Реферат Спутниковая радиосвязь
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Федеральное агенство связи
Государственное общеобразовательное учреждение
«Сибирский государственный университет
Телекоммуникаций и информатики»
Кафедра Радиовещания и телевидения
РЕФЕРАТ
по Основам телекоммуникаций
тема: «Спутниковая радиосвязь».
Выполнил: студент I курса
МРМ, Р-92
Леонов Н.И.
Проверил: Катунин Г.П.
Новосибирск-2009
Содержание
1. Искусственные спутники Земли в качестве ретрансляторов для систем
связи .………………………………………………………………….………….3
2. Принципы построения и особенности ССС…………………………………….7
3. Тенденции технологии…………………………………………………..………11
4. Космические станции……………………………………………………………12
5. Земные станции………………………………………………………………….16
1. Искусственные спутники Земли в качестве ретрансляторов для систем связи
Задачи увеличения дальности и пропускной способности систем связи всегда были основополагающими проблемами данной области техники. К сожалению, соответствующие характеристики, как правило, оказываются альтернативными: мероприятия по увеличению пропускной способности приводят к сокращению дальности, и наоборот. В частности, повышение пропускной способности требует перехода на все более высокочастотные диапазоны волн, сигналы которых могут быть непосредственно переданы практически лишь на расстояния прямой видимости- Как средство разрешения этого противоречия, могут быть использованы ретрансляторы, поднятые достаточно высоко нал поверхностью Земли.
Успехи развития космонавтики позволили использовать в качестве таких ретрансляторов ИСЗ. Поскольку они могут располагаться практически сколь угодно высоко над Землей, их область обслуживания может охватывать не только отдельные страны или моря, но и целые континенты и океаны. В общем случае спутники движутся по эллиптическим орбитам, в од-ном из фокусов которых располагается центр Земли. Спутник перемещается относительно наземного наблюдателя, а вместе с ним и область обслуживания перемещается по темной поверхности. В результате следует либо увеличивать число спутников в системе, либо согласиться с тем, что круглосуточная связь обеспечиваться не будет.
Улучшение ситуации может быть достигнуто, если орбиту спутника выбрать так, чтобы период обращения спутника вокруг Земли находился в простом соотношении с периодом ее обращения вокруг своей оси (синхронные орбиты). Использование таких орбит приводит к постоянному расписанию возможных сеансов связи, поскольку для любого наземного наблюдателя спутник-ретранслятор (СР) появляется в данной точке небесной сферы периодически, постоянно в одно и то же время.
Дальнейшие упрощения спутниковых систем связи наступают если:
-орбита спутника является круговой и лежит в плоскости экватора;
-период обращения спутника по орбите составляет ровно одни сутки. Такой спутник вообще остается неподвижным относительно любого наземного наблюдателя. Соответствующая орбита именуется геостационарной (ГСО), а движущийся по ней спутник — стационарным. ГСО имеет радиус приблизительно 42,3 тыс. км. Она уникальная и единственная, поэтому размещение спутников на ней жестко контролируется между народными организациями во главе с действующим пол эгидой ООН Международным союзом электросвязи (МСЭ). Той же организации поручена международная координация и других спутниковых систем связи с целью рационального ограничения взаимного влияния между ними.
Хотя в настоящее время подавляющая часть используемых СР являются стационарным и, они не лишены существенных недостатков. Именно такие спутники лучше всего приспособлены для обслуживания тропических и субтропических регионов. По мере продвижения наблюдателя на поверхности Земли от подспутниковой точки вдоль меридиана к полюсам Земли, угол места направления на стационарный космический аппарат (КА) уменьшается, достигая нулевого значения для широты 82й (северной или южной). Для более близких к полюсам точек подспутникового меридиана видимость спутника вообще отсутствует. Легко понять, что граница геометрической видимости стационарного КА при отклонении наблюдателя от подспутникового меридиана опускается в направлении к экватору. Кроме того, работа радиолиний в направлениях с малыми углами места вообще резко затрудняется как за счет приема отраженных от Земли сигналов, так и за счет экранирующего действия различных возвышений, леса, строений или других препятствии. Поэтому стационарные КА практически неспособны обслуживать территории, лежащие севернее северного и южнее южного полярных кругов. Между тем эти территории часто представляют значительный интерес, например для России. Даже территория Северного полюса представляет значительный интерес, прежде всего в связи с тем, что через нее пролегают наиболее выгодные трассы ряда важнейших авиалиний.
Орбиты СР можно выбирать так, чтобы обеспечить преимущественное обслуживание тех или иных регионов на поверхности Земли. Так, а России была предложена эллиптическая орбита, специально приспособленная для обслуживания северных регионов нашей планеты. Апогей этой орбиты находится над северным полушарием на расстоянии приблизительно 40 тыс. км от поверхности Земли, а перигей лежит на высоте в несколько сотен километров над южным полушарием. Плоскость орбиты наклонена к экватору примерно на 65°. Период обращения спутника по этой орбите составляет половину суток, так что это синхронный спутник. За сутки он совершает два витка' первый из них, называемый основным, достигает апогея над Сибирью (в точке с географическими координатами 63»5° с.ш. и 81° в.д.), а второй — сопряженный — в точке с той же широтой, но сдвинутой по долготе на 180°, т.е. 99° з.д. (над Канадой). Параметры этой орбиты выбраны так, что & примыкающей к апогею части орбиты скорость углового перемещения спутника в направлении «восток-запад» совпадает с таковым для Земли. Это условие приблизительно выполняется на всем рабочем участке орбиты (от трех-четырех часов до достижения апогея до трех-четырех часов мосле его прохождения) и обеспечивает отсутствие перемещения спутника по отношению к любому наблюдателю на Земле в направлении «восток-запад».
На рабочем участке орбиты сравнительно небольшим оказывается и перемещение в направлении «север-юг». Эллиптическая орбита обеспечивает обслуживание северного полушария Земли, включая и область Северного полюса с достаточно большими углами места. Недостатком ее является необходимость использования системы из трех-четырех спутников для поддержания непрерывности связи в течение суток, что удорожает космический сегмент системы; также существенно, что при использовании эллиптических спутников на ЗС приходится обеспечивать слежение антенной за перемещениями КА, что удорожает и земной комплекс системы.
Спутник-ретранслятор (СР) должен принимать сигналы от земных станций (ЗС) системы связи, усиливать их и вновь передавать на те ЗС, которым очи предназначены. Таким образом, СР содержит приемное и передающее оборудование для ретрансляции сигналов.
Поскольку сквозное усиление приемопередающего тракта СР должно быть достаточно большим, необходимо вести прием и передачу на разных частотах (в противном случае не удастся избежать самовозбуждения тракта). Таким образом, обязательным элементом тракта ретрансляции являются также преобразователи частоты.
Особенность ретрансляторов вещательной службы в том, что для них основным является передающий тракт, через который собственно и осуществляется вешание. На вещательных СР устанавливается и приемное оборудование, используемое для приема подаваемых на борт вещательных программ. Радиолиния подачи программ на борт именуется фидерной.
Спутник-ретранслятор, как всякий активный КА, кроме собственно тракта ретрансляции, именуемого по отношению к этому аппарату, полезной нагрузкой (ПН), содержит также и целый ряд вспомогательных систем, таких как система электропитания, система ориентации и стабилизации, система терморегулирования и управления. Последняя включает системы формирования и передачи телеметрической информации. КА за вычетом полезной нагрузки именуется космической платформой (КП). Такая платформа может использоваться в сочетании с различными ПН для создания ряда различных КА.
В настоящее время в интересах фиксированной и вещательной служб чаще всего используются стационарные СР. Типовые параметры платформ таких спутников:
- энерговооруженность до 5-7 кВт, причем для питания полезной нагрузки выделяется 1,5-2 кВт;
- масса порядка 2-3 т. в том числе полезной нагрузки 0,5-
- точность ориентации и стабилизации порядка 0,1 ;
- срок активного существования 12-15 лет.
Наряду с типовыми КА в настоящее время считается перспективным использование в интересах фиксированной службы малых КА (МКА) с массой 500-
В зависимости от состава пользователей СР делятся на международные и национальные. Наиболее известные международные СР фиксированной службы Intelsat и Eutelsat. Существенными ресурсами владеет также международная компания Интерспутник. СР Eutelsat содержат также стволы, чаще всего используемые европейскими странами для телевизионного вещания. Специально для этих целей используется спутниковая система Astra.
Национальная система спутниковой фиксированной службы России в настоящее время использует СР типа «Экспресс», а также «Ямал» различных модификаций.
2. Принципы построения и особенности ССС.
Виды орбит. Спутник связи может находиться на круговой или на эллиптической орбите. Соответственно центр Земли совпадает с центром круговой орбиты либо с одним из фокусов эллиптической орбиты (рис. 1).
Угол i
между плоскостью орбиты и плоскостью экватора называют наклонением. При i
=0 орбита называется экваториальной, при i=90° – полярной, остальные – наклонными. Круговые орбиты различаются наклонением и высотой Н3 над поверхностью Земли. Эллиптические орбиты – наклонением и высотами апогея А и перигея П над поверхностью Земли. Линия, соединяющая апогей и перигей, называется линией апсид. Поля тяготения Луны, Солнца, планет, магнитное поле Земли, несферичность Земли и другие возмущающие факторы вызывают изменение параметров орбиты во времени. Для наклонных эллиптических орбит эти изменения минимальны, если выбрать i=63,4°.
В ССС нашли применение орбиты двух типов: высокая эллиптическая типа «Молния» и геостационарная орбита. Первая получила название от советского спутника связи «Молния». Ее параметры: высота апогея около 40 тыс. км, высота перигея около
Геостационарная орбита (ГО) – это экваториальная круговая орбита, для которой Н3=35786 км. Спутник, движущийся по этой орбите, называют геостационарным. Он вращается с той же угловой скоростью, что и Земля, и поэтому наблюдателю на Земле кажется неподвижным. Точку на земной поверхности, над которой ИСЗ, находится в зените, называют подспутниковой. Для геостационарного спутника траектория подспутниковой точки вырождается в точку на экваторе. Долгота этой точки определяет положение геостационарного ИСЗ. Связь через такой ИСЗ можно поддерживать с помощью неподвижных антенн ЗС. На самом деле часто приходится принимать во внимание сравнительно небольшие колебания положения ИСЗ, вызванные перечисленными выше возмущающими факторами. Под их влиянием подспутниковая точка начинает совершать колебания с суточной периодичностью. Через некоторое время траектория движения подспутниковой точки за сутки приобретает вид «восьмерки», вытянутой в направлении север-юг, с центром на экваторе. Через год размах этой восьмерки составит около ±1°. Из-за этого приходится периодически корректировать положение спутника на орбите.
Геостационарные спутники позволяют построить более дешевую и удобную в эксплуатации в сравнении с другими ИСЗ систему связи (достаточно одного ИСЗ, нужна неподвижная антенна ЗС и другие причины). Поэтому ГО очень часто отдают предпочтение. Такая орбита у Земли всего одна, и орбитальные позиции для ИСЗ на ней предоставляются по решению Всемирной административной конференции по радио (ВАКР). Занято более 100 позиций. Если точность поддержания по долготе геостационарного спутника не хуже ±1°, то на ГО можно разместить до 180 ИСЗ. По мере развития спутниковых систем связи требования к точности поддержания по долготе ужесточаются. У существующих ИСЗ она составляет от ±1° до ±0,1°.
Через геостационарный спутник не могут работать ЗС, расположенные в высокоширотных районах, так как они не видны с ИСЗ (рис. 2).
Для ЗС, расположенных на экваторе, геостационарный спутник находится в зените. Другими словами, угол места β (угол между направлениями на горизонт и на ИСЗ) составляет 90°. В этом случае путь сигнала в атмосфере Земли самый короткий. Если же расположить ЗС на широте 81°, то ее антенна должна быть направлена на горизонт, т. е. β –0. С уменьшением β путь сигнала в атмосфере становится длиннее. При этом увеличивается ослабление сигнала при распространении в свободном пространстве. Возрастает также ослабление сигнала в атмосферной влаге и шумовая температура антенны за счет шумового излучения атмосферы. Если же β <5°, то резко увеличивается влияние шумового излучения Земли. Поэтому на практике МККР рекомендует обеспечивать углы места не менее 3...5° на частотах до 6 ГГц и 10... 15° на частотах свыше 10 ГГц.
Территория, с которой виден ИСЗ при минимальных углах места, называется зоной видимости. Для геостационарного ИСЗ при β = 5° она располагается между 76° с.ш. и 76° ю.ш, а по долготе занимает примерно третью часть экватора (заштрихованная область на рис.2). Предположим, что на ИСЗ установлена общая приемопередающая антенна. Если ее максимум излучения ориентирован на центр Земли, т. е. антенна создает прямой луч, а ширина главного лепестка ДН около 173° (под таким углом видна Земля с геостационарного ИСЗ), то все станции, расположенные в зоне видимости, могут поддерживать связь через ИСЗ. Если же на ИСЗ установлена узконаправленная антенна, то она освещает на Земле только часть зоны видимости, так называемую зону покрытия (рис.3). Теперь связь через спутник может быть установлена только между ЗС, находящимися в зоне покрытия.
На рис. 12.2 была рассмотрена КС, у которой зоны видимости и зона покрытия совпадают. Такая КС имеет глобальную зону покрытия и глобальную антенну. Глобальные антенны предпочтительны в случаях, когда надо охватить связью большие территории, например в международных ССС, узконаправленные – при создании национальных ССС. Во втором случае антенна ИСЗ прицелена в определенную точку на земной поверхности, а не на центр Земли, т. е. она дает наклонный луч. Зона покрытия имеет форму, максимально приближенную к границам государства, района и т. п. На современных многофункциональных ИСЗ устанавливают вместе и те, и другие антенны, причем узконаправленные антенны могут иметь несколько лучей, образующих на Земле свои зоны покрытия. Они получили название многолучевых антенн (МЛА). Если зоны покрытия МЛА не перекрываются, то передачу во всех лучах можно вести на одной и той же частоте. Таким образом, МЛА допускают многократное применение одной полосы частот и позволяют за счет этого повысить эффективность использования ГО.
Часть зоны покрытия, на которой действительно предусмотрена установка ЗС, называют зоной обслуживания. Наиболее эффективны ССС, в которых зоны покрытия и обслуживания совпадают.
3.Тенденции технологии
Последние достижения технологии в области спутниковой связи говорят о больших потенциальных возможностях ССС в расширении пропускной способности каналов передачи, разработке и внедрении новых служб связи. Будущее ССС за широкополосными широковещательными приложениями и спутниковыми системами подвижной связи.
В ряды крупных консорциумов и организаций, ориентированных на геосинхронные спутники, активно вливаются новые участники, предлагающие услуги сетей подвижной связи и использующие низкоорбитальные спутниковые системы (LEO – Low Earth Orbit). Системы LEO, разрабатываемые рядом американских фирм, используют большое число легких спутников на орбитах ниже 2 тыс. км для организации услуг по передаче сообщений и речи, определению местонахождения и срочных коммуникаций между мобильными терминалами. В отличие от наземных сотовых сетей подвижной связи, в которых абонент последовательно перемещается через смежные соты небольшого размера, в системе LEO подобная «сота» ограничена лишь горизонтом Земли. Низкая орбита спутника резко сокращает задержку по сравнению с системами, ориентированными на геосинхронные орбиты спутников
В заключение отметим, что ССС постоянно и ревниво сравниваются с волоконно–оптическими сетями связи. Внедрение этих сетей ускоряется в связи с быстрым технологическим развитием соответствующих областей волоконной оптики, что заставляет задаться вопросом о судьбе ССС. Например, разработка и, главное, внедрение конкатенирующего (составного) кодирования резко уменьшает вероятность возникновения неисправленной побитовой ошибки, что, в свою очередь, позволяет преодолеть главную проблему ССС– туман и дождь.
4. КОСМИЧЕСКИЕ СТАНЦИИ
Космическая станция содержит ретранслятор и системы обеспечения: источники энергоснабжения, системы ориентации антенн (на Землю) и солнечных батарей (на Солнце), системы коррекции положения ИСЗ на орбите и др.
Аппаратура КС должна иметь минимальную массу и габариты, высокую надежность и потреблять малую мощность. Ретрансляторы КС, как правило, многоствольные. Они состоят из приемопередающей аппаратуры и антенн. Структурные схемы стволов ретранслятора подобны применяемым на ПРС РРЛ. В зависимости от схемы ствола различают ретрансляторы гетеродинного типа, ретрансляторы с одним преобразованием частоты и ретрансляторы с обработкой сигнала на борту. Кроме демодуляции и модуляции, на КС применяют и другие многообразные способы обработки сигнала. Например, при МДВР после демодуляции на КС может быть предусмотрено разделение каналов с последующим объединением их на новой основе. При этом сообщения, адресованные станции i
всеми другими ЗС, объединяют и передают по линии «вниз» в одном пучке. В системах МДВР-КБ на борту происходит коммутация сигналов.
В мощном ретрансляторе гетеродинного типа (рис. 4) частота входного сигнала понижается в смесителе UZ1, а затем после усиления в УПЧ А2 вновь повышается в смесителе UZ2. Гетеродинные тракты ГТ1 и ГТ2 выполнены по аналогичным схемам. Для усиления СВЧ сигнала служат предварительный A3 и выходной А4 усилители мощности. Выходная мощность достигает 200... 300 Вт. Подобную схему имеет ретранслятор на спутнике «Экран». В нем А4 выполнен на пролетном клистроне. В схеме принято «холодное» резервирование всех блоков. Переключатели К1– КЗ по команде с Земли выбирают рабочий комплект. Одновременно на него начинает поступать питающее напряжение.
Современные многоствольные ретрансляторы выполняют так, чтобы получить максимальную пропускную способность. В полосе 500 МГц, отводимой на один ИСЗ, можно разместить спектры сигналов 12 стволов. Обычно полоса ствола –36 МГц, а ЗЧИ между стволами – 4 МГц. Чтобы увеличить вдвое емкость ретрансляторов, вдвое уменьшают разнос между несущими соседних стволов, а необходимую развязку между перекрывающимися по спектру сигналами получают за счет поляризации. Для всех нечетных стволов (рис 5,а) берут, например, вертикальную поляризацию (ВП), а для четных – горизонтальную (ГП). Напомним, что применение линейной поляризации возможно в ИСЗ с жесткой стабилизацией на орбите. В той же полосе частот передают сигналы телеметрии (ТМ). Ретранслятор (рис. 5,6) имеет шесть антенн, причем WA1, WA2 и WA6 работают с волнами вертикальной поляризации, WA3, WA4 и WA5 – горизонтальной, где антенны WA1, WA3, WA5, WA6 –глобальные; WA2, WA4 –узконаправленные. Устройства совмещения (УС) служат для разделения волн приема и передачи. Итак, на ПФ Z1 приходят сигналы нечетных стволов. Оттуда они поступают в приемник Пр1, а затем через разветвитель A3 в передающие комплекты Ш и П2 и в антенны. Сигналы четных стволов проходят через ПФ Z2, приемник Пр2, передающие комплекты ПЗ и П4 и поступают в антенны. Минимальный частотный разнос между сигналами передатчиков, подключенных к одной антенне, составляет 80 МГц. Приемник содержит МШУ А1, смеситель UZ, ГТ и УСВЧ А2. В ретрансляторе применено однократное преобразование частоты. Переключатели К1 и К2 позволяют выбрать в качестве рабочих любые два приемника. Такое резервирование надежнее поблочного, показанного на рис. 4. Передающий комплект (рис. 5,е) содержит фильтр разделения стволов ФРС, коммутаторы входной Км 1 и выходной Км 2, усилители мощности рабочие (по одному на каждый ствол) и резервные, фильтры объединения стволов ФОС и фильтр гармоник ФГ. Кроме того, на рис. 5,в показано устройство 2, предназначенное для введения сигналов телеметрии.
б)
Первые ИСЗ с полностью полупроводниковой электронной аппаратурой появились в начале 80-х годов. Применение транзисторных УМ позволяет существенно улучшить электрические характеристики и надежность передающего тракта ствола, уменьшить массу и энергопотребление. Напомним, что во многих существующих ретрансляторах с выходной мощностью до нескольких десятков ватт УМ выполнены на ЛБВ, а число стволов в таких ретрансляторах составляет 6–12.
На рис. 5,6 показано шесть антенн. Практически их можно реализовать в виде двух МЛА, каждая из которых имеет три (или более) разные диаграммы направленности. Для волн ВП и ГП применяют отдельные антенны. На рис. 5,6 антенны закреплены за передатчиками и приемниками. В усовершенствованном варианте КС между антеннами и приемопередающей аппаратурой устанавливают антенные коммутаторы, которые позволяют по команде с Земли выбирать любую антенну (в МЛА – любую ДН) для приема и передачи, конечно, с учетом поляризации.
5. ЗЕМНЫЕ СТАНЦИИ
Земные станции подразделяют на передающие, приемные систем спутникового вещания, а также приемопередающие, предназначенные для организации дуплексной телефонной связи и для работы в сети обмена ТВ программами. Приемопередающие ЗС обычно являются многоствольными.
Типовая приемопередающая ЗС, работающая в национальной ССС СССР или в ССС «Интерспутник» (рис. 6) содержит антенну WA1, УС, приемные и передающие устройства стволов, аппаратуру «Градиент-Н» и др. В схеме установлены приемные устройства типа «Орбита-2». Их комплектуют широкополосными ПФ Z1, волноводными переключателями К1 и К2, МШУ А1 и А4, стойками типа В (Ст В1 и Ст В2), стойками типа П (Ст П) и стойками типа PC (Ст PC). Фильтр Z1 пропускает сигналы всех рабочих стволов и служит для защиты широкополосных МШУ от возможных внеполосных помех. Разделение сигналов стволов выполняют ПФ Z2 и Z3, установленные на входе стоек типа В и настроенные на центральную частоту СВЧ сигнала своего ствола. Здесь стойки В1 предназначены для преобразования СВЧ сигналов ТВ ствола с центральной частотой f
1 в сигнал ПЧ. Стойки В2 – для подобного преобразования СВЧ сигналов ТФ ствола с центральной частотой f2. В каждом стволе установлены рабочая и резервная стойки типа В. Кроме ПФ в составе стойки В показаны преобразователь частоты U1 и ПУПЧ А2. Стойка П содержит основной УПЧ A3 и демодулятор сигнала UR, на выходе которого получают ГС ТВ ствола. Разделение этого сигнала выполняет стойка PC. На выходе приемной части стойки PC получают ПТВС и СЗС.
Выбор рабочего комплекта МШУ выполняет К1, а рабочей стойки В–К2. Переключение с одного комплекта на другой происходит автоматически при получении АС от стойки контроля приемника (на схеме не показана).
Сигналы в ТФ ств.оле передаются методом ОКН-ЧМ-МДЧР. Центральная частота этого сигнала на выходе стойки В fпр= 70 МГц. В приемной части аппаратуры «Градиент-Н» происходит усиление сигнала ПЧ, разделение 200 ЧМ сигналов, каждый из которых передается на своей несущей, и их демодуляция. На выходе приемного устройства «Градиент-Н» получают ТФ сигналы.
Телефонные сигналы поступают на вход передающей части аппаратуры «Градиент-Н», в которой формируется сигнал ОКН-ЧМ-МДЧР в полосе частот 70±17 МГц. Этот сигнал поступает на передатчик ТФ ствола ЗС. В составе передатчика делитель мощности ПЧ А8, волноводные переключатели КЗ и К4, два блока преобразователя частоты и два блока УМ. Вторые блоки – резервные. Блок преобразователя частоты содержит МУПЧ А7, преобразователь частоты U2 и предварительный УМ А6. Блок УМ содержит выходной УМ А5 и фильтр гармоник Z4. Работой переключателей КЗ и К4 управляют АС, поступающие от блока контроля передатчика (на рис. не показан). Таким образом, между входом передающей части аппаратуры «Градиент-Н» на передающей ЗС и выходом приемной части аппаратуры «Градиент-Н» приемной ЗС организован канал ТЧ.
Групповой сигнал ТВ ствола формирует передающая аппаратура стойки PC. Передатчик ТВ ствола содержит модулятор UB. В остальном схемы передатчиков ТВ и ТФ стволов аналогичны. Для подачи передаваемых СВЧ сигналов нескольких стволов в общий АФТ служит блок РФ. На ЗС работают передающие устройства типа «Градиент», «Геликон», «Грунт».
Приемная ЗС «Москва» (рис. 7) содержит антенну WA, АФТ, МШУ А4 и приемную стойку Пр. Ст. В составе приемной стойки показан блок ПЧ и блок ТВ, фильтры для разделения ЧМ сигналов, передаваемых на поднесущих частотах 7 и 7,5 МГц, блок Зв для выделения СЗС и блок Рв для выделения СЗВ. Блок ПЧ предназначен для преобразования частоты входного сигнала в смесителе UZ1, который конструктивно совмещен с ПУПЧ А1. Блок ТВ содержит главный УПЧ А2, частотный демодулятор, состоящий из АО ZL и ЧД UR1, и выходной усилитель A3. В схему A3 включены режекторные фильтры для подавления сигналов, передаваемых на поднесущих частотах 7 и 7,5 МГц. На выходе выделяют ПТВС.
В блоке Зв (рис. 7,6) и Рв применены порогопонижающие демодуляторы. Они содержат частотный демодулятор СЗС UR2, вспомогательный преобразователь частоты, состоящий из смесителя UZ2, генератора G2, ФБП Z4, и цепь обратной связи по частоте ОСЧ. В составе цепи ОСЧ – частотный модулятор UB и фазовый корректор А7. Кроме того, в составе блока – выходной усилитель А5 и ВК А6. Частота ЧМ сигнала на входе блока звука
f
1
=
f
ЗВ
+Δ
fm
ЗВ
u
ЗВ
(
t
)
где f
3
B=7 МГц; ΔfmЗВ – максимальная девиация, развиваемая СЗС; u
3
B
(
t
) –напряжение СЗС, причем | u
3
B
(
t
)|≤1.
Напряжение u
ЗВ
{
t
), выделенное на выходе UR2, поступает на UB. Частота колебаний на выходе UB
f
2 = fг+A
Δ
fm
ЗВ
u
ЗВ
(
t
).
где fг –частота колебаний G
2; А – коэффициент передачи цепи ОСЧ. Частота колебаний на выходе Z4
fпр2 = f1-f2=f*пр2+(1-A
)
Δ
fm
ЗВ
u
ЗВ
(
t
)
где fПр*=fзв–fг. С помощью корректора А7 подбирают фазу СЗС на входе UB так, чтобы при возрастании частоты сигнала на входе / смесителя возрастала бы частота колебаний на входе 2. В этом случае А>0 и (1–A) ΔfmЗВ< ΔfmЗВ, т. е. девиация частоты на выходе смесителя меньше, чем на его входе. Поэтому ПФ Z4 может иметь более узкую полосу пропускания, чем ПФ Z3. В таком случае Z4 будет определять шумовую полосу приемника звука и пороговую мощность входного сигнала. Видим, что применение ОСЧ снижает порог ЧМ приемника. Поэтому последний может принимать более слабые сигналы. Это позволяет снизить уровень колебаний поднесущих частот на передаче, т. е. уменьшить загрузку общего тракта.
Профессиональный приемник системы «Экран» (1-го класса) (рис. 8,а) состоит из блока ВЧ, двух идентичных приемных полукомплектов (рабочего и резервного) и блока контроля и коммутации (БКК). В составе блока ВЧ – транзисторный МШУ, ПФ и диодный переключатель К. Включение ПФ, являющегося пассивным элементом схемы, после МШУ, позволяет уменьшить Т3 приемника. Приемные полукомплекты выполнены по стандартной схеме приемника ЧМ сигналов. На выходе ЧД UR1 установлены фильтры Z1 и Z2 для разделения ПТВС и ЧМ сигналов (СЗС и СЗВ). ЧД СЗС UR2 и ЧМ СЗВ UR3. Выделенный фильтром Z1, ПТВС поступает на выходной усилитель А2 и ВК-АЗ. Последний необходим, поскольку на передающей ЗС ПТВС подвергается предскажениям. С помощью БКК и переключателя К происходит автоматический выбор рабочего полукомплекта.
Абонентский приемник системы «Экран» (2-го класса) выполнен по стандартной схеме приемника ЧМ сигналов, которая дополнена блоком амплитудного модулятора (БАМ) (рис. 8,б).
Блок AM преобразует выходной сигнал ЧД UR (рис. 9,а) в радиосигнал вещательного телевидения с несущей fi
(рис. 9,6), состоящей из AM радиосигнала изображения f и ЧМ радиосигнала звукового сопровождения 2.
На входе БАМ (рис. 9,в) установлен каскад с разделенной нагрузкой А1. Фильтр Z1 выделяет ПТВС, который после дополнительной обработки поступает на вход 1 амплитудного модулятора UZ1. В схему включены ВК А2 и режекторный фильтр Z2, настроенный на частоту 6,5 МГц и предназначенный для более эффективного подавления СЗС, передаваемого на поднесущей частоте. Чтобы уменьшить нелинейные искажения сигнала на выходе БАМ, на UZ1 подают ПТВС с восстановленной постоянной составляющей. Восстановление выполняет типовая управляемая схема фиксации уровня (СФУ). Управляющие импульсы для нее амплитудный селектор (АС) вырабатывает из синхроимпульсов входного ПТВС. На второй вход UZ1 поступает несущая от автогенератора G, создающего колебания частоты f,. Выполнен AM по балансной схеме, так что на его выходе получают AM сигнал с подавленной несущей и частично подавленной нижней боковой полосой (сигнал / на рис. 9,6).
Фильтр Z3, настроенный на частоту 6,5 МГц, выделяет ЧМ сигнал звукового сопровождения. Этот сигнал поступает на преобразователь частоты СЗС, состоящий из смесителя UZ2, ФБП и автогенератора G. Фильтр Z4 выделяет ЧМ СЗС со средней частотой f=fi+6,5 МГц (сигнал 2 на рис. 12.19,в). В выходном каскаде A3 оба сигнала объединяются.
Список Литературы
1. Бурлянд В.А., Володарская В.Е., Яроцкий А.В. Советская радиотехника и электросвязь в датах.- М.:Связь, 1975.- 191с.
2. Справочник "Спутниковая связь и вещание" Изд. "Радио и связь", Москва, 1988.
3. Волков Л.Н., Немировский М.С., Шинаков Ю.С. Системы цифровой радиосвязи.- М.: Экотрендз, 2005.- 393с.
4. Network World №9 1997, Ст. "Спутниковая связь в России: "Памир", Iridium, Globalstar ...". Авт:Галина Большова.