Реферат Основы триботехники
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Основные понятия
Триботехника – наука о контактном взаимодействии твердых тел при их относительном движении, охватывающая весь комплекс вопросов трения, изнашивания и смазки машин. В некоторых странах, в том числе и России, вместо термина триботехника употребляют термины трибология и трибоника. Название научной дисциплины трибология образовано от греческих слов «трибос» - трение и «логос» - наука. Она охватывает теоретические и экспериментальные исследования физических (механических, электрических, магнитных, тепловых), химических, биологических и других явлений, связанных с трением, изнашиванием и смазкой. Как наука, трибология имеет научно-технические разделы: трибофизику, трибохимию, триботехническое материаловедение, трибомеханику, трибоинформатику и др.
Необходимо также дать пояснения некоторых терминов, которые будут наиболее часто встречаться в тексте.
Внешнее трение – явление сопротивления относительному перемещению, возникающее между двумя телами в зонах соприкосновения поверхностей по касательным к ним, сопровождаемое диссипацией энергии.
Изнашивание – процесс разрушения и отделения материала с поверхности твердого тела и (или) накопления его остаточной деформации при трении, проявляющийся в постепенном изменении размеров и (или) формы тела.
Износ – результат изнашивания, определяемый в установленных единицах.
Смазка – действие смазочного материала, в результате которого между двумя поверхностями уменьшается сила трения и (или) интенсивность изнашивания.
Износостойкость – свойство материала оказывать сопротивление изнашиванию в определенных условиях трения, оцениваемое величиной, обратной скорости изнашивания или интенсивности изнашивания.
Антифрикционные материалы – материалы, используемые для работы в несущих или направляющих узлах трения (подшипниках скольжения, радиальных и торцовых уплотнениях).
Фрикционные материалы – материалы, предназначенные или используемые для работы в узлах трения, передающих или рассеивающих кинетическую энергию движущихся масс (в тормозах, муфтах, сцеплениях, демпферах, вариаторах и др.).
Присадка – вещество, добавляемое к смазочному материалу для придания ему новых свойств или усиления существующих.
Надежность – это свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования.
Инженерно-технические проблемы триботехники
Наиболее актуальными инженерно-техническими проблемами в триботехнике на сегодняшний день являются следующие:
- экономика и триботехника;
- создание «безызносных» узлов трения машин;
- разработка методов расчета деталей на износ;
- защита деталей машин от водородного изнашивания;
- расширение применения финишной антифрикционной безабразивной обработки (ФАБО) трущихся деталей;
- совершенствование смазывания деталей сочленений;
- исследование электрических, магнитных и вибрационных явлений при изнашивании;
- подготовка инженерных кадров по триботехнике;
- разработка новой теории трения и безызносности;
- триботехника, интересы здоровья и защиты окружающей среды;
- программа исследований водородного изнашивания и избирательного переноса;
- построение и реализация банка данных по триботехнике и единство терминов и определений в триботехнике;
- необычные условия работы машин и приборов;
- компьютерная трибология.
А также к проблемам триботехники можно отнести проблемы технического обновления различных отраслей машиностроения.
Проблема защиты деталей машин от водородного изнашивания
Важной задачей триботехники является разработка методов борьбы с водородным изнашиванием. Около 15 лет назад в Советском Союзе было экспериментально обнаружено неизвестное ранее явление концентрации в поверхностных слоях трущихся деталей водорода, выделяющегося из материалов пары трения и из окружающей среды. Это явление вызывает ускорение изнашивания. Водородное изнашивание характеризуется интенсивным выделением водорода в результате трибодеструкции водородсодержащих материалов, ускоряемым механохимическим действием. Кроме того, оно характеризуется диффузией водорода в деформируемый слой стали и особым видом разрушения, связанным с одновременным появлением большого числа «зародышей» трещин во всей зоне деформирования, и упомянутым накапливанием водорода. Водородное изнашивание вносит новые представления о механизме хрупкого разрушения.
Защита от водородного изнашивания имеет особое значение для следующих отраслей:
- авиатехники (узлы трения топливных насосов, а также тормозные колодки и барабаны колес выходят из строя в результате водородного изнашивания);
- железнодорожного транспорта (водородному изнашиванию подвергаются рельсы и колеса вагонов);
- автомобильного транспорта (водородное изнашивание резко снижает срок службы цилиндров и поршневых колес двигателей, тормозных накладок, тормозных барабанов и дисков сцепления, а также лопаток бензиновых насосов и других деталей агрегатов автомобилей);
- морского флота (водородному изнашиванию подвергаются узлы трения, смазываемые водой);
- деревообрабатывающей промышленности (водородное изнашивание деревообрабатывающего инструмента и рабочих органов машин сдерживает рост производительности труда в отрасли);[1]
- техники Севера (одной из причин быстрого изнашивания машин, работающих на Севере, является охрупчивающее действие водорода, который при низких температурах не рассасывается в поверхностных слоях, а концентрируется между зоной трения и объемом материала трущейся детали вследствие значительного перепада температур);
- химического машиностроения (узлы трения машин и оборудования химической промышленности изнашиваются, главным образом, в результате действия водорода);
- техники будущего (в новых машинах расширяется применение титана и его сплавов; при трении эти материалы, обладая низкими антифрикционными свойствами, весьма сильно поглощают водород и подвергаются водородному изнашиванию).
При ведущейся в России и США широкой работе по созданию двигателей для автомобилей и самолетов на водородном топливе исследователи должны заранее принять меры защиты деталей от водородного изнашивания.
Проблема водородного изнашивания имеет комплексный межотраслевой характер, а поэтому требует привлечения к ее решению ученых различных специальностей (металловедов, физиков, химиков, специалистов по триботехнике), и должна выполняться по единому плану.
Проблема создания «безызносных» узлов трения машин
До последнего времени генеральным направлением по борьбе с изнашиванием в машиностроении было повышение твердости трущихся поверхностей детали. В промышленности разработано большое количество методов повышения твердости деталей (хромирование, азотирование, цементирование и т. д.). Многолетний опыт свидетельствует, что это направление позволило в большей степени повысить надежность трущихся деталей машин. Однако постоянное стремление к уменьшению массы машин и повышению интенсификации рабочих процессов привело к увеличению давлений в узлах машин и скоростей скольжения и ухудшило условия смазывания. Кроме того, требования к повышению КПД механизмов, а также применение специальных смазочных материалов и жидкостей привело к тому, что традиционные методы увеличения износостойкости деталей повышением их твердости во многих случаях перестали себя оправдывать. В процессе поиска средств увеличения износостойкости деталей машин в нашей стране открыт избирательный перенос при трении. Избирательный перенос (ИП) – это комплекс физико-химических явлений на контакте поверхностей при трении, который позволяет преодолеть ограниченность ресурса трущихся сочленений машин и снизить потери на трение. ИП есть особый вид трения, который обусловлен самопроизвольным образованием в зоне контакта неокисляющейся тонкой металлической пленки с низким сопротивлением сдвигу и неспособной наклепываться. На пленке образуется в свою очередь полимерная пленка, которая создает дополнительный антифрикционный слой. ИП, его системы снижения износа и трения (системы СИТ), разработанные А. А. Поляковым, не вытекают из ранее имевшихся представлений о трении и изнашивании. Процессы, составляющие сущность ИП, находятся на стыках разделов химии, физической химии, физики, синергетики и механики. Сложность ИП состоит также в том, что ряд его химических и физических процессов не встречался в практике исследований трения. Большинство химических реакций ИП являются гетерогенными, поэтому их изучение затруднено.
Но в то же время ИП имеет в своей основе полезные физико-химические явления и группы явлений (систем). Они подавляют изнашивание, снижают сопротивление сдвигу и обладают свойством самоорганизации, а иногда и способностью к обратной связи с возбуждающей причиной. Их основная ценность состоит в том, что они работают дифференцированно против факторов, ведущих к разрушению поверхности. Почти каждая из систем имеет глубокое содержание; например, система защиты от водородного изнашивания представляет собой целое трибологическое направление. Традиционной системой снижения износа и трения (СИТ) является самопроизвольное образование слоя смазочного материала при трении с граничной смазкой в результате адсорбции молекул смазочного материала на поверхности. А в ИП имеется максимальное число систем СИТ, и эффект здесь наиболее полный и существенный. Весьма полезным свойством ИП является также свойство работать в средах, где трение при граничной смазке не может эффективно выполнять свои функции. ИП проявляет способность перестройки защитных систем, которые варьируются в зависимости от свойств среды, являющейся исходным материалом для образования системы снижения износа и трения.
Исследование механизма ИП, его закономерностей и областей рационального применения привело к некоторому изменению установившихся ранее взглядов на ряд вопросов триботехники: структуру и свойства тонких поверхностных слоев трущихся деталей машин, механизм изнашивания и смазочного действия, пути создания смазочных материалов и присадок к ним, оптимальную структуру и свойства износостойких и антифрикционных материалов и приработочных покрытий и т. д.
ИП применен или апробирован в машинах: самолетах, автомобилях, станках, паровых машинах, дизелях тепловозов, прессовом оборудовании, редукторах, оборудовании химической промышленности, механизмах морских судов, магистральных нефтепроводах, электробурах, холодильниках, гидронасосах, нефтепромысловом оборудовании. ИП применяется также в приборах и может быть использован для повышения стойкости режущего инструмента при сверлении, фрезеровании, протягивании, дорновании и резьбонарезании.
ИП позволяет: 1) при изготовлении машин экономить металл (15-20%) за счет большей грузоподъемности (в 1,5-2 раза) пар трения; 2) увеличить срок работы машин (в 2 раза), сократить период приработки двигателей (в 3 раза) и редукторов (до 10 раз), соответственно сократить расход электроэнергии; 3) в подшипниках качения и скольжения уменьшить расход смазочных материалов (до 2 раз); 4) повысить КПД глобоидных редукторов с 0,7 до 0,85; винтовой пары с 0,25 до 0,5; 5) увеличить экономию драгоценных металлов (золота, платины, серебра) в приборах в 2-3 раза за счет большей надежности электрических контактов.
Необходимо отметить, что сейчас в триботехнике ясно проступают черты новой концепции трения, основанной на глубокой теоретической проработке раздела физики – термодинамики образования самоорганизующихся структур при необратимых процессах. Разработка этой теории, а также дальнейшее развитие работ по созданию практически неизнашиваемых узлов трения машин, оборудования и приборов с использованием ИП – одни из важнейших проблем современной триботехники.
Проблема расширения и применения ФАБО
Как известно, износостойкость зависит от окончательной (финишной) технологической обработки поверхностей деталей. Имеются обширные экспериментальные исследования по влиянию шероховатости поверхностей трения на интенсивность изнашивания деталей. Установлено, что от финишной обработки деталей зависит не только первоначальный (приработочный) износ, но и установившийся износ. В последние годы разработаны новые технологические процессы финишной обработки деталей, которые позволяют снизить приработочный износ деталей и повысить антифрикционные свойства сочленения (улучшить смазку деталей, снизить коэффициент трения). К таким методам можно отнести вибрационную обработку поверхностей трения и алмазное выглаживание. Однако триботехники считают, что использованы еще не все резервы повышения износостойкости деталей в части применения новых финишных обработок.
В связи с изложенным крайне необходима разработка нового технологического метода окончательной обработки деталей, при котором вообще исключалась бы абразивная обработка поверхности. К таким методам относится разработанная финишная антифрикционная безабразивная обработка (ФАБО). Новая высокопроизводительная оснастка и химические составы обеспечивают высокое качество антифрикционного покрытия.
Сущность ФАБО состоит в том, что поверхность трения детали покрывается тонким слоем латуни, бронзы или меди путем использования явления переноса металла при трении. Перед нанесением покрытия обрабатываемую поверхность обезжиривают и покрывают глицерином или смесью, состоящей из двух частей глицерина и одной части 10%-ного раствора соляной кислоты. В процессе трения окисная пленка на поверхности стали разрыхляется, поверхность медного сплава пластифицируется и создаются условия для его схватывания со сталью. Толщина перенесенного слоя бронзы или латуни 1-2 мкм.
Преимущество ФАБО перед другими финишными операциями состоит в том, что этот метод чрезвычайно прост и не требует сложного оборудования. ФАБО придает стальной или чугунной поверхности высокие антифрикционные свойства. Опыт использования ФАБО для цилиндров двигателей внутреннего сгорания дал возможность существенно изменить мощность двигателя, хороший результат дало и применение ФАБО колес железнодорожного транспорта. Все это свидетельствует о необходимости и целесообразности проведения более обширных исследовательских работ, а также применения данного метода в более широких масштабах.
Проблема совершенствования смазывания деталей сочленений
Смазка резко снижает интенсивность изнашивания. Достаточно ввести в зону контакта деталей небольшое количество смазочного материала, как сила трения может снизиться в 10 раз, а износ поверхностей трения до 1000 раз.
Эффективность смазочной системы зависит от ее конструктивного совершенства и качества смазочного материала. Пока нет четких рекомендаций по дозировке и длительности подачи смазочных материалов в конкретные узлы трения машин. При переводе трущихся деталей машин в режим ИП необходимо создавать принципиально новые смазочные системы, которые бы обеспечили автоматическое регулирование параметров работы системы в зависимости от режима работы машины, то есть необходимо разрабатывать адаптированные смазочные системы, предупреждающие износ трущихся деталей машин и снижающие потери на трение.
В настоящее время уровень технического совершенства машин во многом определяется именно степенью организации смазывания узлов трения. Больше всего нуждается в смазочных системах станкостроительная, автомобильная и тяжелая промышленность. Увеличение выпуска смазочных масел должно сопровождаться повышением их эффективности, что требует проведения научно-исследовательских разработок по конструктивному и технологическому совершенствованию производства основных узлов систем, создания поточных линий, улучшения планирования и использования экономических стимулов повышения производительности труда. При этом большое внимание следует уделять использованию современных достижений триботехники. Смазочные системы должны использоваться в ряде машин (среди них металлорежущие станки кузнечно-прессовые машины, башенные краны и лифты, экскаваторы, тракторы, магистральные локомотивы, грузовые автомобили и автобусы, сельскохозяйственная техника и др.). По экспертной оценке специалистов оснащению смазочными системами и многоотводными насосами, обеспечивающими точность и своевременность подачи смазки, подлежит до 85% машин и оборудования (около 2,5 млн. единиц).
Для значительного повышения технического уровня и качества машин, их экономичности и надежности необходимо решить проблему смазывания. Это может быть обеспечено за счет повышения технического уровня и качества смазочного оборудования, его унификации и стандартизации, за счет конструктивного совершенства узлов трения машин, разработки и применения новых эффективных технологических процессов обработки трущихся деталей и других методик.
Повышение технического уровня смазочного оборудования целесообразно проводить по следующим основным направлениям:
- создание комплектного оборудования по принципу системы машин;
- расширение номенклатуры смазочных систем для различных видов стационарных и мобильных машин, а также различных производственных и климатических условий;
- создание автоматических систем, адаптирующихся к режимам работы основных узлов трения машин;
- уменьшение габаритов и металлоемкости узлов и аппаратов смазочных систем;
- повышение точности и стабильности подачи смазочного материала;
совершенствование специализации и кооперирования производства; - перевод смазочных систем на использование смазочных материалов, обеспечивающих режим ИП, чтобы исключить ремонт узлов трения машин по причине износа.
Проблему смазывания деталей нельзя отделит от изучения взаимодействия смазочного материала с металлом и влияние на это взаимодействие структурных факторов металла и легирующих элементов смазочного материала. Исследование такого взаимодействия с определением сил трения и износостойкости пар трения позволит оптимизировать структуру и химический состав металла и состав компонентов смазочного материала. Это научное направление, успешно развиваемое в последние годы и потребовавшее разработки новых физических методов исследования тонких поверхностных слоев металла (десятые доли микрометра), должно получить дальнейшее развитие в организациях как занимающихся созданием смазочных материалов, так и разрабатывающих износостойкие и антифрикционные сплавы. Именно результаты этих исследований будут положены в основу теории безызносности трущихся деталей.
Проблема исследования электрических, магнитных и вибрационных явлений при изнашивании
В литературе по триботехнике за последние 30-50 лет неоднократно обращалось внимание на роль электрических, магнитных и вибрационных процессов в трении, износе и смазке машин. Последние исследования процесса водородного изнашивания показали, что здесь кроются большие резервы в части повышения срока службы деталей машин и режущего инструмента. Электрические, магнитные, вибрационные, а также тепловые явления непосредственно не влияют на интенсивность изнашивания деталей или влияют незначительно, но они кардинально влияют на поведение водорода. Разрушительной силой в данном случае является именно водород, а не электрическое или магнитное поле. Это связано с тем, что водород имеет электрический заряд, который взаимодействует с указанными полями. Вибрации с высокими частотами также воздействуют на скорость изнашивания не сами по себе, а посредством электрических явлений, которые, в свою очередь, влияют на движение водорода и способствуют его образованию. Тепловые явления, как и напряжения, влияя самостоятельно на трение и износ, являются процессами образования водорода и способствуют продвижению его в зону контакта.
Все изложенное требует глубокой и всесторонней проработки как в теоретическом плане, так и при проведении экспериментальных исследований. Следует заметить, что исследование магнитных и электрических явлений при трении – это один из наиболее достоверных и эффективных путей изучения самой природы трения и изнашивания. Для управления процессом трения следует провести исследования по раздельному изучению электрических, термоэлектрических и магнитных явлений, установить роль каждого в зависимости от внешних условий трения и видов разрушения поверхностного слоя. Особенно следует обратить внимание на выявление нелинейности распределения зарядов в подвижном электрическом источнике зоны фрикционного контакта. Именно в нелинейности кроются многие до сего времени еще не известные процессы трения и изнашивания, определяющие кинетику и интенсивность этих физико-химических процессов.
Триботехника, интересы здоровья и охраны окружающей среды
Этот вопрос к настоящему времени находится еще в стадии постановки, однако модно утверждать, что триботехника имеет непосредственное отношение к здоровью людей и охране окружающей среды.
Использование асбестосодержащих накладок в тормозах автомобилей, наличие паров топлива в кабинах транспортной техники, повышенные вибрации в машинах в результате износа подшипников, биение валов, зубчатых передач – все эти и им подобные недостатки, относящиеся к низкому уровню решений вопросов триботехники, оказывают существенное влияние на здоровье обслуживающего персонала и население города. Причинами крупных аварий и катастроф были утечки через уплотнения взрывоопасных продуктов, задиры и повышенный износ ответственных деталей, разрушение контактных поверхностей подшипников, рельсов, бандажей колес, поломки зубьев шестерен, заклинивание плунжерных пар и т. п. Двигатели автомобилей с изношенными цилиндрами и поршневыми кольцами не только потребляют больше топлива, но и значительно увеличивают загазованность городов и поселков. Недостаточная износостойкость уплотнительных устройств, перегрев подшипников, износ валов часто вызывают течи масла, топлива, рабочей жидкости гидравлических систем. Все это приводит к непроизводительному потреблению энергии, порче асфальтовых покрытий и уничтожению растительности. Непредусмотренный ремонт машин в пути, проведение технического обслуживания машин в полевых условиях приводит к загрязнению окружающей среды отходами масла, к потерям топлива и т.п. Особое внимание необходимо обратить на попадание в окружающую среду отработанных картерных масел двигателей внутреннего сгорания (ДВС) и методов их утилизации. Наибольшую опасность представляют моющие присадки к маслам, что вызывает увеличение количества загрязняющих примесей и накопление их в масле при картерной смазке. Среди этих загрязнений – полициклические ароматические углеводороды с сильно выраженными канцерогенными свойствами.
Научно-технические направления, которые необходимо осуществить в ближайшем десятилетии, для того чтобы машины, механизмы и технологическое оборудование нового поколения отвечали необходимым требованиям по экологии, следующие:
- разработка и применение смазочных материалов 4 и 5 поколений и присадок к ним. Смазочные материалы должны быть менее токсичными и обеспечивать значительное снижение потерь на трение и износ узлов трения различного класса и назначения, в том числе в ДВС;
- применение для ряда узлов трения экологически чистых масел, животного и растительного происхождений;
- применение новых экологически чистых триботехнических конструкционных материалов и технологий для повышения износостойкости и несущей способности пар трения разного класса и назначения;
- использование экологически чистых фрикционных и антифрикционных материалов, не содержащих асбеста, свинца, фенола и других токсичных ингредиентов и добавок;
- совершенствование конструкций антифрикционных узлов трения (в том числе уплотнений);
- рационализация и оптимизация работы узлов трения на основе учета конкретных условий и критериев эксплуатации;
- использование ускоренных методов испытаний и рационального цикла испытаний для выбора оптимальных материалов (в том числе смазочных) для конкретных конструкций узлов трения и условий их эксплуатации;
- использование таких режимов эксплуатации машин, транспортных средств и технологического оборудования, которые снижают объем вредных выбросов в окружающую среду;
- ускорение перевода машин и механизмов на использование более чистых источников энергии (солнечной, водородной, электрической);
- повышение знаний инженеров и обслуживающего персонала в области триботехники, а также взаимосвязи триботехнических показателей с экономикой и экологией.
ВИДЫ ТРЕНИЯ В УЗЛАХ МАШИН
Общие аспекты
По характеру относительного движения различают трение скольжения и трение качения. Иногда оба вида трения проявляются совместно, когда качение сопровождается проскальзыванием, например, в зубчатых и зубчато-винтовых передачах или между колесами и рельсами.
В зависимости от того, является ли относительное перемещение соприкасающихся пар макро- или микросмешением, различают силу трения движения, неполную силу трения покоя, наибольшую силу трения покоя. Сила здесь разумеется в обобщенном понятии и может выступать как момент сил.
Сила трения движения — сила сопротивления при относительном перемещении одного тела по поверхности другого под действием
Внешней силы, тангенциально направленной к общей границе между этими телами.
Наибольшая сила трения покоя — сила предельного сопротивления относительному перемещению соприкасающихся тел без нарушения связи между ними и при отсутствии смещения на контакте. Приложенная к одному из тел параллельно плоскости касания сила, превышающая хотя бы на бесконечно малую величину силу трения покоя, уже нарушает равновесие.
Неполная сила трения покоя — сила сопротивления, направленная противоположно сдвигающему усилию, при отсутствии смещения на контакте. Она изменяется от нуля (при отсутствии сил, стремящихся нарушить относительный покой тел в плоскости их касания) до наибольшего значения, когда она переходит в силу трения покоя.
Деформация тел, в первую очередь неровностей их поверхностей, под действием сдвигающего усилия и противоположной ему неполной силы трения покоя вызывает предварительное смещение тел, предшествующее их относительному макроперемещению. Это впервые установил А. В. Верховский. Предварительное смещение мало по величине и пропорционально приложенной сдвигающей силе. Оно частично обратимо, т. е. после удаления сдвигающей силы происходит частичное обратное смещение. На площадках фактического контакта предварительное смещение равно нулю.В зависимости от наличия смазочного материала различают следующие виды трения: трение без смазочного материала и трение со ^смазочным материалом.
Трение без смазочного материала.
Трение без смазочного материала и при отсутствии загрязнений между трущимися поверхностями бывает в тормозах, фрикционных передачах, в узлах машин текстильной, пищевой, химической промышленности, где смазочный материал во избежание порчи продукции либо по соображениям безопасности недопустим, а также в узлах машин, работающих в условиях высоких температур, когда любой смазочный материал не пригоден.
Трение имеет молекулярно-механическую природу. На площадках фактического контакта поверхностей действуют силы молекулярного притяжения, которые проявляются на расстояниях, в десятки раз превышающих межатомное расстояние в кристаллических решетках, и увеличиваются с повышением температуры. Молекулярные силы при наличии либо отсутствии промежуточной вязкой прослойки (влаги, загрязнения, смазочного материала и т. п.) вызывают на том или ином числе участков адгезию. Она возможна между металлами и пленками окислов. Адгезия может быть обусловлена одновременно и действием электростатических сил. Силы адгезии, как и молекулярные силы, прямо пропорциональны площади фактического контакта. Приложенное давление влияет на эти силы косвенно, через площадь фактического контакта.
Молекулярные силы как силы, перпендикулярные поверхности, казалось бы, не должны производить работу при относительном тангенциальном перемещении поверхностей. То же должно относиться и к силам адгезии, если образовавшаяся вследствие адгезии связей между телами разрушается по месту соединения. На самом же деле относительное смещение поверхностей при наличии взаимного притяжения и адгезии сопровождается деформацией сдвига, что вследствие неидеальной упругости материала требует затраты энергии в необратимой форме. Разумеется, большую тангенциальную силу надо приложить, если связь между телами нарушается не по месту соединения, а на некоторой глубине от поверхности.
Более сильным проявлением молекулярных сил является схватывание поверхностей. Сила трения в этом случае зависит от протяженности зон схватывания и сопротивления их разобщению.
Двучленные выражения вида (4.1) и (4.2) для силы треки я и коэффициента трения действительны для трения со смазочным материалом и без него.
Многие исследователи (Хольм, Стренг, Льюис и др.) считают, что составляющая силы трения, обусловленная пластической деформацией (механическим взаимодействием) поверхностей, обычно весьма незначительна (всего несколько процентов от суммарной силы трения). Так, трение металлических поверхностей в вакууме сопровождается большим коэффициентом трения (больше единицы). Если же в вакуумную камеру впустить воздух, то за очень короткий промежуток времени коэффициент трения уменьшается в несколько раз. За это время кислород не в состоянии образовать пленку окисла, чтобы сгладить самые небольшие неровности поверхности трения или воспрепятствовать их взаимному внедрению.
На основании этого можно сделать вывод, что молекулярная составляющая силы трения является причиной высокого значения последней в вакууме. Заметим, что при трении качения молекулярная составляющая сравнительно мало влияет на трение.
Статическая сила трения в зависимости от продолжительности неподвижного контакта возрастает до некоторого предела. Сила трения движения зависит от скорости скольжения поверхностей, причем соответственно давлению и твердости сопряженных тел коэффициент трения может монотонно возрастать, убывать, переходить через максимум или минимум.
^Трение без смазочного материала сопровождается скачкообразным скольжением поверхностей, с чем связаны, например, вибрация автомобиля при включении сцепления, «дергание» при торможении, «визг» тормозов, вибрация резцов при резадии и нарушение плавности работы медленно движущихся деталей можно указать некоторые мероприятия борьбы со «скачками» при трении - увеличение жесткости системы, повышение скорости скольжения, подбор пар трения, для которых коэффициент трения незначительно возрастает с ростом продолжительности неподвижного контакта и при повышении скорости через минимум не проходит.
Пленки окислов, влага и загрязнения на металлических поверхностях влияют на коэффициент трения двояко. Силы молекулярного притяжения между ними могут быть в сотни раз меньше, чем в случае взаимодействия металла на чистом контакте. Кроме того, прочность окислов обычно меньше прочности основного металла, поэтому сопротивление «пропахиванию» и срезанию частиц при перемещении, наряду с силами молекулярного взаимодействия, значительно понижается, и коэффициент трения падает. Толстые пленки окислов обладают меньшей твердостью, и наличие их приводит к повышению площади фактического контакта, причем, если это возрастание будет протекать быстрее, чем уменьшение механической составляющей силы трения, то произойдет увеличение силы трения.
Особо [остановимся на трении металлических поверхностей при высоких температурах, выше температуры разложения минеральных масел, или температур плавления либо разложения твердых смазочных материалов. 1Цд поверхностях трения даже в условиях высокого разрежения образуется окисная пленка. Свойства этой пленки в отношении равномерности покрытия, плотности и прочности связи с основанием, а также интенсивность ее образования зависят от состава сплава! Пленка при соответствующем составе уменьшает силу трения и интенсивность изнашивания и предохраняет поверхности от коррозии и непосредственного контактирования. В разреженной атмосфере защитное Действие пленки снижается.
Трение при граничной смазке
При граничной смазке поверхности сопряженных тел разделены слоем смазочного материала весьма малой толщины (от толщины одной молекулы до 0,1 мкм). Наличие граничного слоя или граничной пленки снижает силы трения по сравнению с трением без смазочного материала в 2 ... 10 раз и уменьшает износ сопряженных поверхностей в сотни раз. Все масла способны адсорбироваться на металлической поверхности. Прочность пленки зависит от наличия в ней активных молекул, качества и количества последних. Хотя минеральные смазочные масла являются механической смесью неактивных углеводородов, они, за исключением наработавших сверхчистых масел, всегда имеют включения органических кислот, смол и других поверхностно-активных веществ. Жирные кислоты входят в состав масел растительно-животного происхождения, а также в состав пластичных смазочных материалов. Поэтому почти все смазочные масла образуют на металлических поверхностях граничную фазу квазикристаллической структуры толщиной до 0,1 мкм, обладающую более или менее прочной связью с поверхностью и продольной когезией. При наличии относительно толстой масляной прослойки между поверхностями трения переход от ориентированной структуры масла к неориентированной совершается скачком.
Молекулы смазочного материала ориентируются перпендикулярно к твердой поверхности (стоймя), что позволяет представить для наглядности граничную планку в виде ворса (рис. 4.1). При взаимном перемещении поверхностей трения «ворсинки» как бы изгибаются в противоположные стороны. На самом же деле происходит сдвиг с перекосом квазикристаллической структуры пленки. Сопротивление ее скольжению в таком состоянии несколько повышено. На восстановление ориентации молекул в прежнее положение перпендикулярно поверхности тел требуется некоторый промежуток времени, иногда относительно большой.
Смазочный материал в граничном слое анизотропен, в тангенциальном направлении молекулярные слои легко изгибаются и при толщине слоя больше некоторой критической величины скользят друг по другу; по нормали к твердой поверхности пленка обладает высоким сопротивлением сжатию; ее несущая способность исчисляется десятками тысяч килограммов на 1 см2. Деформация сжатия пленки в довольно высоком интервале не выходит за пределы упругости.
Механизм трения при граничной смазке представляется в следующем виде. Под нагрузкой протекает упругая в пластическая деформации на площадках контакта, под которыми здесь следует понимать площадки наиболее близкого прилегания поверхностей, покрытых граничной пленкой смазочного материала, вплоть до мономолекулярного слоя.(На площадках контакта может произойти взаимное Внедрение поверхностей без нарушения целостности смазочной Пленки. Сопротивление движению при скольжении складывается из сопротивления сдвигу граничного слоя и сопротивления «пропахиванию» поверхностей внедрившимися объемами. Кроме того, на площадках контакта, подвергнутых наиболее значительной пластической деформации, и в пунктах с высокими местными температурами может произойти разрушение смазочной пленки с наступлением адгезии обнажившихся поверхностей и даже схватывание металлов на микроучастках. Это вызывает дополнительное со противление движению.
Благодаря подвижности молекул смазочного материала на поверхности трения адсорбция протекает с большой скоростью, что сообщает смазочной пленке свойство «самозалечиваться» при местных ее повреждениях. Эта способность играет большую роль в предупреждении лавинного процесса схватывания
Невозобновляемая граничная пленка по мере возрастания пути трения изнашивается, масло из пленки адсорбируется на продукты износа и уносится с поверхности трения; происходит сублимация пленки как твердого тела и удаление масла в атмосферу. Окисление пленки способствует дезориентации структуры и разрушению ее.
вязкость масла не влияет на процесс граничной смазки. Масла с одинаковой вязкостью, но разных марок, имеют различное смазывающее действие Для оценки поведения масел при граничной смазке еще в
В
Добавление в граничные слои смазочного материала и водных растворов поверхностно-активных веществ повышает толщину гранитного слоя и способствует уменьшению износа)(до двух раз).
При трении с граничной смазкой износ деталей машин велик. В силу волнистости и шероховатости поверхностей их контактирование происходит на очень малых участках трения; контактны. давления имеют высокие значения, и тонкая граничная пленка масле не предохраняет поверхности от пластической деформации, что неизбежно ведет к износу деталей. Это является непреодолимым недостатком граничной смазки.
Эффективность смазочного действия помимо фактора адсорбции зависит от химического взаимодействия металла и смазочного материала. Жирные кислоты, вступая в реакцию с поверхностью металла, образуют мыла т. е. металлические соли жирных кислот, (способные вследствие свойственной им высокой когезии выдерживать без разрушения значительные деформации) Химическим явлениям принадлежит важная роль в организации смазывающего действиям. Это подтверждает то обстоятельство, что инертные металлы и стекло плохо смазываются. Имеются косвенные основания считать, что (между металлом и углеводородными маслами протекают реакции, способствующие более прочной связи пленки с основанием. Так, силиконовая жидкость, имеющая высокую вязкость, но не являющаяся активной к металлу и не образующая поэтому защит ной пленки на металлической поверхности, не могла быть использована в качестве смазочного материала в подшипниках скольжения.
Опыты со сталью 45 при скорости скольжения 4,5 м/с в среде воз духа и аргона при трении без смазочного материала (р = 1 МПа) и трении при граничной смазке (р = 3 МПа) показали, что после истирания первичной пленки интенсивность изнашивания в аргоне превышала более чем в 30 раз интенсивность изнашивания в воз духе, а при граничной смазке в 950 раз. Эти и аналогичные им опыты убедительно свидетельствуют (значительном влиянии кисло рода на процесс трения при граничной смазке. По этому вопросу имеется две концепции. _
Как предполагает Б. Лунн (реакция между металлом и смазочным маслом с учетом роли окружающей среды протекает следующим образом: металл играет роль катализатора или кислородоносителя, вызывая окисление масла с образованием в дальнейшем прочно сцепляющихся с металлом соединений. Эти химические реакции протекают в местах с наибольшими давлением и температурой, т. е. в точках металлического контакта и особенно на низкоплавкой структурной составляющей, проявляющей более высокую химическую активность. По Г. В. Виноградову смазочное масло играет роль основного кислородоносителя, причем граничный слой образуется и восстанавливается по мере его изнашивания не на самой поверхности, а на субмикроскопической окисной пленке.
В связи с невысокой термической стойкостью граничной пленки, образуемой на металлических поверхностях обычными минеральными смазочными маслами, иногда прибегают к искусственному повышению ее химической активности. Этого достигают путем введения в масла специальных добавок (присадок), содержащих органические соединения серы, фосфора, хлора или сочетание этих элементов.
Вводят также мышьяк и сурьму. Хотя эти присадки и прочно адсорбируются на поверхностях трения, однако им отводится в процессе трения другая роль. В условиях высоких температур, развивающихся на микроконтактах, активное соединение присадок разлагается и, взаимодействуя с металлическими поверхностями, образует пленки сульфида железа, фосфита или фосфата железа, хлористого железа и окисленных хлоридов и т. п. Образовавшиеся пленки предотвращают металлический контакт, понижают сопротивление трению, препятствуют дальнейшему локальному повышению температуры. Пленка оказывает слабое со противление срезу, срабатывается и восстанавливается вновь.
Пленка, образуемая на поверхности стали хлорированными углеводородами, работоспособна до температуры 300... 400°С. Выше этой температуры происходит плавление и (или) разложение. У сульфидов температура плавления выше, и смазывающая способность сохраняется до температуры 800 °С. Ниже критической температуры пленки ведут себя как твердые смазочные материалы.
Очевидно, действие присадок неэффективно, если металл не вступает в реакцию с активной частью присадки. Например, платина и серебро не вступают в реакцию с серой.
Некоторые твердые тела могут производить смазочное действие, организуя и поддерживая режим трения при граничной смазке.
Из предыдущего вытекает, что граничная пленка должна обладать высоким сопротивлением продавливанию и низким сопротивлением срезу. Исходя из таких требований, к твердым смазочным материалам можно отнести некоторые тела слоисто-решетчатой, пластинчатой структуры, мягкие металлы и тонкие пленки пластиков.
Из тел слоисто-решетчатой структуры свойствами, необходимыми для смазки металлических поверхностей, обладают графит, молибденит (дисульфид молибдена MoS2), сульфид серебра, пористый свинец и дисульфид вольфрама. Остановимся на механизме смазочного действия графита и молибденита, который в общем аналогичен и для других тел подобной структуры.
В кристаллической решетке графита атомы углерода расположены в параллельных слоях, отстоящих один от другого (ближайшего) на расстоянии 0,34 нм, а в каждом слое они размещаются в вершинах правильных шестиугольников с длиной стороны 0,14 нм (рис. 4.2). Так как силы взаимного притяжения между атомами тем меньше, чем больше расстояние между ними, то связи между атомами в слоях значительно прочнее, чем между слоями. Поэтому при большом сопротивлении графита сжатию перпендикулярно слоям (плоскостям спайности) сопротивление срезу параллельно слоям мало, Если учесть, что незакрепленные агрегаты пластинчатых кристаллов располагаются на металлической поверхности плоскостями спайности, то образовавшийся граничный слой из цепочек, нормальных к поверхности, обладает качествами (прочностью и сопротивлением деформации), характерными для граничных слоев, образованных смазочными маслами.
Твердость графита в направлении, перпендикулярном плоскости спайности, почти такая же, как у алмаза, что дает основание предположить, что соответствующим образом ориентированные частицы графита могут без разрушения внедриться в металлическую поверхность. По-видимому, вследствие этого во всех случаях действенности смазки графитом металлический контакт поверхностей трения почти или совсем отсутствует: даже при значительной пластической деформации контактирующих поверхностных слоев сдвиги протекают под пленкой смазочного материала или внутри него. Слабое сопротивление графита срезу по плоскостям, параллельным плоскостям спайности, обусловливает при трении послойное скольжение в нанесенных на поверхностях пленках. Коэффициенты трения графитированных поверхностей могут достигнуть малых величин (0,03 ... ...0,04).
Приведенное описание не является полным. Некоторые факты не позволяют объяснить смазочное действие графита только слоистой структурой. Так, сила трения при смазке графитом в сухом воздухе выше, чем во влажном; сила трения в атмосфере азота существенно больше, чем на воздухе, причем в сухом азоте выше, чем во влажном; графит не обладает хорошей смазочной способностью в восстановительной среде смеси газов. Таким образом, наличие пленки влаги или окисных пленок является необходимым условием для проявления графитом его смазывающего действия. Влага и окисные пленки на металлических поверхностях, образованию которых способствует влага, улучшают адгезию графита к этим поверхностям, без чего прочность граничного слоя недостаточна.
Кристаллическая решетка дисульфида молибдена (рис. 4.3) подобна решетке графита: между атомами молибдена и серы имеются тесные связи, в то время как расстояние между слоями атомов серы относительно больше. Благодаря этому дисульфид молибдена можно использовать как смазочный материал как при низких температурах (до —50 °С), так и в вакууме. При температуре 538°С молибденит превращается в триокись, являющуюся абразивом.
При наличии на поверхности молибденита влаги сила трения увеличивается. Предполагается, что водяной пар реагирует с атомами серы, что может вызвать коррозию стальной поверхности.
Кроме тел слоисто-решетчатой структуры, все остальные твердые смазочные материалы образуют граничный слой с необходимыми качествами по сопротивлению сжатию и сдвигу (срезу), но не имеющий строго ориентированной структуры. Поэтому формально можно Нанесенные твердые пленки при многократных взаимных перемещениях поверхностей быстро изнашиваются. Вследствие этою их используют в качестве приработочного покрытия, а при однократном контактирования поверхностей — при глубокой вытяжке металлом.
Смазывание узлов трения металлом может быть осуществлено при использовании ИП (см. гл. 18). В этом случае сила трения может быть уменьшена в 10 раз, а износ полностью устранен. Здесь действуют иные силы и принципы: электрические силы, удерживающие пленку в зазоре, отсутствие микронеровностей поверхности, которые утапливаются в пленке, и др. Ошибочно полагать, что при смазывании узлов машин металлом углеводородный смазочный материал будет не нужен. Функции его изменяются: он служит в качестве транспорта подачи металла в зону трения, участвует в физико-химических процессах на поверхности контакта при образовании металлической пленки. Как и прежде, углеводородная составляющая смазочного материала охлаждает узлы трения и защищает их от коррозии. Эффект ИП по многим принципиальным признакам отличается от трения при граничной смазке, что позволяет характеризовать его как новый вид трения.
Некоторые материалы вследствие обычного металлургического процесса или искусственного пропитывания содержат вещества, способные служить твердым смазочным материалом; например, на приработанной поверхности конструкционного чугуна графит размазывается, образуя граничный слой. Такой же слой создается на поверхностях деталей из пористых антифрикционных материалов, пропитанных минеральными маслами, графитом и дисульфидом молибдена. В более широком понятии граничным смазочным материалом служит также политетрафторэтилен, когда им пропитывают пористые подшипниковые материалы. В свинцовистой бронзе, в твердой медной основе которой вкраплен свинец, последний при скольжении размазывается по поверхности, покрывая ее тонкой пленкой. Эта пленка по мере изнашивания сплава возобновляется. Дорожки качения и тела качения подшипника, работающего при температурах выше 300°С, покрывают иногда серебром для предохранения от окисления и для использования в качестве смазывающего материала.
Ошибочно полагать, что сила трения увеличивается за счет износа. Обычно этого не происходит. Если с увеличением износа коэффициент трения повышается, то это результат вторичных явлений, вытекающих из изменения шероховатости поверхности.
Заключение
Триботехнические явления должны учитываться при проектировании и эксплуатации машин и механизмов. Они проявляются при земляных работах, в сельском хозяйстве, строительстве, добывающей промышленности и во многих других случаях. Потери средств от трения и износа в развитых странах составляют 4-5% национального дохода, а преодоление сопротивления трения поглощает во всем мире 20-25% вырабатываемой за год энергии. Анализ специальных комитетов Международного совета по трибологии показал, что за полный цикл эксплуатации машин эксплуатационные расходы, затраты на ремонт и запасные части в несколько раз превышают затраты на изготовление новой техники.
Повышение экономически и экологически целесообразной долговечности и надежности машин, технологического оборудования и инструмента непосредственно связано с повышением износостойкости. Решение этой актуальной и практически необходимой задачи возможно только на базе глубоких, научно обоснованных решений. Управление трением, правильный выбор материалов по критериям трения и износостойкости, рациональное конструирование узлов трения и деталей машин и оптимизация условий эксплуатации могут существенно продлить срок жизни и повысить эффективность машин, снизит вредные экологические воздействия при незначительном увеличении их стоимости. В этой связи исключительное значение приобретают работы в области триботехнического материаловедения, а также теоретические и экспериментальные исследования в области физико-химической механики процессов трения и изнашивания с использованием новейших испытательных средств и измерительной техники, которые могут раскрыть и изыскать новые способы снижения потерь на трение и повышения износостойкости машин, приборов и оборудования. Задача повышения экономически и экологически целесообразной долговечности узлов трения крайне усложняется каждый год, так как неумолимая тенденция развития науки, техники и технологии обязательно ведет к ужесточению и усложнению режима работы машин, а значит, узлов трения и деталей по нагрузкам, скоростям, температурам, диссипируемым энергиям, вибрации и т.д. Хорошо известно также, что стремление снизить материалоемкость машин приведет к уменьшению габаритов и удельных массовых характеристик узлов трения, которые еще более усложнят задачу. Принципиально новой является задача повышения износостойкости элементов оборудования ядерной энергетики. Исключительное значение приобретают работы по изнашиванию узлов трения и деталей автоматизированных и программируемых устройств, особенно для роботов и манипуляторов.
Борьба с потерями энергии и выходом из строя машин и оборудования от трения и износа во многих странах стала государственной задачей. Во многих странах большие коллективы научных работников и инженеров работают над проблемами трения и изнашивания. Этим работам в передовых промышленно развитых странах уделяется повышенное внимание на государственном уровне.
Библиография
- Основы трибологии (трение, износ, смазка)/ А. В. Чичинадзе, Э. Д. Браун, Н. А. Буше и др.; Под общ. ред. А. В. Чичинадзе: Учебник для технических вузов. – 2- изд., переработ. и доп. – М.: Машиностроение, 2001.
- Гаркунов Д. Н. Триботехника (износ и безызносность): Учебник. – 4-е изд., переработ. и доп. – М.: «Издательство МСХА», 2001.