Реферат

Реферат Процесс в операционной системе

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024





Университет Российской Академии Образования, факультет информационных технологий
Реферат

на тему:

«Процесс в операционной системе»

выполнил: Белоусов Антон,

студент 5-го курса
Москва, 2010

Процесс в операционной системе

Необходимость процессов и потоков


Ключевое требование к большинству современных ОС – мультипрограммирование, или многозадачность: способность одновременно или попеременно выполнять несколько программ, совместно использующих не только процессор, но и другие ресурсы компьютера: оперативную и внешнюю память, устройства ввода-вывода, данные.

Чтобы поддерживать мультипрограммирование, ОС должна определить и оформить для себя те внутренние единицы работы, между которыми будет разделяться процессор и другие ресурсы компьютера. В настоящее время в большинстве операционных систем определены два типа единиц работы – процесс (задача) и поток (нить). Несколько вариантов названий обусловлено различиями в культурах разработчиков разных операционных систем, по-разному называющих одни и те же сущности.

Процесс - более крупная единица работы  задачи, требует для своего выполнения нескольких более мелких работ - потоков.

Процесс и поток – понятия и свойства


Любая работа вычислительной системы заключается в выполнении некоторого программного кода. Чтобы этот программный код мог быть выполнен, его необходимо загрузить в оперативную память, возможно, выделить некоторое место на диске для хранения данных, предоставить доступ к устройствам ввода-вывода, например к последовательному порту для получения данных по подключенному к этому порту модему; и т. д. В ходе выполнения программе может также понадобиться доступ к информационным ресурсам, например файлам, портам TCP/UPD, семафорам. И для выполнения программы необходимо предоставление ей процессорного времени, то есть времени, в течение которого процессор выполняет коды данной программы.

В операционных системах, где существуют и процессы, и потоки, процесс рассматривается операционной системой как заявка на потребление всех видов ресурсов, кроме одного — процессорного времени. Этот последний важнейший ресурс распределяется операционной системой между другими единицами работы — потоками, которые и получили свое название благодаря тому, что они представляют собой последовательности (потоки выполнения) команд.

В простейшем случае процесс состоит из одного потока, и именно таким образом трактовалось понятие «процесс» до середины 80-х годов (например, в ранних версиях UNIX) и в таком же виде оно сохранилось в некоторых современных ОС. В таких системах понятие «поток» полностью поглощается понятием «процесс», то есть остается только одна единица работы и потребления ресурсов — процесс. Мультипрограммирование осуществляется в таких ОС на уровне процессов.

Для того чтобы процессы не могли вмешаться в распределение ресурсов, а также не могли повредить коды и данные друг друга, важнейшей задачей ОС является изоляция одного процесса от другого. Для этого операционная система обеспечивает каждый процесс отдельным виртуальным адресным пространством, так что ни один процесс не может получить прямого доступа к командам и данным другого процесса.

Виртуальное адресное пространство процесса — это совокупность адресов, которыми может манипулировать программный модуль процесса. Операционная система отображает виртуальное адресное пространство процесса на отведенную процессу физическую память.

При необходимости взаимодействия процессы обращаются к операционной системе, которая, выполняя функции посредника, предоставляет им средства межпроцессной связи — конвейеры, почтовые ящики, разделяемые секции памяти и некоторые другие.

Однако в системах, в которых отсутствует понятие потока, возникают проблемы при организации параллельных вычислений в рамках процесса. А такая необходимость может возникать. Действительно, при мультипрограммировании повышается пропускная способность системы, но отдельный процесс никогда не может быть выполнен быстрее, чем в однопрограммном режиме (всякое разделение ресурсов только замедляет работу одного из участников за счет дополнительных затрат времени на ожидание освобождения ресурса). Однако приложение, выполняемое в рамках одного процесса, может обладать внутренним параллелизмом, который в принципе мог бы позволить ускорить его решение. Если, например, в программе предусмотрено обращение к внешнему устройству, то на время этой операции можно не блокировать выполнение всего процесса, а продолжить вычисления по другой ветви программы. Параллельное выполнение нескольких работ в рамках одного интерактивного приложения повышает эффективность работы пользователя. Так, при работе с текстовым редактором желательно иметь возможность совмещать набор нового текста с такими продолжительными по времени операциями, как переформатирование значительной части текста, печать документа или его сохранение на локальном или удаленном диске. Еще одним примером необходимости распараллеливания является сетевой сервер баз данных. В этом случае параллелизм желателен как для обслуживания различных запросов к базе данных, так и для более быстрого выполнения отдельного запроса за счет одновременного просмотра различных записей базы.

Потоки возникли в операционных системах как средство распараллеливания вычислений. Конечно, задача распараллеливания вычислений в рамках одного приложения может быть решена и традиционными способами.

Во-первых, прикладной программист может взять на себя сложную задачу организации параллелизма, выделив в приложении некоторую подпрограмму- диспетчер, которая периодически передает управление той или иной ветви вычислений. При этом программа получается логически весьма запутанной, с многочисленными передачами управления, что существенно затрудняет ее отладку и модификацию.

Во-вторых, решением является создание для одного приложения нескольких процессов для каждой из параллельных работ. Однако использование для создания процессов стандартных средств ОС не позволяет учесть тот факт, что эти процессы решают единую задачу, а значит, имеют много общего между собой — они могут работать с одними и теми же данными, использовать один и тот же кодовый сегмент, наделяться одними и теми же правами доступа к ресурсам вычислительной системы. Так, если в примере с сервером баз данных создавать отдельные процессы для каждого запроса, поступающего из сети, то все процессы будут выполнять один и тот же программный код и выполнять поиск в записях, общих для всех процессов файлов данных. А операционная система при таком подходе будет рассматривать эти процессы наравне со всеми остальными процессами и с помощью универсальных механизмов обеспечивать их изоляцию друг от друга. В данном случае все эти достаточно громоздкие механизмы используются явно не по назначению, выполняя не только бесполезную, но и вредную работу, затрудняющую обмен данными между различными частями приложения. Кроме того, на создание каждого процесса ОС тратит определенные системные ресурсы, которые в данном случае неоправданно дублируются — каждому процессу выделяются собственное виртуальное адресное пространство, физическая память, закрепляются устройства ввода-вывода и т. п.

Поэтому в операционной системе наряду с процессами нужен другой механизм распараллеливания вычислений, который учитывал бы тесные связи между отдельными ветвями вычислений одного и того же приложения. Для этих целей современные ОС предлагают механизм многопоточной обработки (multithreading). При этом вводится новая единица работы — поток выполнения, а понятие «процесс» в значительной степени меняет смысл. Понятию «поток» соответствует последовательный переход процессора от одной команды программы к другой. ОС распределяет процессорное время между потоками. Процессу ОС назначает адресное пространство и набор ресурсов, которые совместно используются всеми его потоками.

Итоговые определения


Для систем, использующих обе концепции – и потока, и процесса:

Процесс – единица активности операционной системы, создаваемая при запуске программы на выполнение, и обладающая свойствами:

·       Отдельное виртуальное адресное пространство

·       Код выполняемой программы, загруженный в адресное пространство процесса

·       Начальные параметры запуска – аргументы запуска, рабочую папку и т.п.

·       Набор привилегий на доступ к системным ресурсам и вызовам

·       Текущее состояние, включая статус процесса

·       Набор потоков, выполняющих код программы в адресном пространстве процесса, имеющих доступ к общим ресурсам процесса

Поток – единица активности операционной системы, создаваемая при запуске процесса системой или программно из другого потока того же процесса,  обладающая свойствами:

·       Счетчик команд – указатель на текущую выполняемую команду

·       Регистры – значения регистров процессора в текущий момент времени

·       Стек

·       Состояние

Для конкретной операционной системы определение процесса может быть лаконичнее, так как опирается на конкретные механизмы этой системы, например:

Unix использует два системно- ориентированных определения процесса:

Процесс – объект, зарегистрированный в таблице процессов ОС

Процесс – объект, порожденный системным вызовом fork()

Для систем, не поддерживающих параллельное выполнение средствами потоков, каждый процесс фактически имеет один поток, и понятия потока и процесса объединены.

Для систем, не поддерживающих многозадачность, необходимость в понятии процесса отпадает – одновременно может быть запущена только одна программа, и нет необходимости в разделении запущенных программ и их свойств.

Эффективность концепции потоков для параллельных вычислений
Создание потоков требует от ОС меньших накладных расходов, чем процессов. В отличие от процессов, которые принадлежат разным, вообще говоря, конкурирующим приложениям, все потоки одного процесса всегда принадлежат одному приложению, поэтому ОС изолирует потоки в гораздо меньшей степени, нежели процессы в традиционной мультипрограммной системе. Все потоки одного процесса используют общие файлы, таймеры, устройства, одну и ту же область оперативной памяти, одно и то же адресное пространство. Это означает, что они разделяют одни и те же глобальные переменные. Поскольку каждый поток может иметь доступ к любому виртуальному адресу процесса, один поток может использовать стек другого потока. Между потоками одного процесса нет полной защиты, потому что, во-первых, это невозможно, а во-вторых, не нужно. Чтобы организовать взаимодействие и обмен данными, потокам вовсе не требуется обращаться к ОС, им достаточно использовать общую память — один поток записывает данные, а другой читает их. С другой стороны, потоки разных процессов по-прежнему хорошо защищены друг от друга.

Итак, мультипрограммирование более эффективно на уровне потоков, а не процессов. Каждый поток имеет собственный счетчик команд и стек. Задача, оформленная в виде нескольких потоков в рамках одного процесса, может быть выполнена быстрее за счет псевдопараллельного (или параллельного в мультипроцессорной системе) выполнения ее отдельных частей. Например, если электронная таблица была разработана с учетом возможностей многопоточной обработки, то пользователь может запросить пересчет своего рабочего листа и одновременно продолжать заполнять таблицу. Особенно эффективно можно использовать многопоточность для выполнения распределенных приложений, например, многопоточный сервер может параллельно выполнять запросы сразу нескольких клиентов.

Использование потоков связано не только со стремлением повысить производительность системы за счет параллельных вычислений, но и с целью создания более читабельных, логичных программ. Введение нескольких потоков выполнения упрощает программирование. Например, в задачах типа «писатель-читатель» один поток выполняет запись в буфер, а другой считывает записи из него. Поскольку они разделяют общий буфер, не стоит их делать отдельными процессами. Другой пример использования потоков — управление сигналами, такими как прерывание с клавиатуры (del или break). Вместо обработки сигнала прерывания один поток назначается для постоянного ожидания поступления сигналов. Таким образом, использование потоков может сократить необходимость в прерываниях пользовательского уровня. В этих примерах не столь важно параллельное выполнение, сколь важна ясность программы.

Наибольший эффект от введения многопоточной обработки достигается в мультипроцессорных системах, в которых потоки, в том числе и принадлежащие одному процессу, могут выполняться на разных процессорах действительно параллельно (а не псевдопараллельно).

Создание процессов и потоков


Создать процесс — это прежде всего означает создать описатель процесса, в качестве которого выступает одна или несколько информационных структур, содержащих все сведения о процессе,, необходимые операционной системе для управления им. В число таких сведений могут входить, например, идентификатор процесса, данные о расположении в памяти исполняемого модуля, степень привилегированности процесса (приоритет и права доступа) и т. п. Примерами описателей процесса являются блок управления задачей (ТСВ — Task Control Block) в OS/360, управляющий блок процесса (РСВ — Process Control Block) в OS/2, дескриптор процесса в UNIX, объект-процесс (object-process) в Windows NT.

Создание описателя процесса – это появление в системе еще одного претендента на вычислительные ресурсы. Начиная с этого момента при распределении ресурсов ОС должна принимать во внимание потребности нового процесса.

Создание процесса включает загрузку кодов и данных исполняемой программы данного процесса с диска в оперативную память. Для этого ОС должна обнаружить местоположение такой программы на диске, перераспределить оперативную память и выделить память исполняемой программе нового процесса. Затем необходимо считать программу в выделенные для нее участки памяти и, возможно, изменить параметры программы в зависимости от размещения в памяти. В системах с виртуальной памятью в начальный момент может загружаться только часть кодов и данных процесса, с тем чтобы «подкачивать» остальные по мере необходимости. Существуют системы, в которых на этапе создания процесса не требуется непременно загружать коды и данные в оперативную память, вместо этого исполняемый модуль копируется из того каталога файловой системы, в котором он изначально находился, в область подкачки — специальную область диска, отведенную для хранения кодов и данных процессов. При выполнении всех этих действий подсистема управления процессами тесно взаимодействует с подсистемой управления памятью и файловой системой.

В многопоточной системе при создании процесса ОС создает для каждого процесса как минимум один поток выполнения. При создании потока так же, как и при создании процесса, операционная система генерирует специальную информационную структуру — описатель потока, который содержит идентификатор потока, данные о правах доступа и приоритете, о состоянии потока и другую информацию. В исходном состоянии поток (или процесс, если речь идет о системе, в которой понятие «поток» не определяется) находится в приостановленном состоянии. Момент выборки потока на выполнение осуществляется в соответствии с принятым в данной системе правилом предоставления процессорного времени и с учетом всех существующих в данный момент потоков и процессов. В случае если коды и данные процесса находятся в области подкачки, необходимым условием активизации потока процесса является также наличие места в оперативной памяти для загрузки его исполняемого модуля.

Во многих системах поток может обратиться к ОС с запросом на создание так называемых потоков-потомков. В разных ОС по-разному строятся отношения между потоками-потомками и их родителями. Например, в одних ОС выполнение родительского потока синхронизируется с его потомками, в частности после завершения родительского потока ОС может снимать с выполнения всех его потомков. В других системах потоки-потомки могут выполняться асинхронно по отношению к родительскому потоку. Потомки, как правило, наследуют многие свойства родительских потоков. Во многих системах порождение потомков является основным механизмом создания процессов и потоков.

Создание процессов на примере


В качестве примера возьмем создание процессов в операционной системе UNIX System V Release 4. В этой системе потоки не поддерживаются, в качестве единицы управления и единицы потребления ресурсов выступает процесс.

При управлении процессами операционная система использует два основных типа информационных структур: дескриптор процесса и контекст процесса. Дескриптор процесса содержит такую информацию о процессе, которая необходима ядру в течение всего жизненного цикла процесса независимо от того, находится он в активном или пассивном состоянии, находится образ процесса в оперативной памяти или выгружен на диск. (Образом процесса называется совокупность его кодов и данных.)

Дескрипторы отдельных процессов объединены в список, образующий таблицу процессов. Память для таблицы процессов отводится динамически в области ядра. На основании информации, содержащейся в таблице процессов, операционная система осуществляет планирование и синхронизацию процессов. В дескрипторе прямо или косвенно (через указатели, на связанные с процессом структуры) содержится информация о состоянии процесса, о расположении образа процесса в оперативной памяти и на диске, о значении отдельных составляющих приоритета, а также о его итоговом значении — глобальном приоритете, об идентификаторе пользователя, создавшего процесс, о родственных процессах, о событиях, осуществления которых ожидает данный процесс, и некоторая другая информация.

Контекст процесса содержит менее оперативную, но более объемную часть информации о процессе, необходимую для возобновления выполнения процесса с прерванного места: содержимое регистров процессора, коды ошибок выполняемых процессором системных вызовов, информация обо всех открытых данным процессом файлах и незавершенных операциях ввода-вывода и другие данные, характеризующие состояние вычислительной среды в момент прерывания. Контекст, так же как и дескриптор процесса, доступен только программам ядра, то есть находится в виртуальном адресном пространстве операционной системы, однако он хранится не в области ядра, а непосредственно примыкает к образу процесса и перемещается вместе с ним, если это необходимо, из оперативной памяти на диск.

Порождение процессов в системе UNIX происходит в результате выполнения системного вызова fork. ОС строит образ порожденного процесса являющийся точной копией образа породившего процесса, то есть дублируются дескриптор, контекст и образ процесса. Сегмент данных и сегмент стека родительского процесса копируются на новое место, образуя сегменты данных и стека процесса-потомка. Процедурный сегмент копируется только тогда, когда он не является разделяемым. В противном случае процесс-потомок становится еще одним процессом, разделяющим данный процедурный сегмент.

После выполнения системного вызова fork оба процесса продолжают выполнение с одной и той же точки. Чтобы процесс мог опознать, является он родительским процессом или процессом-потомком, системный вызов fork возвращает в качестве своего значения в породивший процесс идентификатор порожденного процесса, а в порожденный процесс — NULL. Типичное разветвление на языке С записывается так:

if( -fork() ) { действия родительского процесса }

else { действия порожденного процесса }

Идентификатор потомка может быть присвоен переменной, входящей в контекст родительского процесса. Так как контекст процесса наследуется его потомками, то потомки могут узнать идентификаторы своих «старших братьев», таким образом сумма знаний наследуется при порождении и может быть распространена между родственными процессами. На независимости идентификатора процесса от выполняемой процессом программы построен механизм, позволяющий процессу перейти к выполнению другой программы с помощью системного вызова ехес.

Таким образом, в UNIX порождение нового процесса происходит в два этапа — сначала создается копия процесса-родителя, затем у нового процесса производится замена кодового сегмента на заданный.

Вновь созданному процессу операционная система присваивает целочисленный идентификатор, уникальный на весь период функционирования системы.

Завершение процесса


В большинстве операционных систем есть одни и те же варианты завершения процесса, различающиеся деталями реализации:

·       Нормальное завершение процесса: завершение при достижении конца основной функции программы (разновидности main), или при вызове системной функции выхода (например, exit в unix).

·       Принудительное завершение процесса: производится внешним процессом с помощью вызова соответствующей системной функции (например, системного вызова kill в unix).

Результат завершения процесса


При завершении процесса освобождаются все   системные ресурсы, занятые им – открытые файлы, память, и др. Соответственно, завершаются все потоки, принадлежащие процессу.

В unix, если процесс-потомок завершает свою работу прежде процесса-предка, и процесс-предок явно не указал, что он не заинтересован в получении информации о статусе завершения процесса-потомка, то завершившийся процесс-потомок не исчезает из системы окончательно, а остается в состоянии «закончил исполнение» либо до завершения процесса-предка, либо до того момента, когда предок проверит завершение потомка.

Резюме


Процессы и потоки – основополагающая концепция современных ОС, предоставляющая основу для решения любых вычислительных задач. В большинстве прикладных ОС эти понятия означают одно и то же, различаясь деталями реализации.



Использованная литература:


1.    Э.Таненбаум, А.Вудхалл. Операционные системы. Разработка и реализация. 3-е издание.

2.    В.Г.Олифер, Н.А.Олифер. Сетевые операционные системы. Учебник для ВУЗов.

3.    И.В.Машечкин, А.Н.Терёхин. Операционные системы. Лекционный курс факультета ВМиК МГУ им. М.В.Ломоносова.

1. Реферат на тему U S And Swedish Trends In
2. Реферат Детство и юность Становление характеров Молотова и Берии
3. Реферат на тему Группы интересов и СМИ как актеры политики
4. Реферат Ввоз товаров в Республику Беларусь
5. Реферат Прохождение производственной практики в ООО РосФрост
6. Курсовая на тему Обрядовый театр
7. Доклад Model of atoms nucleus and table of elements
8. Реферат Акація біла
9. Контрольная работа Использование интеллектуального потенциала аграрной науки
10. Реферат Социализация детей дошкольного возраста в ДОУ