------------------------------------------------------------------
32.Превращения в стали при нагреве. Наследственно мелкозернистые и крупнозернистые стали
Если эвтектоидную сталь, содержащую 0,8% углерода и имеющую структуру перлит нагреть выше Аc1 (7270С), то перлит превратится в аустенит с тем же содержанием углерода (0,8%).
Если доэвтектоидную сталь, содержащую, например, 0,4% углерода и имеющую структуру феррит + перлит, нагреть выше Аc1, то перлит превратится в аустенит. Феррит никаких изменений не претерпевает. Аустенит содержит 0,8% углерода, а феррит - 0,02% (точка P). По мере повышения температуры в интервале Аc1-Аc3, феррит будет растворятся в аустените и как бы "разбавлять" его по углероду и в момент достижения температуры Аc3 аустенит будет содержать 0,4% углерода, то есть столько, сколько углерода в стали.
Если заэвтектоидную сталь, содержащую, например, 1% углерода и имеющую структуру перлит + цементит, нагреть выше Аc1, то перлит превратится в аустенит с содержанием 0,8% углерода. Цементит никаких изменений не претерпевает и содержит 6,67% углерода. Дальнейший нагрев в интервале Аc1-Аc3 приводит к тому, что цементит будет растворятся в аустените и дополнительно насыщать аустенит углеродом. В момент достижения температуры Аcm аустенит будет содержать 1% углерода, то есть то количество углерода, которое в стали.
Линия 4 - линия начала превращений А в П. Между линиями 4 и 1 одновременно сосуществуют перлит и аустенит. В области между линиями 1 и 2 – аустенит + карбиды. В области 2, 3 - карбиды растворяются в аустените, но аустенит представляет собой твердый раствор с неравномерно распределенными атомами углерода, распределенными по всему объему. Выше линии 3 происходит гомогенизация аустенита – линия начала превращения 4 горизонтальна, потому что нагрев распространяется, поэтому температура превращения практически не изменяется. Скорость превращения зависит от степени перенагрева относительно точки АС1 при перенагреве 1000 превращение перлита в аустенит протекает практически мгновенно, что не позволяет фиксировать стадии, отраженные на представленной диаграмме изотермического образования аустенита.
Рост зерна аустенита при нагреве.
В момент превращения перлита в аустенит образуется большое количество мелких зерен аустенита. При дальнейшем повышении температуры зерно аустенита начинает расти. Это обусловлено стремлением системы к уменьшению свободной энергии.
Различают наследственно мелкозернистые и наследственно крупнозернистые стали. Под наследственной зернистостью понимают склонность аустенитного зерна к росту, отсюда мелкозернистые стали обладают меньшей склонностью аустенитного зерна к росту в отличие от крупнозернистых сталей. Однако при достижении температур 900-950 0 С барьеры, предшествующие росту зерна в наследственно мелкозернистых сталях устраняются, и происходит более интенсивный рост зерна по сравнению с крупнозернистыми сталями. При превращении перлита в аустенит выделяют начальное зерно – размер зерна в момент превращения П в А. Наследственное зерно – склонность аустенитного зерна к росту. И действительное зерно – размер зерна, полученный при конкретных условиях. На свойства стали оказывает влияние момент действительного зерна. С увеличением размера зерна характеристики прочности, и особенно ударная вязкость снижается, а увеличиваются магнитные и электрические свойства и наоборот.
Перегрев и пережег.
Если сталь выдерживать длительное время при высоких температурах, происходит интенсивный рост зерна. Это явление получило название – перегрев. Перегрев можно устранить дополнительной термической обработкой, заключающейся в повторном нагреве стали выше А1. В результате зерно измельчается, свойства стали возрастают. Если сталь длительное время выдерживать при температуре АС3 в окислительной атмосфере, то происходит образование окислов железа по границам зерен. Это так называемый пережег. Это не устранимый дефект, сталь необходимо переплавлять.