Реферат

Реферат Ферменты микроорганизмов

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 14.1.2025


министерство сельского хозяйства российской федерации


ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

высшего профессионального образования

«ИЖЕВСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»
Зооинженерный факультет
РЕФЕРАТ
На тему: Ферменты микроорганизмов
Выполнил:

Студент 243 группы

Ушков В.В.

Проверил: преподаватель

Шахова Е.В.
Ижевск, 2010 г.

Содержание




Введение. 3

Биотехнологические производства с использованием ферментов микроорганизмов  5

1. Получение глюкозо-фруктозных сиропов. 5

2. Получение L-аминокислот. 7

3. Получение L-аспарагиновой кислоты.. 9

4. Получение L-яблочной кислоты.. 9

5. Получение безлактозного молока. 10

6. Получение сахаров из молочной сыворотки. 11

7. Получение 6-аминопенициллановой кислоты.. 12

ФЕРМЕНТАТИВНОЕ ПРЕВРАЩЕНИЕ ЦЕЛЛЮЛОЗЫ В САХАРА.. 13

Целлюлолитические микроорганизмы и ферменты.. 13

Выводы.. 15

Список литературы.. 16



Введение


Истоки современной биотехнологии уходят глубоко в прошлое. С незапамятных времен получали пищевые продукты и улучшали   их   качество   с   использованием   биологических   процессов и агентов. В качестве биологических агентов применялись различные   организмы    (от   животных   до   микроорганизмов) На этом принципе основаны общеизвестные древнейшие способы получения молока, изготовления вин, уксуса, пивоварения, сыроделия, хлебопечения и т. д.

Хотя история пищевых технологий насчитывает тысячелетия, тем  не  менее  совершенствование их  постоянно  продолжается. В  последнее  время  наметились  перспективы  принципиального сдвига в технологии получения и улучшения качества пищевых продуктов. Это связано  с  переходом  от  использования  целых биологических организмов на клеточный и молекулярный уровни. Появилась возможность конструировать биологические агенты,  изменять структуру молекул, «резать» их на части и соединять по усмотрению исследователя-биотехнолога, извлекать биокатализаторы из естественного клеточного окружения и присоединять с помощью ковалентных или других связей к специальным носителям (тем самым опять-таки изменять структуру молекул) и т.д. В этом и заключается главное и принципиальное отличие традиционных  пищевых технологий и их традиционного научного фундамента  от  современной  биотехнологии.  Следует,  впрочем,  иметь в виду, что четкую грань между технической биохимией и биотехнологией провести достаточно трудно.

Может возникнуть вопрос, почему в разделе,  посвященном промышленным процессам инженерной энзимологии, речь идет в основном  о  получении  пищевых  продуктов.  Дело  в  том, что иммобилизованные ферменты и клетки в основном используют в получении пищевых продуктов и в меньшей степени фармацевтических препаратов. Такое ограничение вызвано весьма малой доступностью  (в широких масштабах)  ферментов, способных катализировать реакции технологической значимости, на­пример, в органической или неорганической химии, нефтехимии, полимерной химии, фармацевтической промышленности и т. д. Напротив, традиционное использование растворимых ферментов в пищевой промышленности создало определенный фундамент для дальнейшего совершенствования методов в этой области.



Биотехнологические производства с использованием ферментов микроорганизмов


К настоящему времени семь процессов с использованием иммобилизованных ферментов или клеток нашли крупномасштаб­ное промышленное применение в ряде развитых стран мира:

1. Производство глюкозо-фруктозных сиропов и фруктозы из глюкозы.

2. Получение оптически активных L-аминокислот из их рацемических смесей.

3. Синтез L-аспарагиновой кислоты из фумаровой кислоты.

4. Синтез L-яблочной кислоты из фумаровой кислоты.

5. Производство диетического безлактозного молока.

6. Получение Сахаров из молочной сыворотки.

7. Полу­чение 6-аминопенициллановой кислоты (пенициллинового ядра) из обычного пенициллина (пенициллина G) для последующего производства полусинтетических антибиотиков пенициллинового яда.

1. Получение глюкозо-фруктозных сиропов


Фруктоза, или иначе фруктовый, плодовый или медовый сахар,  широко  распространена   в   природе.   Особенно  богаты  ей
яблоки и помидоры, а также пчелиный мед, который почти наполовину состоит из фруктозы. По сравнению с обычным пищевым сахаром  (в состав которого фруктоза также входит, но в виде химического соединения с менее сладкой глюкозой)  фруктоза обладает более приятным  вкусом, и согласно профессиональной терминологии  вкус  фруктозы  «медовый»,   а  обычного
сахара — «приторный». Она на 60—70% слаще сахара и потреблять ее можно меньше, а значит, меньше будет и калорийность продукта. Это важно с точки зрения диетологии питания. Фруктозу в отличие от глюкозы и пищевого сахара могут потреблять больные диабетом, так как замена сахара фруктозой существенно снижает вероятность возникновения диабета.  Это объясняется тем,  что усвоение фруктозы  не  связано  с  превращением
инсулина. Кроме того, она в меньшей степени вызывает заболевание зубов , чем сахар.В смеси с глюкозой фруктоза не кристаллизуется (не засахаривается), поэтому нашла широкое применение в производстве мороженого, кондитерских изделий и т. д. Несмотря на неоспоримые преимущества фруктозы по сравнению с обычным сахаром, вплоть до начала 70-х годов она не производилась промышленным путем. В 1973 г. американской компанией «Клинтон Корн» был внедрен в промышленность про­цесс превращения глюкозы во фруктозу под действием иммоби­лизованного фермента глюкозоизомеразы, этот процесс стал са­мым крупным в мире по сравнению с другими, в которых исполь­зуются иммобилизованные ферменты.


Основы  процесса.  

Фермент  глюкозоизомераза   катализирует превращение   глюкозы,   получаемой   при   гидролизе   крахмала (кукурузного   или   реже   картофельного),   в   смесь   глюкозы   и фруктозы.  Образующийся глюкозо-фруктозный сироп содержит 42—43% фруктозы, около 51% глюкозы и не более 6% ди- или олигосахаридов, по сладости соответствует обычному сахару или инвертному сахару, получаемому кислотным  (или ферментатив­ным) гидролизом сахарозы.

Для некоторых пищевых производств (например, безалко­гольных напитков типа кока-колы) употребляют глюкозо-фруктозные сиропы с содержанием фруктозы 55 и 90%. Их в свою очередь изготавливают из обычных (42%-ных по фруктозе) сиропов с использованием разделительных процессов типа жид­костной хроматографии.

Глюкозо-фруктозная смесь поступает на рынок в виде сиро­пов. Применяется при производстве тонизирующих и ацидофиль­ных напитков, мороженого, кондитерских изделий, хлеба, консер­вированных фруктов и т. д.

Технологические варианты процессов.

В литературе содер­жится немного данных о технологических деталях процессов. Несмотря на то, что почти в каждом процессе приме­няются ферменты или клетки различного происхождения, имеющие неодинаковую каталитическую активность и полученные различными методами иммобилизации, все процессы имеют об­щие черты.

2. Получение L-аминокислот


Аминокислоты — главный строительный материал организма, из которого формируются пептиды и белки. Растения и микро­организмы способны сами синтезировать все нужные им амино­кислоты из более простых химических соединений. Однако чело­веческий организм способен синтезировать лишь 12 из 20 амино­кислот,   необходимых   ему  для   жизнедеятельности.   Остальные 8 аминокислот получили название незаменимых и должны по­ступать в организм извне — с пищей. При нехватке хотя бы од­ной из незаменимых аминокислот замедляется рост организма, проявляется патология. Поэтому важно синтезировать эти ами­нокислоты    в   промышленных    масштабах   для    корректировки рационов питания, в лечебных и профилактических целях и т. д. Кроме того, аминокислоты (как заменимые, так и незаменимые) являются важнейшим сырьем для обеспечения многих биотехно­логических процессов.

Производство многих аминокислот, в том числе и незаме­нимых, —крупнотоннажная отрасль химической промышленности. Однако с помощью химических методов получается смесь опти­ческих изомеров аминокислот, иначе говоря, смесь L- и D- аминокислот, молекулы которых в L- и D-форме представляют собой зеркальные изомеры. В химических реакциях эти изомеры прак­тически неразличимы, однако человеческий организм усваивает лишь L-аминокислоты (за исключением метионина). Для боль­шинства биотехнологических процессов D- аминокислоты также не представляют ценности.

Разделение смеси L- и D- аминокислот, так называемой ра­цемической смеси, на составляющие их изомеры стало первым процессом в мире, осуществленным с помощью иммобилизован­ных ферментов на промышленном уровне. Этот процесс был реализован в Японии на предприятии, принадлежащем компании «Танабе Сейяку» в 1969 г. В течение 15 предшествующих лет данный процесс проводился с применением  растворимого  фермента аминоацилазы,   но   он   был   недостаточно   экономичен. После перехода на иммобилизованную аминоацилазу экономическая эффективность процесса возросла в полтора раза, и в настоящее время компания осуществляет на промышленном уровне производство пяти L-аминокислот, из них четыре незаменимые (метионин, валин, фенилаланин, трипто­фан).

В качестве исходного вещества используются ацилированные D, L-аминокислоты, полученные с помощью обычного химиче­ского синтеза. Фермент аминоацилаза гидролизует один ацил-L-изомер, отщепляя от него объемную ацильную группу, и тем са­мым резко увеличивая растворимость образующейся L-амино­кислоты по сравнению с присутствующим в реакционной системе ацил-Д-изомером. После этого вещества легко отделяются друг от друга путем известных физико-химических методов. Так выделяется чистая L-аминокислота.

Остающаяся ацил-О-аминокислота при нагревании рацеми-зуется, т. е. переходит опять в смесь ацилированных D, L-амино­кислот, и процесс повторяют сначала. Таким образом, в итоге единственным продуктом является L-аминокислота. Оказалось, что для аминоацилазы не имеет значения, какую аминокислоту ей гидролизовать, важно лишь строение ацильной части, к кото­рой фермент имеет строгую специфичность. В результате этого одна и та же реакционная колонна с иммобилизованной амино-ацилазой может быть применена в производстве самых различ­ных L-аминокислот.

Иммобилизованный фермент легко готовить, так как он легко адсорбируется на специальной смоле, которую затем помещают в реакционную колонну. Время полуинактивации иммобилизо­ванного фермента в промышленных условиях составляет 65 сут. Когда активность катализатора падает ниже нормы, в колонну добавляют раствор свежего фермента (раз в несколько месяцев), который опять адсорбируется на носителе. Устойчивость поли­мерного носителя высокая; так, на предприятии японской ком­пании «Танабе Сейяку» он используется более 8 лет в одной и той же колонне без замены (I. Chibata, 1978).

3. Получение L-аспарагиновой кислоты


Аспарагиновая кислота не принадлежит к числу незаменимых, но производится в мире многими тысячами тонн. Она находит широкое применение в пищевой промышленности для придания (в сочетании с другой аминокислотой — глицином) кондитерским изделиям и напиткам различных оттенков кислого или сладкого вкуса. Аспарагиновую кислоту можно получать с помощью фермента аспартазы. В качестве исходных веществ для фермен­тативного синтеза используются фумаровая кислота и аммиак — крупнотоннажные продукты органического и неорганического синтеза.   Протекающая   реакция  одностадийна — в   присутствии фермента молекула аммиака присоединяется к фумаровой кисло­те по месту двойной связи с образованием оптически активной L-аспарагиновой кислоты. В этом процессе впервые в техноло­гической практике были применены иммобилизованные клетки микроорганизма, содержащие фермент в его естественной мик­робной оболочке. Этот процесс был разработан японской фир­мой «Танабе Сейяку» в 1973 г. 

Плотный гель с иммобилизованными в нем микробными клетками, содержащими аспартазу, формуют в кубики разме­рами 2—3 мм, набивают ими колонну объемом 1 м3 и пропускают через нее раствор фумарата аммония. На выходе из колонны L-аспарагиновую кислоту кристаллизуют, центрифугируют и про­мывают холодной водой. Процесс практически полностью автома­тизирован и осуществляется в непрерывном режиме. Масштабы производства на фирме «Танабе Сейяку»—1700 кг чистой L-аспарагиновой кислоты в сутки на реактор объемом 1 м3 .

4. Получение L-яблочной кислоты


Яблочная кислота находит спрос в качестве заменителя лимонной кислоты в продуктах питания и фармацевтических препаратах. Химическим путем (гидролизом ангидрида яблочной кислоты) производят только рацемическую смесь оптических изомеров яблочной кислоты, в то время как оптически активный L-изомер, получаемый микробиологическим способом, пока слиш­ком дорог для промышленного производства.

L-яблочную кислоту получают ферментативным путем, так же как и L-аспарагиновую кислоту, из фумаровой кислоты. Здесь в качестве катализатора используют иммобилизованные в гель клетки, содержащие фермент фумаразу. В присутствии этого фермента происходит присоединение воды по двойной связи молекулы фумаровой кислоты. В остальном реакция протекает так, как и в случае L-аспарагиновой кислоты. В обычных (интактных) клетках время полуинактивации фумаразы составляет 6 сут, в иммобилизованных в полиакриламидный гель — 55 сут, а в иммобилизованных в гель на основе каррагинана — поли­сахарида  из морских водорослей—160 сут  

5. Получение безлактозного молока


Лактоза, или молочный сахар, содержится в достаточно боль­ших количествах в молоке и молочной сыворотке. Этот сахар характеризуется малой сладостью и низкой растворимостью, в его присутствии происходит кристаллизация мороженого и дру­гих молочных изделий и продуктов, что является причиной не­приятных вкусовых ощущений.

Молекулы лактозы распадаются на глюкозу и галактозу при гидролизе под действием лактазы, или β-галактозидазы. Молоко после такой обработки приобретает новые диетические качества, поскольку определенная часть населения не может употреблять молоко из-за наличия в нем лактозы. Это свойство организма получило название лактазной недостаточности.

Первый промышленный процесс получения безлактозного молока с использованием иммобилизованной лактазы был осу­ществлен итальянской фирмой «Сентрале дель Латте» в Милане. Получаемое диетическое молоко несколько слаще по сравнению с обычным, поскольку глюкоза более сладкая, чем лактоза, однако это не мешает его употреблению. Стабильность иммоби­лизованного фермента достаточно высока, и после 50 сут работы он сохраняет 80% первоначальной активности.

6. Получение сахаров из молочной сыворотки


Молочная сыворотка содержит в своем составе большое количество лактозы — около 5% в жидкой и 75% в высушенной сыворотке. Ферментативный гидролиз лактозы в сыворотке открывает новые возможности получения сахаристых веществ из нетрадиционного сырья, вносит определенный вклад в решение кормовой проблемы и в проблему охраны окружающей среды, поскольку сыворотка большей частью не утилизуется. Первый промышленный процесс гидролиза лактозы в молочной сыворотке с помощью иммобилизованной лактазы был реализован в 1980 г. совместно английской, французской и американской компаниями одновременно в Англии и Франции.

Перед введением в колонный реактор с иммобилизованным ферментом сыворотку пастеризуют, подвергают ультрафильтра­ции и пропускают через ионообменник, чем добиваются ее деми­нерализации. Мощность установки составляет около 1000 л при степени конверсии лактозы 80%. Установка полностью автомати­зирована. Получаемые при этом сахара (глюкоза и галактоза) по сладости в полтора раза превышают сладость пищевого сахара в расчете на одинаковые экономические затраты.

По данным итальянской компании «Снам Проджетти», про­должительность работы иммобилизованного фермента в реакторе с молочной сывороткой существенно зависит от качества сы­воротки и время полуинактивации фермента изменяется от 60 (при обработке депротеинизованной и деминерализованной сы­воротки) до 8 сут (для необработанной кислой сыворотки), о связи с этим в промышленных условиях ежедневно по полчаса производят очистку колонны (с иммобилизованной лактазой) Разбавленной уксусной кислотой. Время работы подобной систе­мы в лабораторных условиях составляет около двух лет

7. Получение 6-аминопенициллановой кислоты


Проведение химического деацилирования бензилпенициллина, обычно являющегося исходным сырьем для получения 6-амино­пенициллановой кислоты (6-АПК), представляет трудную задачу из-за наличия в его молекуле чрезвычайно лабильного β-лактамного кольца. Поэтому в промышленности до недавнего времени обрабатывали бензилпенициллин бактери­альной массой Е. coli
,
содержащей фермент пенициллинамидазу, который специфически и без побочных реакций расщеплял имен­но ту амидную связь, которая необходима для образования 6-АПК.

В результате применения иммобилизованных бактериальных клеток, содержащих пенициллинамидазу, а затем и самой иммо­билизованной пенициллинамидазы, удалось значительно повы­сить продуктивность и экономичность промышленного процесса получения 6-АПК. В 1975 г. процесс получения 6-АПК с исполь­зованием иммобилизованной пенициллинамидазы был внедрен в нашей стране. В настоящее время значительная доля 6-АПК в Италии и вся 6-АПК, выпускаемая в РФ, производится с помощью иммобилизованных ферментов.

Итальянская компания использует иммобилизованную пени­циллинамидазу, полученную включением фермента в волокна триацетата целлюлозы. При этом эмульсию, образованную при смешивании раствора фермента с раствором триацетата целлю­лозы в метиленхлориде, подвергают экструзии в нити. Волокна закрепляют вдоль термостатируемой колонны и пропускают через нее 6%-ный раствор бензилпенициллина до степени конверсии последнего 97% или выше. По данным итальянских ученых, общий выход 6-АПК составляет 85% с чистотой 96% и выше.

По технологии компании «Танабе Сейяку», использующей бактериальные клетки, иммобилизованные в полиакриламидный гель (с временем полуинактивации 42 сут при 30°С или 17 сут при 40°С), общий выход 6-АПК составляет около 80%. На советском производстве употребляют пенициллин­амидазу, иммобилизованную в полиакриламидном геле, модифи­цированном глутаровым альдегидом.

ФЕРМЕНТАТИВНОЕ ПРЕВРАЩЕНИЕ ЦЕЛЛЮЛОЗЫ В САХАРА


Целлюлоза построена из звеньев D-глюкозы, которые соеди­нены 1-4-β-глюкозидными связями (по типу «голова к хвосту») в длинные, вплоть до тысяч глюкозных единиц, цепи, уложенные в плотную упаковку со своеобразной кристаллической структу­рой. Прочность упаковки обусловлена главным образом тем, что цепи поперечно «прошиты» водородными связями, которые по отдельности относительно слабы, но в совокупности с тыся­чами других образуют, можно сказать, монолитный блок. В ре­зультате целлюлоза не только нерастворима в воде, но ее кри­сталлические участки непроницаемы практически для любых химических агентов, в том числе и для сильных кислот. Но там, где плотная упаковка глюкозных цепей нарушена (на поверх­ности целлюлозы, в местах поворота цепей, а также после спе­циальной обработки целлюлозы, например с помощью интенсив­ного измельчения), образуются «аморфные области», куда могут проникать и растворители, и механические агенты. Это свойство используется при промышленном получении так называемой микрокристаллической целлюлозы, которая широко применяется для специальных химических целей. Природную целлюлозу обра­батывают кислотой, аморфные участки легко расщепляются и уходят в раствор, оставляя мелкие микрокристаллиты, чрезвы­чайно стойкие к химическим реагентам.

Целлюлолитические микроорганизмы и ферменты


В природе имеются так называемые целлюлолитические микро­организмы, содержащие набор ферментов — целлюлаз, способных к расщеплению не только аморфной, но и кристаллической цел­люлозы до глюкозы. Попадая на поверхность целлюлозосодержащего материала и прикрепляясь к ней, микроорганизм выделя­ет целлюлазы, под действием которых субстрат целлюлаза в непосредственной близости от грибка-паразита расщепляется до конечного продукта — глюкозы. Микроорганизм поглощает глюкозу в качестве основного продукта питания, размножается, рас­тет, захватывая все большие участки поверхности, выбрасывает все новые и новые порции ферментов, пока не истощится доступ­ная целлюлоза.

Однако эти процессы протекают весьма медленно. Для того чтобы пень в лесу полностью сгнил, нужны годы. Если же от­делить от микроорганизма ферменты целлюлазы, сконцентриро­вать их и добавить к целлюлозе, процесс значительно ускорится. При этом образующаяся глюкоза не потребляется грибками, а накапливается в реакционной смеси. Кроме того, если в качестве субстрата использовать не чистую целлюлозу, а целлюлозосодержащие отходы промышленности или сельского хозяйства, то можно решить и еще одну важную проблему — утилизацию отходов. Полученная глюкоза в зависимости от ее чистоты и экономической эффективности процесса может найти применение в медицине, пищевой промышленности, тонкой химической тех­нологии или технической микробиологии. Глюкозу, как известно, можно сбраживать в этанол и затем употреблять как «жидкое топливо» в качестве заменителя части нефтепродуктов. Наконец, дегидратация энатола дает этилен — основу современной «боль­шой химии».

Целлюлоза на нашей планете — самое «крупнотоннажное» из всех возобновляемых видов сырья. Ежегодный естественный прирост целлюлозы составляет около 100 млрд. т. Использование человеком части этого сырья приводит к накоплению значительного количества целлюлозосодержащих отходов. Если даже малую долю этих отходов превращать фер­ментативным путем в полезные продукты, это даст ощутимый (и возобновляемый!) источник пищевых углеводов и заменителей нефти. Поэтому данной проблемой в последние годы столь упор­но занимаются и исследователи, и технологи всего мира.



Выводы


Благодаря высокой скорости роста, сравнительно простому строению клеток и несложной структуре генетического аппарата бактерии стали од­ним из наиболее удобных объектов в биохимических исследованиях низ­ших организмов. Многие бактериальные культуры хорошо известны как активные продуценты внеклеточных гидролаз и применяются при про­мышленном получении ферментов. Практическое использование бактери­альных ферментов в значительной степени способствовало интенсификации исследований по изучению условий их продуцирования, а также локализа­ции.

Список литературы



  1. Безбородов А.М., Астапович Н.И. Секреция ферментов у микроорганизмов. – М.: 1984 г.
  2. Биотехнология: Учебное пособие для ВУЗов в 8 кн./ под ред. Н.С. Егорова, В.Д. Самуилова. Кн. 7: Иммобилизованные ферменты. – М.: 1987 г.
  3. Биотехнология: Учебное пособие для ВУЗов в 8 кн./ под ред. Н.С. Егорова, В.Д. Самуилова. Кн. 8: Инженерная энзимология. – М.: 1987 г.
  4. В.М. Богданов, Р.С. Баширова и др. Техническая микробиология пищевых продуктов. – М.: 1968 г.
  5. С. Прескотт, С. Дэнс Техническая микробиология. – М.: 1952 г.


1. Курсовая на тему Единый налог на вмененный доход для определенных видов деятельности 2
2. Контрольная работа Демократия - основа Белорусского государства
3. Реферат на тему John Donne Essay Research Paper Although the
4. Реферат Отчет о производственной работе медицинской сестры дерматовенерологического кабинета
5. Реферат Послеродовые психозы
6. Диплом Американская система экономики
7. Реферат Базы данных для информационной системе
8. Реферат на тему Sight In Oedipus Essay Research Paper The
9. Реферат на тему Dances With Wolves Essay Research Paper Dance
10. Реферат Алекперов, Алескер Гаджи Ага оглы