Реферат Искусственное легкое
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Санкт-Петербургский Государственный Политехнический Университет
КУРСОВАЯ РАБОТА
Дисциплина: Материалы медицинского применения
Тема: Искусственное легкое
Санкт-Петербург
2008
Содержание.
Перечень условных обозначений, терминов и сокращений 3
1. Введение. 4
2. Анатомия дыхательной системы человека. 4
2.1. Воздухоносные пути. 4
2.2. Легкие. 5
2.3. Легочная вентиляция. 5
2.4. Изменения объема легких. 6
3. Искусственная вентиляция легких. 6
3.1. Основные методы искусственной вентиляции легких. 7
3.2. Показания к применению искусственной вентиляции легких. 8
3.3. Контроль адекватности искусственной вентиляции легких. 9
3.4. Осложнения при искусственной вентиляции легких. 9
3.5. Количественные характеристики режимов искусственной вентиляции легких. 10
4. Аппарат искусственной вентиляции легких. 10
4.1. Принцип работы аппарата искусственной вентиляции легких. 10
4.2. Медико-технические требования к аппарату ИВЛ. 11
4.3. Схемы для подачи газовой смеси пациенту. 13
5. Аппарат искусственного кровообращения. 13
5.1. Мембранные оксигенаторы. 14
5.2. Показания к экстракорпоральной мембранной оксигенации. 17
5.3. Каннюляция для экстракорпоральной мембранной оксигенации. 17
6. Заключение. 18
Список использованной литературы. 19
Перечень условных обозначений, терминов и сокращений
ИВЛ – искусственная вентиляция легких.
АД – артериальное давление.
ПДКВ - положительное давление в конце выдоха.
АИК – аппарат искусственного кровообращения.
ЭКМО - экстракорпоральная мембранная оксигенация.
ВВЭКМО - веновенозная экстракорпоральная мембранная оксигенация.
ВАЭКМО – веноартериальная экстракорпоральная мембранная оксигенация.
Гиповолемия - уменьшение объёма циркулирующей крови. Обычно под этим более конкретно подразумевается снижение объёма плазмы крови.
Гипоксемия - понижение содержания кислорода в крови в результате нарушения кровообращения, повышенной потребности тканей в кислороде, уменьшения газообмена в лёгких при их заболеваниях, уменьшения содержания гемоглобина в крови и др.
Гиперкапния - повышенное парциальное давление (и содержание) CO2 в артериальной крови (и в организме).
Интубация - введение в гортань через рот специальной трубки с целью устранения нарушения дыхания при ожогах, некоторых травмах, тяжёлых спазмах гортани, дифтерии гортани и её острых, быстро разрешающихся отёках, например аллергических.
Трахеостома - это искусственно сформированный свищ трахеи, выведенный в наружную область шеи, для дыхания, минуя носоглотку. В трахеостому вставляется трахеостомическая канюля.
Пневмоторакс - состояние, характеризующееся скоплением воздуха или газа в полости плевры.
1. Введение.
Дыхательная система человека обеспечивает поступление в организм кислорода и удаление углекислого газа. Транспорт газов и других необходимых организму веществ осуществляется с помощью кровеносной системы. Функция дыхательной системы сводится лишь к тому, чтобы снабжать кровь достаточным количеством кислорода и удалять из нее углекислый газ. Химическое восстановление молекулярного кислорода с образованием воды служит для млекопитающих основным источником энергии. Без нее жизнь не может продолжаться дольше нескольких секунд.
Восстановлению кислорода сопутствует образование CO2. Кислород, входящий в CO2, не происходит непосредственно из молекулярного кислорода. Использование O2 и образование CO2 связаны между собой промежуточными метаболическими реакциями; теоретически каждая из них длятся некоторое время. Обмен O2 и CO2 между организмом и средой называется дыханием. У высших животных процесс дыхания осуществляется благодаря ряду последовательных процессов.
1. Обмен газов между средой и легкими, что обычно обозначают как "легочную вентиляцию".
2. Обмен газов между альвеолами легких и кровью (легочное дыхание).
3. Обмен газов между кровью и тканями. Газы переходят внутри ткани к местам потребления (для O2) и от мест образования (для CO2) (клеточное дыхание).
Выпадение любого из этих процессов приводит к нарушениям дыхания и создает опасность для жизни человека.
2. Анатомия дыхательной системы человека.
Дыхательная система человека состоит из тканей и органов, обеспечивающих легочную вентиляцию и легочное дыхание. К воздухоносным путям относятся: нос, полость носа, носоглотка, гортань, трахея, бронхи и бронхиолы. Легкие состоят из бронхиол и альвеолярных мешочков, а также из артерий, капилляров и вен легочного круга кровообращения. К элементам костно-мышечной системы, связанным с дыханием, относятся ребра, межреберные мышцы, диафрагма и вспомогательные дыхательные мышцы.
2.1. Воздухоносные пути.
Нос и полость носа служат проводящими каналами для воздуха, в которых он нагревается, увлажняется и фильтруется. Полость носа выстлана богато васкуляризованной слизистой оболочкой. Многочисленные жесткие волоски, а также снабженные ресничками эпителиальные и бокаловидные клетки служат для очистки вдыхаемого воздуха от твердых частиц. В верхней части полости лежат обонятельные клетки.
Гортань лежит между трахеей и корнем языка. Полость гортани разделена двумя складками слизистой оболочки, не полностью сходящимися по средней линии. Пространство между этими складками - голосовая щель защищено пластинкой волокнистого хряща - надгортанником.
Трахея начинается у нижнего конца гортани и спускается в грудную полость, где делится на правый и левый бронхи; стенка ее образована соединительной тканью и хрящом. Части, примыкающие к пищеводу, замещены фиброзной связкой. Правый бронх обычно короче и шире левого. Войдя в легкие, главные бронхи постепенно делятся на все более мелкие трубки (бронхиолы), самые мелкие из которых - конечные бронхиолы являются последним элементом воздухоносных путей. От гортани до конечных бронхиол трубки выстланы мерцательным эпителием.
2.2. Легкие.
В целом легкие имеют вид губчатых, пористых конусовидных образований, лежащих в обеих половинах грудной полости. Наименьший структурный элемент легкого - долька состоит из конечной бронхиолы, ведущей в легочную бронхиолу и альвеолярный мешок. Стенки легочной бронхиолы и альвеолярного мешка образуют углубления - альвеолы. Такая структура легких увеличивает их дыхательную поверхность, которая в 50-100 раз превышает поверхность тела. Стенки альвеол состоят из одного слоя эпителиальных клеток и окружены легочными капиллярами. Внутренняя поверхность альвеолы покрыта поверхностно-активным веществом сурфактантом. Отдельная альвеола, тесно соприкасающаяся с соседними структурами, имеет форму неправильного многогранника и приблизительные размеры до 250 мкм. Принято считать, что общая поверхность альвеол, через которую осуществляется газообмен, экспоненциально зависит от веса тела. С возрастом отмечается уменьшение площади поверхности альвеол.
Каждое легкое окружено мешком - плеврой. Наружный (париетальный) листок плевры примыкает к внутренней поверхности грудной стенки и диафрагме, внутренний (висцеральный) покрывает легкое. Щель между листками называется плевральной полостью. При движении грудной клетки внутренний листок обычно легко скользит по наружному. Давление в плевральной полости всегда меньше атмосферного (отрицательное). В условиях покоя внутриплевральное давление у человека в среднем на 4,5 торр ниже атмосферного (-4,5 торр). Межплевральное пространство между легкими называется средостением; в нем находятся трахея, зобная железа (тимус) и сердце с большими сосудами, лимфатические узлы и пищевод.
Легочная артерия несет кровь от правого желудочка сердца, она делится на правую и левую ветви, которые направляются к легким. Эти артерии ветвятся, следуя за бронхами, снабжают крупные структуры легкого и образуют капилляры, оплетающие стенки альвеол. Воздух в альвеоле отделен от крови в капилляре стенкой альвеолы, стенкой капилляра и в некоторых случаях промежуточным слоем между ними. Из капилляров кровь поступает в мелкие вены, которые в конце концов соединяются и образуют легочные вены, доставляющие кровь в левое предсердие.
Бронхиальные артерии большого круга тоже приносят кровь к легким, а именно снабжают бронхи и бронхиолы, лимфатические узлы, стенки кровеносных сосудов и плевру. Большая часть этой крови оттекает в бронхиальные вены, а оттуда - в непарную (справа) и в полунепарную (слева). Очень небольшое количество артериальной бронхиальной крови поступает в легочные вены.
Дыхательные мышцы - это те мышцы, сокращения которых изменяют объем грудной клетки. Мышцы, направляющиеся от головы, шеи, рук и некоторых верхних грудных и нижних шейных позвонков, а также наружные межреберные мышцы, соединяющие ребро с ребром, приподнимают ребра и увеличивают объем грудной клетки. Диафрагма - мышечно-сухожильная пластина, прикрепленная к позвонкам, ребрам и грудине, отделяет грудную полость от брюшной. Это главная мышца, участвующая в нормальном вдохе. При усиленном вдохе сокращаются дополнительные группы мышц. При усиленном выдохе действуют мышцы, прикрепленные между ребрами (внутренние межреберные мышцы), к ребрам и нижним грудным и верхним поясничным позвонкам, а также мышцы брюшной полости; они опускают ребра и прижимают брюшные органы к расслабившейся диафрагме, уменьшая таким образом емкость грудной клетки.
2.3. Легочная вентиляция.
Пока внутриплевральное давление остается ниже атмосферного, размеры легких точно следуют за размерами грудной полости. Движения легких совершаются в результате сокращения дыхательных мышц в сочетании с движением частей грудной стенки и диафрагмы.
Расслабление всех связанных с дыханием мышц придает грудной клетке положение пассивного выдоха. Соответствующая мышечная активность может перевести это положение во вдох или же усилить выдох. Вдох создается расширением грудной полости и всегда является активным процессом. Благодаря своему сочленению с позвонками ребра движутся вверх и наружу, увеличивая расстояние от позвоночника до грудины, а также боковые размеры грудной полости (реберный или грудной тип дыхания). Сокращение диафрагмы меняет ее форму из куполообразной в более плоскую, что увеличивает размеры грудной полости в продольном направлении (диафрагмальный или брюшной тип дыхания). Обычно главную роль во вдохе играет диафрагмальное дыхание. Поскольку люди-существа двуногие, при каждом движении ребер и грудины меняется центр тяжести тела и возникает необходимость приспособить к этому разные мышцы.
При спокойном дыхании у человека обычно достаточно эластических свойств и веса переместившихся тканей, чтобы вернуть их в положение, предшествующее вдоху. Таким образом, выдох в покое происходит пассивно вследствие постепенного снижения активности мышц, создающих условие для вдоха. Активный выдох может возникнуть вследствие сокращения внутренних межреберных мышц в дополнение к другим мышечным группам, которые опускают ребра, уменьшают поперечные размеры грудной полости и расстояние между грудиной и позвоночником. Активный выдох может также произойти вследствие сокращения брюшных мышц, которое прижимает внутренности к расслабленной диафрагме и уменьшает продольный размер грудной полости. Расширение легкого снижает (на время) общее внутрилегочное (альвеолярное) давление. Оно равно атмосферному, когда воздух не движется, а голосовая щель открыта. Оно ниже атмосферного, пока легкие не наполнятся при вдохе, и выше атмосферного при выдохе. Внутриплевральное давление тоже меняется на протяжении дыхательного движения; но оно всегда ниже атмосферного (т. е. всегда отрицательное).
2.4. Изменения объема легких.
У человека легкие занимают около 6% объема тела независимо от его веса. Объем легкого меняется при вдохе не всюду одинаково. Для этого имеются три главные причины, во-первых, грудная полость увеличивается неравномерно во всех направлениях, во-вторых, не все части легкого одинаково растяжимы. В-третьих, предполагается существование гравитационного эффекта, который способствует смещению легкого книзу. Объем воздуха, вдыхаемый при обычном (неусиленном) вдохе и выдыхаемой при обычном (неусиленном) выдохе, называется дыхательным воздухом. Объем максимального выдоха после предшествовавшего максимального вдоха называется жизненной емкостью. Она не равна всему объему воздуха в легком (общему объему легкого), поскольку легкие полностью не спадаются. Объем воздуха, который остается в неспавшихся легких, называется остаточным воздухом. Имеется дополнительный объем, который можно вдохнуть при максимальном усилии после нормального вдоха. А тот воздух, который выдыхается максимальным усилием после нормального выдоха, это резервный объем выдоха. Функциональная остаточная емкость состоит из резервного объема выдоха и остаточного объема. Это тот находящийся в легких воздух, в котором разбавляется нормальный дыхательный воздух. Вследствие этого состав газа в легких после одного дыхательного движения обычно резко не меняется.
Многие болезни и травмы, в том числе не только легких, приводят к тому, что собственная вентиляция (спонтанная) прекращается или оказывается недостаточной. В таких случаях применяется искусственная вентиляция легких.
3. Искусственная вентиляция легких.
Искусственная вентиляция лёгких — обеспечивает газообмен между окружающим воздухом (или специально подобранной смесью газов) и альвеолами легких.
3.1. Основные методы искусственной вентиляции легких.
Современные методы искусственной вентиляции легких (ИВЛ) можно условно разделить на простые и аппаратные. Простые методы обычно применяют в экстренных ситуациях: при отсутствии самостоятельного дыхания, при остро развившемся нарушении ритма дыхания, его патологическом ритме, дыхании агонального типа: при учащении дыхания более 40 в 1 мин, если это не связано с гипертермией (температура тела выше 38,5°) или выраженной неустраненной гиповолемией; при нарастающей гипоксемии и (или) гиперкапнии, если они не исчезают после обезболивания, восстановления проходимости дыхательных путей, кислородной терапии, ликвидации опасного для жизни уровня гиповолемии и грубых нарушений метаболизма. К простым методам в первую очередь относятся экспираторные способы ИВЛ (искусственного дыхания) изо рта в рот и изо рта в нос. В таких случаях вдувание воздуха проводят обычно с частотой 20—25 в 1 мин; при сочетании ИВЛ с массажем сердца — с частотой 12—15 в 1 мин. Проведение простой ИВЛ значительно облегчается введением в ротовую полость больного S-образного воздуховода, применением мешка Рубена («Амбу», РДА-1) или меха РПА-1 через ротоносовую маску. При этом необходимо обеспечить проходимость дыхательных путей и плотно прижимать маску к лицу больного.
Аппаратные методы (с помощью специальных аппаратов-респираторов) применяют при необходимости длительной ИВЛ (от нескольких часов до нескольких месяцев и даже лет).
Респиратор обычно присоединяют к дыхательным путям больного через интубационную трубку или трахеостомическую канюлю. Чаще аппаратную ИВЛ проводят в нормочастотном режиме —12—20 циклов в 1 мин. В практику входит также ИВЛ в высокочастотном режиме (более 60 циклов в 1 мин), при котором значительно уменьшается дыхательный объем (до 150 мл и менее), снижаются положительное давление в легких в конце вдоха и внутригрудное давление, менее затруднен приток крови к сердцу. Кроме того, при ИВЛ в высокочастотном режиме облегчается привыкание (адаптация) больного к респиратору.
Существуют три способа высокочастотной ИВЛ (объемная, осцилляционная и струйная). Объемную проводят обычно с частотой дыхания 80—100 в 1 мин, осцилляционную — 600—3600 в 1 мин, обеспечивая вибрацию непрерывного или прерывистого (в нормочастотном режиме) газового потока. Наибольшее распространение получила струйная высокочастотная ИВЛ с частотой дыхания 100—300 в 1 мин, при которой в дыхательные пути через иглу или катетер диаметром 1—2 мм вдувается струя кислорода или газовой смеси под давлением 2—4 атм. Струйную ИВЛ можно проводить через интубационную трубку или трахеостому (при этом происходит инжекция — подсасывание атмосферного воздуха в дыхательные пути) и через катетер, введенный в трахею через носовой ход или чрескожно (пункционно). Последнее особенно важно в тех случаях, когда нет условий для осуществления интубации трахеи или у медперсонала нет навыка проведения этой процедуры.
Искусственную вентиляцию легких можно проводить в автоматическом режиме, когда самостоятельное дыхание больного полностью подавлено фармакологическими препаратами или специально подобранными параметрами вентиляции легких. Возможно также проведение вспомогательной ИВЛ, при которой самостоятельное дыхание больного сохраняется. Подача газа осуществляется после слабой попытки больного произвести вдох (триггерный режим вспомогательной ИВЛ), либо больной приспосабливается к индивидуально подобранному режиму работы аппарата.
Существует также режим периодической принудительной вентиляции легких (ППВЛ), обычно используемый в процессе постепенного перехода от ИВЛ к самостоятельному дыханию. При этом больной дышит самостоятельно, но в дыхательные пути подается непрерывный поток подогретой и увлажненной газовой смеси, создающей искоторое положительное давление в легких на протяжении всего дыхательного цикла. На этом фоне с заданной периодичностью (обычно от 10 до 1 раза в 1 мин) респиратор производит искусственный вдох, совпадающий (синхронизированная ППВЛ) или не совпадающий (несинхронизированная ЛЛВЛ) с очередным самостоятельным вдохом больного. Постепенное урежение искусственных вдохов позволяет подготовить пациента к самостоятельному дыханию.
Широкое распространение получил режим ИВЛ с положительным давлением в конце выдоха (ПДКВ) от 5 до 15 см вод. ст. и более, при котором внутрилегочное давление в течение всего дыхательного цикла остается положительным по отношению к атмосферному. Этот режим способствует наилучшему распределению воздуха в легких, уменьшению шунтирования крови в них и снижению альвеолярно-артериальной разницы по кислороду. При искусственной вентиляции легких с ПДКВ расправляются ателектазы, устраняется или уменьшается отек легких, что способствует улучшению оксигенации артериальной крови при одном и том же содержании кислорода во вдыхаемом воздухе. Однако при ИВЛ с положительным давлением в конце вдоха существенно повышается внутригрудное давление, что может приводить к затруднению притока крови к сердцу.
Не потерял своего значения относительно редко используемый метод ИВЛ — электростимуляция диафрагмы. Периодически раздражая либо диафрагмальные нервы, либо непосредственно диафрагму через наружные или игольчатые электроды, удается добиться ритмичного ее сокращения, что обеспечивает вдох. К электростимуляции диафрагмы чаще прибегают как к методу вспомогательной ИВЛ в послеоперационном периоде, а также при подготовке больных к оперативным вмешательствам.
3.2. Показания к применению искусственной вентиляции легких.
При современном анестезиологическом пособии ИВЛ осуществляют в первую очередь в связи с необходимостью обеспечения мышечной релаксации курареподобными препаратами. На фоне ИВЛ возможно применение ряда анальгетиков в достаточных для полноценной анестезии дозах, введение которых в условиях самостоятельного дыхания сопровождалось бы артериальной гипоксемией. Поддерживая хорошую оксигенацию крови, ИВЛ помогает организму справиться с операционной травмой. При ряде оперативных вмешательств на органах грудной клетки (легких, пищеводе) используют раздельную интубацию бронхов, что позволяет во время операции выключать одно легкое из вентиляции для облегчения работы хирурга. Такая интубация также предупреждает затекание в здоровое легкое содержимого из оперируемого. При оперативных вмешательствах на гортани и дыхательных путях с успехом используют чрескатетерную струйную высокочастотную ИВЛ, облегчающую осмотр операционного поля и позволяющую поддерживать адекватный газообмен при вскрытой трахее и бронхах. Учитывая, что в условиях общей анестезии и мышечной релаксации больной не может реагировать на гипоксию и гиповентиляцию, особое значение приобретает контроль за содержанием газов крови, в частности постоянный мониторинг показателей парциального давления кислорода (рO2) и парциального давления двуокиси углерода (рСО2) чрескожным путем с помощью специальных датчиков. При проведении общей анестезии у истощенных, ослабленных больных, особенно при наличии дыхательной недостаточности до операции, при выраженной гиповолемии, развитии в процессе общей анестезии каких-либо осложнений, способствующих возникновению гипоксии (снижение АД, остановка сердца и др.), показано продолжение ИВЛ в течение нескольких часов после окончания оперативного вмешательства. В случае клинической смерти или агонии ИВЛ является обязательным компонентом реанимационного пособия. Прекращать ее можно только после полного восстановления сознания и полноценного самостоятельного дыхания.
В комплексе интенсивной терапии ИВЛ является наиболее мощным средством борьбы с острой дыхательной недостаточностью. Обычно ее проводят через трубку, которую вводят в трахею через нижний носовой ход или трахеостому. Особое значение приобретает тщательный уход за дыхательными путями, их полноценное дренирование. При отеке легких, пневмонии, дистресс-синдроме респираторном взрослых показана искусственная вентиляция легких с ПДКВ иногда до 15 см вод. ст. и более. Если гипоксемия сохраняется даже при высоком ПДКВ, показано сочетанное применение традиционной и струйной высокочастотной ИВЛ.
Вспомогательную ИВЛ применяют сеансами до 30—40 мин при лечении больных с хронической дыхательной недостаточностью. Ее можно использовать в амбулаторно-поликлинических и даже домашних условиях после соответствующей тренировки больного.
ИВЛ используют у больных, находящихся в коматозном состоянии (травма, операция на головном мозге), а также при периферическом поражении дыхательных мышц (полирадикулоневрит, травма спинного мозга, боковой амиотрофический склероз). В последнем случае ИВЛ приходится проводить очень длительно — месяцы и даже годы, что требует особенно тщательного ухода за больным. Широко используют ИВЛ и при лечении больных с травмой грудной клетки, послеродовой эклампсией, различными отравлениями, нарушениями мозгового кровообращения, столбняком, ботулизмом.
3.3. Контроль адекватности
искусственной вентиляции легких.
При проведении экстренной ИВЛ простыми методами достаточно наблюдения за цветом кожи и движениями грудной клетки больного. Стенка грудной клетки должна подниматься при каждом вдохе и опадать при каждом выдохе. Если вместо этого поднимается эпигастральная область, значит вдуваемый воздух поступает не в дыхательные пути, а в пищевод и желудок. Причиной чаще всего бывает неправильное положение головы больного.
При проведении длительной аппаратной ИВЛ о ее адекватности судят по ряду признаков. Если самостоятельное дыхание больного не подавлено фармакологически, одним из основных признаков является хорошая адаптация больного к респиратору. При ясном сознании у пациента не должно быть ощущения нехватки воздуха, дискомфорта. Дыхательные шумы в легких должны быть одинаковыми с обеих сторон, кожа имеет обычную окраску, сухая. Признаками неадекватности ИВЛ являются нарастающая тахикардия, тенденция к артериальной гипертензии, а при использовании искусственной вентиляции с ПДКВ — к гипотензии, что является признаком снижения притока крови к сердцу. Исключительно важен контроль за рО2, рСО2 и кислотно-основным состоянием крови, рО2 в процессе ИВЛ следует поддерживать не ниже 80 мм рт. ст. При тяжелых нарушениях гемодинамики (массивная кровопотеря, травматический или кардиогенный шок) желательно повышение рО2 до 150 мм рт. ст. и выше. рСО2 следует поддерживать, изменяя минутный объем и частоту дыхания, на максимальном уровне, при котором наступает полная адаптация больного к респиратору (обычно 32—36 мм рт. ст.). В процессе длительной ИВЛ не должны наступать метаболический ацидоз или метаболический алкалоз. Первый чаще всего свидетельствует о нарушениях периферического кровообращения и микроциркуляции, второй — о гипокалиемии и клеточной гипогидратации.
3.4. Осложнения при
искусственной вентиляции легких.
При длительной ИВЛ часто возникают трахеобронхиты, пневмония; опасным осложнением является пневмоторакс, т.к. в условиях ИВЛ воздух быстро скапливается в плевральной полости, сдавливая легкое, а затем и смещая средостение. Во время ИВЛ возможно соскальзывание интубационной трубки в один из бронхов (чаще в правый). Нередко это случается при транспортировании и перемещении больного.
В процессе ИВЛ в раздувной манжетке интубационной трубки может образоваться выпячивание, которое прикрывает отверстие трубки и препятствует проведению ИВЛ.
3.5. Количественные характеристики режимов искусственной вентиляции легких.
Количественные характеристики традиционных режимов ИВЛ можно считать установившимися. Для аппаратов, предназначенных для интенсивной терапии взрослых пациентов, обычно считаются достаточными максимальные значения минутной вентиляции 40-50 л/мин, дыхательного объема 1,5-2 л, частоты вентиляции 60 в минуту. Для применения аппаратов во время анестезии, в экстремальной медицине и для амбулаторного лечения требования к этим характеристикам могут быть несколько снижены.
Для аппаратов, предназначенных для новорожденных и детей младшего возраста, отметим тенденцию к обеспечению вентиляции детей, родившихся со значительной степенью недоношенности. Ведущие специалисты-медики России по-разному оценивают верхний предел частоты вентиляции. Трудно не согласиться с мнением, что для частоты более 60--80 в минуту необходима специальная аппаратура. Тем не менее, в ряде зарубежных аппаратов, реализующих традиционные методики ИВЛ, можно встретить возможность установки частоты вплоть до 120-150 в минуту.
Практический интерес представляет определение верхнего предела установки минутной вентиляции и других параметров, зависящих от быстро изменяющихся с возрастом вентиляционных потребностей ребенка. Большинство изготовителей ориентируются только на две возрастные градации: аппарат для взрослых, включая детей старшего возраста, и аппарат для новорожденных и детей младшего возраста. В ряде международных стандартов граница проводится не по возрасту, а по массе тела ребенка (15 кг), что более обоснованно. Во всяком случае, можно считать, что максимальные значения объемных параметров (минутная вентиляция и дыхательный объем) аппаратов для новорожденных и детей младшего возраста должны несколько перекрывать минимальные значения тех же параметров, обеспечиваемых аппаратами для взрослых, и наоборот.
Верхний предел давления, которое аппараты могут создавать в легких пациента, обычно ограничивается значением 60-100 гПа. Максимальное значение положительного давления конца вдоха в подавляющем большинстве случаев составляет 15-20 гПа.
4. Аппарат искусственной вентиляции легких.
4.1.
Принцип работы аппарата
искусственной вентиляции легких.
Аппарат состоит из рабочего блока, блока питания, блока управления и дополнительного оборудования (увлажнителя, блока дозиметров, отстойника конденсата), которые, с помощью дыхательных шлангов, включаются в дыхательный контур. Дыхательный контур аппарата нереверсивный, т.е. при выдохе смесь поступает через тройник пациента на клапан выдоха.
Так как при выдохе в дыхательном контуре смесь охлаждается, то предусмотрен отстойник для сбора конденсата.
Рабочий блок обеспечивает формирование газового потока и состоит из воздушного компрессора и системы газораспределительных электромагнитных клапанов (клапан вдоха и клапан выдоха). Для контроля текущего и среднего значения давления установлены два манометра, показывающие значения давления в тройнике пациента и среднее давление.
Для предотвращения разрыва легких, в случае превышения давления дыхательной смеси выше допустимого предусмотрен предохранительный клапан, который, если давление выше допустимого, открывается и стравливает избыток давления.
Блок управления состоит из двух модулей:
- процессорный модуль;
- модуль индикации и клавиатуры.
Процессорный модуль обеспечивает управление режимами работы аппарата, а также осуществляет управление работой увлажнителя и системы аврийно-предупредительной сигнализации.
Модуль индикации и клавиатуры обеспечивает ввод параметров ИВЛ, выбор режимов ИВЛ и обеспечивает отображение установленных параметров.
Увлажнитель предназначен для подогрева и увлажнения дыхательной смеси. Увлажнитель состоит из следующих составных частей:
- блок подогрева воды в емкости увлажнителя;
- блок подогрева дыхательного газа в шланге вдоха;
- блока датчика температуры газа перед тройником пациента.
В качестве дыхательной смеси в аппарате ИВЛ используется либо атмосферный воздух, либо смесь воздуха с кислородом, либо смесь воздуха с закисью азота N2О. В ряде случаев при ИВЛ необходима длительная и стабильная анальгезия. Эффективным средством является закись азота, для подачи которой предусмотрен специальный ротаметр на дозиметрическом блоке. Баллоны с закисью азота либо с кислородом подключаются к аппарату через блок дозиметров, что дает возможность регулировать расход газа.
Компрессор создает требуемое давление вдоха и через клапан вдоха дыхательная смесь поступает на увлажнитель, где нагревается до температуры тела человека и увлажняется. Если этого не делать, то при длительной вентиляции легких в организме больного могут произойти необратимые патологические изменения, а также это может привести к целому ряду заболеваний.
Увлажненная и нагретая смесь поступает через тройник пациента к больному. По завершению цикла вдоха клапан вдоха закрывается и открывается клапан выдоха, и давление в легких снижается до атмосферного.
Параметры дыхания устанавливаются и отображаются на блоке управления, а также определяются программой управления микропроцессором и выбранным режимом работы аппарата.
Для контроля над параметрами дыхания используются датчик давления и датчик температуры у тройника пациента и датчик температуры в увлажнителе. Сигналы от датчиков поступают в устройство сопряжения с датчиками, а затем преобразованные сигналы выдаются в микропроцессор, расположенный в блоке управления.
Микропроцессор выдает сигналы управления, которые через схему управления исполнительными устройствами, выдаются на соответствующие исполнительные устройства (электропривод компрессора, клапан вдоха, клапан выдоха нагреватель в увлажнителе и нагреватель в шланге вдоха).
4.2. Медико-технические требования к аппарату ИВЛ.
Искусственная вентиляция легких является высокоэффективной и в то же время практически безопасной, если она основана на обеспечении адекватного газообмена при максимальном исключении вредных эффектов, а также при сохранении субъективного ощущения "дыхательного комфорта" у больного, если он во время ИВЛ остается в сознании.
Это обеспечивается прежде всего рациональным выбором для данного больного следующих параметров:
• минутного объема вентиляции;
• дыхательного объема;
• частоты дыхания;
• отношения продолжительности вдоха и выдоха.
Минутный объем вентиляции - это сумма дыхательных объемов за минуту. Обычно рассматривают минутный объем альвеолярной вентиляции, который равен разности дыхательного объема и общего объема мертвого пространства, умноженной на частоту дыхания.
Дыхательный объем - это количество дыхательного газа, подаваемого в легкие в течении одного дыхательного цикла. Дыхательный объем должен быть достаточным для промывки "мертвого пространства " и удаления углекислого газа из легких . Зависит от пола пациента, массы его тела, частоты дыхания, возраста.
Частота дыхания - это количество дыхательных маневров (вдох-выдох) за минуту.
Значения основных параметров искусственной вентиляции легких нормированы ГОСТ 18856-81. Он устанавливает следующие минимальные диапазоны регулирования параметров ИВЛ:
- дыхательный объем 0,2 ... 2,0 л;
- минутная вентиляция 3 ... 30 л/мин;
- частота дыхания 10 ... 50 л/мин;
- отношение длительности вдоха и выдоха 1:1,5... 1:2.
Параметры ИВЛ у разных людей сильно отличаются, поэтому целесообразно делать диапазон регулирования параметров ИВЛ (дыхательный объем, минутную вентиляцию, частоту дыхания и т.д.) как можно шире, чтобы врач мог в каждом конкретном случае установить требуемые параметры ИВЛ.
Увеличение температуры и влажности вдыхаемого воздуха на пути окружающая среда - легкие происходит благодаря уникальной способности дыхательных путей независимо от колебаний температуры и влажности воздуха нагревать вдыхаемую газовую смесь до температуры тела и насыщать ее водяными парами.
При искусственной вентиляции легких возникает местное пересыхание и охлаждение слизистой оболочки трахеи и бронхов. В зависимости от продолжительности и интенсивности действия этих факторов могут возникнуть повреждения слизистой оболочки трахеи и бронхов, разрушение мерцательного эпителия, образование корок, нередко закупоривающих бронхи, возникновение деструктивного бронхита, чреватого тяжелыми бронхолегочными осложнениями. У маленьких детей к этому могут добавиться нарушения общего водного и теплового баланса.
На основании изложенного выше при ИВЛ необходимо использовать увлажнитель для увлажнения и обогрева вдыхаемого газа. Границы регулирования температуры газа в тройнике пациента должны быть 32-38°С, а относительная влажность газа 80-100%.
При выдохе дыхательная смесь охлаждается, и влага конденсируется на поверхности дыхательных шлангов. Конденсат может попасть в аппарат, что нарушит его работу или в легкие пациента. Поэтому необходимо установить на шланге выдоха отстойник, куда бы стекала конденсировавшаяся жидкость.
4.3. Схемы для подачи газовой смеси пациенту.
В настоящее время в аппаратах ИВЛ применяются следующие схемы для подачи газовой смеси пациенту.
1) Генератор вдоха постоянного потока с коммутирующими устройствами в линиях вдоха и выдоха, выполненный в виде смесителя сжатого кислорода, поступающего извне, и сжатого воздуха. В большинстве зарубежных аппаратов сжатый воздух также подается из внешнего источника (аппараты серий "Putitan-Bennet", "Веаг", большинство моделей фирм "Bird" “Drager” и др.) или поставляемым отдельно компрессором высокого давления. В отечественных аппаратах воздух подает встроенный в аппарат компрессор низкого давления. Такая схема позволяет достаточно легко реализовать разнообразные режимы работы и измерять характеристики вентиляции. Однако конструктивное осуществление этой схемы довольно сложно. Примером такого решения являются аппараты "Спирон-201","Фаза-5" и др.
2) Генератор вдоха постоянного потока с коммутирующим устройством только в линии выдоха. Здесь через линии вдоха газ течет постоянно, с частотой дыхания перекрывается только линия выдоха, поэтому конструкция таких аппаратов проще, чем по первой схеме. Особенно проста реализация режимов, требующих создания в линии выдоха постоянного подпора положительного давления (ПДКВ, самостоятельное дыхание под положительным давлением и др.). Конструктивная форма выполнения генератора вдоха такая же, что и для предыдущей схемы. Постоянный поток газа через дыхательный контур с одной стороны позволяет легче контролировать его величину и подаваёмую минутную вентиляцию, а с другой - вызывает повышенный расход газовой смеси, затрудняет измерение выдыхаемого объема. Поэтому данный принцип используется почти исключительно в аппаратах для интенсивной терапии у детей (например, в аппарате "Спиро-Вита-412"), где повышенный расход кислорода незначителен по абсолютной величине.
Описанные выше схемы ориентированы на подачу определенного потока или объема газа, а создающееся при этом в дыхательном контуре давление вторично. Существует, однако, схема, первично ориентированная на создание заданного давления. Ее основу составляет емкость с регулируемой эластичностью, в которую газовая смесь подается постоянно, а отбирается только во время вдоха. Принципиальное преимущество - возможность накопления газа, из-за чего мгновенное значение подачи газа всегда равно минутной вентиляции, но не превышает ее, как в других схемах. Пример реализации - аппараты семейства " Servoventilator - 900 фирмы "Siemens".
Также существует другой способ искусственного насыщения крови кислородом.
5. Аппарат искусственного кровообращения.
Аппарат "искусственное сердце - легкие" - аппарат, обеспечивающий оптимальный уровень кровообращения и обменных процессов в организме больного или в изолированном органе донора; предназначен для временного выполнения функций сердца и лёгких. На основании предшествующих многочисленных работ первый аппарат для искусственного кровообращения теплокровного организма, так называемый автожектор, был создан в 1925 советским учёным С. С. Брюхоненко при помощи этого аппарата советский учёный Н. Н. Теребинский в 1930 экспериментально доказал возможность успешной операции на клапанах сердца. В 1951 итальянские хирурги А. Дольотти и А. Костантини выполнили операцию удаления опухоли средостения, используя АИК. В СССР первую операцию на "сухом" сердце с помощью АИК осуществил в 1957 А.А.Вишневский. АИК включает комплекс взаимосвязанных систем и блоков: "искусственное сердце" — аппарат, состоящий из насоса, привода, передачи и нагнетающий кровь с необходимой для жизнеобеспечения объёмной скоростью кровотока; "искусственные лёгкие" — газообменное устройство, так называемый оксигенатор, служит для насыщения крови кислородом, удаления углекислого газа и поддержания кислотно-щелочного равновесия в физиологических пределах. Первые оксигенаторы, которые использовались в пятидесятых годах двадцатого века, были сделаны из стекла и стали, использовались многократно и работали на принципе прямого смешения крови и кислорода. Все это приводило к существенным повреждениям крови и развитию осложнений. Современные оксигенаторы, подобно нормальным легким, разделяют кровь и воздух при помощи мембраны. Эти одноразовые устройства предельно надежны и обеспечивают полную безопасность пациентам.
Оксигенаторы в АИК могут быть сконструированы на основании одного из 5 принципов насыщения крови кислородом:
-оксигенатор барабанный (в нем насыщение кислородом осуществляется в тонком слое жидкости, покрывающем поверхности вращающихся барабанов);
-оксигенатор мембранный (в котором насыщение жидкости осуществляется путем диффузии кислорода через полупроницаемую мембрану);
-оксигенатор пенный (в котором насыщение жидкости осуществляется путем продувания через нее кислорода);
-оксигенатор пластинчатый (в нем насыщение кислородом осуществляется в тонком слое жидкости, покрывающем поверхности вращающихся дисков);
-оксигенатор пленочный (в котором насыщение жидкости происходит при контакте ее тонкой пленки с кислородом).
5.1. Мембранные оксигенаторы.
В современных аппаратах в основном применяются мембранные оксигенаторы.
Опыт применения полимерных мембран показал, что они должны удовлетворять основным требованиям: иметь высокую газопроницаемость по кислороду и углекислому газу; обладать биологической и химической совместимостью с кровью; отличаться достаточно высокой механической прочностью и стойкостью к химическим и физическим факторам, действующим на мембрану при ее стерилизации и эксплуатации.
Максимально повысить процессы газообмена при оксигенации крови (помимо оптимизации конструкции оксигенатора) возможно за счет эффективности мембраны, которая зависит от природы полимера и ее толщины. Высокая эффективность мембраны не столько позволяет варьировать проницаемость кислорода (гемоглобин крови усваивает строго определенный его объем), сколько важна для быстрого выделения (элиминации) углекислого газа из крови. Движущей силой элиминации СО2 является небольшое парциальное давление в крови, которое не поддается произвольному регулированию извне. Следовательно, скорость выделения двуокиси углерода всецело зависит от эффективности и селективности самой мембраны.
Исследования условий использования полимеров в системах искусственного кровообращения, механизма массообмена в естественном легком и газопроницаемости полимерных мембран показали, что наиболее подходящими для оксигенаторных мембран являются материалы на основе полиорганосилоксанов. Важным является и то, что полиорганосилоксаны обладают хорошими антитромбогенными свойствами. Применение изотропных мембран из полиэтилена, производных целлюлозы и других полимеров не дало желаемых результатов по эффективной оксигенации крови вследствие их малой проницаемости.
Полимерные мембраны в оксигенаторах могут быть плоскими, сложенными в рулоны, свернутыми в спираль, в виде полого волокна или в виде тонкой жидкой пленки. Для изготовления мембран используется в основном полидиметилсилоксан, так как среди полимерных материалов он обладает наибольшей проницаемостью по кислороду и углекислому газу. Так, проницаемость полидиметилсилоксана по кислороду в 100 тысяч раз выше, чем у поливинилхлорида и в 500 раз выше, чем у полиэтилена, а по углекислому газу в 60 тысяч раз больше, чем у поливинилхлорида и в 1500 раз выше, чем у полиэтилена. К сожалению, у полидиметилсилоксана очень низкие прочностные характеристики, поэтому для упрочнения в его состав вводятся поликарбонатные, полиакрилатные и другие жесткие фрагменты, что не может не сказываться на его проницаемости.
а) | б) |
Рис. 5.1. Мембранные оксигенаторы: а – спиральный; б – капиллярный 1 – шпулька; 2 – спирально свернутый мембранный рукав с сеткой сепаратором; 3 – корпус; 4 – капилляры |
Созданные в последнее время конструкции оксигенаторов на полых волокнах являются моделью, наиболее близкой к естественному легкому. В таких оксигенаторах кровь протекает внутри полого волокна, а кислород противотоком омывает волокно с внешней стороны. В организме человека кислород поступает в альвеолы, между оболочками которых расположены капилляры. Толщина оболочки альвеолы не превышает 0,1 мкм, а размеры капилляров таковы, что эритроциты проходят только по одному в ряд. Кислород из альвеол через оболочку диффундирует в капилляр, где связывается с гемоглобином эритроцитов. Общая поверхность альвеол 50–200 м2, а производительность легких человека по кислороду 15 л/мин. Возможности искусственных легких (оксигенаторов) намного скромнее: общая поверхность газообмена составляет 5–6 м2, а производительность по кислороду 100 мл/мин через 1 м2 (т. е. 0,5–0,6 л/мин). Несмотря на довольно низкую по сравнению с естественными легкими производительность, аппараты «искусственные легкие» широко используются не только в хирургии, но и в терапии ряда заболеваний – прежде всего при пневмонии, атеросклерозе, сердечнососудистой недостаточности. В этом случае в оксигенаторах получается обогащенный кислородом воздух, содержащий до 35–40 % О2, а рабочим телом мембраны являются полиорганосилоксаны.
Отечественные исследователи разработали несколько вариантов пленочных асимметричных мембран на основе винилтриметилсилана (мембрана-ПВТМС), полиарилат-полисилоксана (мембрана-Силар) и ПК-ПДМС (мембрана-Карбосил-АС). Последние были использованы в плоскостных моделях оксигенаторов.
Высокая эффективность мембран для оксигенаторов была в дальнейшем достигнута за счет использования пористых плоских и волоконных систем из гидрофобных политетрафторэтилена, полипропилена (GELGARD) и других полимеров. Технология изготовления пористых мембран связана с подбором фракций гранул полимера определенного размера и режимов их прессования, а также режимов экструзии и вытяжки образующихся пленок и волокон. Поэтому газовые потоки через пористые мембраны значительно больше, чем через сплошные, и площади газообмена в оксигенаторе меньше (1 м2 вместо 3–5 м2).
Однако, как показали последние исследования, такие мембраны имеют и ряд недостатков, связанных с их пористой структурой:
1) возможность попадания пузырьков газа в кровь, что может вызвать эффект послеоперационного невротического расстройства;
2) гидрофилизация липидами крови поверхности пор волокна и проникновение крови в поры, что приводит к ухудшению газопереноса;
3) отрицательное влияние газовых менисков в устьях пор мембраны, создающих высокое поверхностное натяжение крови.
Недостатки пористых мембран можно нивелировать путем нанесения на их поверхность односторонней, микронного уровня сплошной пленки, например, из полиарилат-полисилоксана, которая обладает высокой газопроницаемостью и хорошей гемосовместимостью. Скорость переноса кислорода для данной модифицированной мембраны в виде полого волокна из полипропилена составляет до 97%, а скорость элиминации углекислого газа – до 75% от соответствующих показателей непокрытой мембраны.
Разработки мембран асимметричной структуры для оксигенаторов в последнее время приобрели доминирующее значение, так как помимо высокой эффективности тончайший, плотный слой на основе силиконов или их сополимеров исключает опасность тромбообразования и внесения инфекции в кровь с пузырьками воздуха. На такие мембраны дополнительно может быть нанесен слой альбумин-гепаринового покрытия, прочно фиксированного на мембране, что способствует повышению оксигенации и элиминации углекислоты при внелегочном газообмене.
Технологически асимметричность структуры мембран по толщине может формироваться различными путями, например:
а) нанесением из разбавленных растворов полиорганосилоксанов на пористые подложки;
б) полимеризацией (каталитической, в потоке плазмы или радиационной) на пористых подложках силоксановых и силановых мономеров, таких как циклосилоксаны, гексаметилдисилоксан, винилметилдисилоксан, а также винилтриметилсилан, триметилсилилпропин и другие;
в) фазовоинверсионным методом из растворов силоксановых сополимеров в системе растворитель–нерастворитель.
Таблица 5.1. Проницаемость полимерных материалов, используемых в оксигенаторах
№ п/п | Материал мембраны | Газопроницаемость, Рґ108 см3см/см2 с см рт. ст. | Селективность РСО2/РО2 | Паропроницаемость по воде Qґ108 г/см2 с см рт. ст. | |
О2 | СО2 | ||||
1. | Полиэтилен | 2,8 | 1,2 | 0,43 | 0,3 |
2. | Политетрафторэтилен | 1,5 | 3 | 2 | 0,03 |
3. | Полидиметилсилоксан | 55 | 330 | 6 | 20 |
4. | Поликарбонатсилоксан | 16 | 97 | 5,7 | 7 |
5. | Этилцеллюлоза | 2,1 | 4,1 | 1,95 | – |
6. | Перфторбутират- этилцеллюлозы | 5 | 25 | 5 | – |
7. | Полиалкиленсульфон | 10 | 40 | 4 | – |
8. | Политетрафторэтилен пористый D = 1 мкм | 5000 | 5000 | 1 | 3600 |
9. | Поли-4-метилпентен-1 с силиконовым маслом (1:1) | 4 | 13 | 3,25 | – |
5.2. Показания к экстракорпоральной мембранной оксигенации.
Теоретически, ЭКМО может быть показана любому больному с потенциально обратимой формой дыхательной, сердечной или сердечно - легочной недостаточности. Очень важным является отбор пациентов для проведения ЭКМО. С одной стороны необходимо правильно оценить степень снижения сердечно - легочного резерва с целью определения показаний для применения этого метода, а с другой стороны исключить группу больных, у которых прогноз является явно безнадежным и для которых проведение ЭКМО не имеет смысла. Если ЭКМО используется при сердечной недостаточности, то она более эффективна в случае, когда у больного имеет место правожелудочковая недостаточность, которая является следствием легочной гипертензии и сопутствующей гипоксии. На практике ЭКМО часто используется в качестве метода вспомогательного кровообращения:
- после операций на сердце, обычно после хирургической коррекции врожденных пороков сердца,
- при трансплантации сердца или легких,
- при миокардите или при реакции отторжения трансплантата.
5.3. Каннюляция для экстракорпоральной мембранной оксигенации.
Существует два вида ЭКМО - веновенозная (ВВЭКМО) и веноартериальная (ВАЭКМО). ВАЭКМО используется, когда существует, по крайней мере, частичная необходимость в проведении вспомогательного кровообращения. ВВЭКМО применяют, когда имеет место изолированная дыхательная недостаточность. Правильная постановка канюль необходима для обеспечения адекватной перфузии и предотвращения гемолиза. В настоящее время используются тонкостенные канюли, стенки которых усилены металлической спиралью, что предотвращает возникновение перегибов канюли. У старших возрастных групп канюли для ВВЭКМО часто устанавливают чрескожно при помощи проводника. Когда требуется канюляция артерии (при ВАЭКМО), чрескожная пункция сосуда и введение каннюли с помощью проводника невозможны, для этого необходимо хирургическое выделение артерии. Важно учитывать, что необходим тщательный гемостаз при выполнении канюляции, поскольку это предотвратит кровопотерю. Если после операции невозможно перевести больного с искусственным кровообращением на самостоятельное дыхание, то ЭКМО проводят при открытой грудной полости. В этом случае не всегда удается избежать кровопотери.
Удаление канюли требует хирургического вмешательства, если применялась ВАЭКМО. Если канюляция была произведена с помощью проводника и без лигирования сосуда, то после удаления канюли необходимо лишь наложить кожный шов.
6. Заключение.
ИВЛ – одно из наиболее эффективных и изученных средств интенсивной
терапии и реанимации. Но несмотря на высокую эффективность ИВЛ как
самостоятельная мера малоперспективна. Сложный комплекс респираторной и
прочей вспомогательной и основной терапии создает фон, на котором
максимально проявляются достоинства ИВЛ и сводятся к минимуму ее недостатки
и осложнения.
Современные оксигенаторы предельно надежны и обеспечивают полную безопасность пациентам. Научно-технические достижения позволили ряду фирм осуществить разработки конструктивных разновидностей различных мембранных оксигенаторов, тем не менее, совершенствование и создание более эффективных мембранных аппаратов и мембран остается актуальной задачей.
Список использованной литературы.
1. Зильбер А.П., Искусственная вентиляция легких при острой дыхательной недостаточности, - М., Медицина, 1987.
2. Гологорский В.А., Дыхательная недостаточность – М., 1984.
3. Косяков В.И., Розова М.Н., Материалы медицинского применения – СПб, Издательство СПбГПУ, 2005.
4. Райгородский И.М., Савин В.А. Применение газопроницаемых полимерных мембран в медицине // Пластмассы. 1976. № 1, с. 61–65.
5. Каричев З.Р., Мулер А.Л. Применение композиционных половолоконных мембран для оксигенации крови // Теор. основы хим. технол. 2001. Т. 35, № 4, с. 1–7.
6. Karichev Z., Muler A., Vishnevsky M. Spontaneous gas bubbling at microporous oxygenators // Artif. Organs. 1999. V. 23, No 10, p. 904.
7. Дургарьян С.Г., Ямпольский Ю.П., Платэ Н.А. Селективно-проницаемые полимеры и газоразделительные мембраны: структура и транспортные свойства // Успехи химии. 1988. Т. 57, № 6, с. 974–989.