Реферат

Реферат Система отверстия и система вала. Особенности, отличия, преимущества

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024





Содержание
Глава 1. Система отверстия и система вала. Особенности,

          отличия, преимущества………………………………………………….3

1.1.Понятия «вал» и «отверстие»……………………………………………...3

1.2. Расчет параметров посадки и калибров для сопряжения в

       системах  отверстия и вала………………………………………………….6
Глава 2. Допуски и посадки шпоночных соединений………………………...10

2.1.Допуски резьбы……………………………………………………………15

2.2. Допуск размера. Поле допуска…………………………………………..18

2.3. Образование полей допусков и посадок………………………………..19


Глава 3. Системы допусков и посадок………………………………………..21


3.1.Схемы расположения полей допусков стандартных сопряжений……….23
Список использованной литературы…………………………………………..30


Глава 1. Система отверстия и система вала. Особенности, отличия, преимущества

1.1.Понятия «вал» и «отверстие»


Конструктивно любая деталь состоит из элементов (поверхностей) различной геометрической формы, часть из которых взаимодействует (образует посадки-сопряжения) с поверхностями других деталей, а остальная часть элементов является свободной (несопрягаемой). В терминологии по допускам и посадкам размеры всех элементов деталей независимо от их формы условно делят на три группы: размеры валов, размеры отверстий и размеры, не относящиеся к валам и отверстиям.

Вал - термин, условно применяемый для обозначения наружных (охватываемых) элементов деталей, включая и нецилиндрические элементы, и соответственно сопрягаемых размеров.

Отверстие - термин, условно применяемый для обозначения внутренних (охватывающих) элементов деталей, включая нецилиндрические элементы, и соответственно сопрягаемых размеров.

Для сопрягаемых элементов деталей на основе анализа рабочих и сборочных чертежей, а при необходимости и образцов изделий, устанавливают охватывающие и охватываемые поверхности сопряженных деталей и, таким образом, принадлежность поверхностей сопряжений к группам «вал» и «отверстие».

Для несопрягаемых элементов деталей установление вал это или отверстие выполняют с помощью технологического принципа, состоящего в том, что если при обработке от базовой поверхности размер элемента увеличивается, то это отверстие, а если размер элемента уменьшается, то это вал.

Состав группы размеров и элементов деталей, не относящихся ни к валам, ни к отверстиям, сравнительно невелик (например, фаски, радиусы скруглений, галтели, выступы, впадины, расстояния между осями (и др.).

При сборке соединяемые детали соприкасаются между собой отдельными поверхностями, которые называются сопрягаемыми. Размеры этих поверхностей называются сопрягаемыми размерами (например, диаметр отверстия втулки и диаметр вала, на который посажена втулка). Различают охватывающую и охватываемую поверхности и соответственно охватывающий и охватываемый размеры. Охватывающую поверхность принято называть отверстием, а охватываемую — валом.

Сопряжение имеет один номинальный размер для отверстия и вала, а предельные, как правило, различные.

Если действительные (измеренные) размеры изготовленного изделия не выходят за рамки наибольшего и наименьшего предельных размеров, то изделие удовлетворяет требованиям чертежа и выполнено правильно.

Конструкции технических устройств и других изделий требуют различных контактов сопрягаемых деталей. Одни детали должны быть подвижными относительно других, а другие — образовывать неподвижные соединения.

Характер соединения деталей, определяемый разностью между диаметрами отверстия и вала, создающий большую или меньшую свободу их относительного перемещения или степень сопротивления взаимному смещению, называется посадкой.

Различают три группы посадок: подвижные (с зазором), неподвижные (с натягом) и переходные (возможен зазор или натяг).

Зазор образуется в результате положительной разности между размерами диаметра отверстия и вала. Если эта разность отрицательна, то посадка будет с натягом.

Различают наибольшие и наименьшие зазоры и натяги. Наибольший зазор — это положительная разность между наибольшим предельным размером отверстия и наименьшим предельным размером вала

Наименьший зазор — положительная разность между наименьшим предельным размером отверстия и наибольшим предельным размером вала.

Наибольший натяг—положительная разность между наибольшим предельным размером вала и наименьшим предельным размером отверстия.

Наименьший натяг — положительная разность между наименьшим предельным размером вала и наибольшим предельным размером отверстия.

Сочетание двух полей допусков (отверстия и вала) и определяет характер посадки, т.е. наличие в ней зазора или натяга .

Системой допусков и посадок установлено, что в каждом сопряжении у одной из деталей (основной) какое-либо отклонение равно нулю. В зависимости от того, какая из сопрягаемых деталей принята за основную, различают посадки в системе отверстия и посадки в системе вала.

Посадки в системе отверстия — это посадки, в которых различные зазоры и, натяги получают соединением различных валов с основным отверстием.

Посадки в системе вала — посадки, в которых различные зазоры и натяги получают соединением различных отверстий с основным валом.

Применение системы отверстия предпочтительнее. Систему вала следует применять в тех случаях, когда это оправдано конструктивными или экономическими соображениями (например, установка нескольких втулок, маховиков или колес с различными посадками на одном гладком валу).
1.2. Расчет параметров посадки и калибров для сопряжения в системах  отверстия и вала
1. Отклонения отверстия и вала по ГОСТ 25347-82:

ES = +25 мкм,           es =-80 мкм

EI = 0;                         ei = -119 мкм

                                            

Рис.1. Схема расположения полей допусков посадки

2. Предельные размеры:

 мм;

 мм;

 мм;

 мм;

3. Допуски отверстия и вала:

 мм;

 мм;

либо

 мм;

 мм.

4. Зазоры:

 мм;

 мм

либо

 мм;

 мм.

5. Средний зазор:

 мм.

6. Допуск зазора (посадки)

 мм

либо

 мм.

7. Обозначение предельных отклонений размеров на конструкторских чертежах:

а) условное обозначение полей допусков


б) числовые значения предельных отклонений:
        
в) условное обозначение полей допусков и числовых значений предельных отклонений:

8. Обозначение размеров на рабочих чертежах:

9. Расчет калибров для проверки отверстия и вала.

Допуски и отклонения калибров по ГОСТ 24853-81:

а) для калибров-пробок

Z = 3,5 мкм,                     Y = 3 мкм,                    H = 4 мкм;

б) для калибров-скоб

Z1 = 6 мкм,                   Y1 = 5 мкм,                  H1 = 7 мкм;


Рис. 2 Схема расположения полей допусков калибров
Калибры для проверки отверстия

Пробка ПР

Исполнительный размер пробки ПР:

 мм;

Средневероятный износ    мкм;

 мкм;

Износ пробки рабочим допустим до размера:

 мм;

Износ пробки цеховым контролером допустим до размера:

 мм;

Пробка НЕ

Исполнительный размер пробки НЕ:

 мм;

Калибры для проверки вала

Скоба ПР

Исполнительный размер скобы ПР:

 мм;

Средневероятный износ      мкм;

 мкм;

Износ скобы рабочим допустим до размера:

 мм;

Износ скобы цеховым контролером допустим до размера:

 мм;

Скоба НЕ

Исполнительный размер скобы НЕ

 мм;

 Глава 2. Допуски и посадки шпоночных соединений
Шпоночное соединение – один из видов соединений вала со втулкой с использованием дополнительного конструктивного элемента (шпонки), предназначенной для предотвращения их взаимного поворота. Чаще всего шпонка используется для передачи крутящего момента в соединениях вращающегося вала с зубчатым колесом или со шкивом, но возможны и другие решения, например – защита вала от проворота относительно неподвижного корпуса. В отличие от соединений с натягом, которые обеспечивают взаимную неподвижность деталей без дополнительных конструктивных элементов, шпоночные соединения – разъемные. Они позволяют осуществлять разборку и повторную сборку конструкции с обеспечением того же эффекта, что и при первичной сборке

Шпоночное соединение включает в себя минимум три посадки: вал-втулка (центрирующее сопряжение) шпонка-паз вала и шпонка-паз втулки. Точность центрирования деталей в шпоночном соединении обеспечивается посадкой втулки на вал. Это обычное гладкое цилиндрическое сопряжение, которое можно назначить с очень малыми зазорами или натягами, следовательно – предпочтительны переходные посадки. В сопряжении (размерной цепи) по высоте шпонки специально предусмотрен зазор по номиналу (суммарная глубина пазов втулки и вала больше высоты шпонки). Возможно еще одно сопряжение – по длине шпонки, если призматическую шпонку с закругленными торцами закладывают в глухой паз на валу.

Шпоночные соединения могут быть подвижными или неподвижными в осевом направлении. В подвижных соединениях часто используют направляющие шпонки с креплением к валу винтами. Вдоль вала с направляющей шпонкой обычно перемещается зубчатое колесо (блок зубчатых колес), полумуфта или другая деталь. Шпонки, закрепленные на втулке, также могут служить для передачи крутящего момента или для предотвращения поворота втулки в процессе ее перемещения вдоль неподвижного вала, как это сделано у кронштейна тяжелой стойки для измерительных головок типа микрокаторов. В этом случае направляющей является вал со шпоночным пазом.

По форме шпонки разделяются на призматические, сегментные, клиновые и тангенциальные. В стандартах предусмотрены разные исполнения шпонок некоторых видов.

Призматические шпонки дают возможность получать как подвижные, так и неподвижные соединения. Сегментные шпонки и клиновые шпонки, как правило, служат для образования неподвижных соединений. Форма и размеры сечений шпонок и пазов стандартизованы и выбираются в зависимости от диаметра вала, а вид шпоночного соединения определяется условиями работы соединения.

Предельные отклонения глубин пазов на валу t1 и во втулке t2 приведены в таблице №1:
Таблица №1

Высота шпонки h

Предельные отклонения t1 и t2

От 2 до 6

ЕI = 0; ES = + 0,1

Св. 6 до 18

EI = 0; ЕS = + 0,2

Св.18 до 50

ЕI = 0; ES = + 0,3



Стандарт устанавливает следующие поля допусков размеров шпонок:

- ширины b – h9;

- высоты h – h9, а при h свыше 6 мм – h11.

В зависимости от характера (вида) шпоночного соединения стандартом установлены следующие поля допусков ширины паза:



Вид шпоночного соединения

Поле допуска ширины паза

на валу

во втулке

Свободное

Нормальное

Плотное

Н9

N9

Р9

D10

Js9

Р9



Для обеспечения качества шпоночного соединения, которое зависит от точности расположения плоскостей симметрии пазов вала и втулки, назначают допуски симметричности и параллельности и указывают их в соответствии с ГОСТ 2.308-79.

Числовые значения допусков расположения определяют по формулам:

Т = 0,6 Т шп

Т = 4,0 Т шп,

где Т шп – допуск ширины шпоночного паза b.

Расчетные значения округляют до стандартных по ГОСТ 24643-81.

Шероховатость поверхностей шпоночного паза выбирается в зависимости от полей допусков размеров шпоночного соединения (Ra 3,2 мкм или 6,3 мкм).

Условное обозначение призматических шпонок состоит из:

- слова "Шпонка";

- обозначения исполнения (исполнение 1 не указывают);

- размеров сечения b x h и длины шпонки l;

- обозначения стандарта.

Пример условного обозначения призматической шпонки исполнения 2 с размерами b = 4 мм, h= 4 мм, l = 12 мм

Шпонка 2 - 4 х 4 х 12 ГОСТ 23360-78.

Призматические направляющие шпонки закрепляются в пазах вала винтами. Для отжима шпонки при демонтаже служит резьбовое отверстие. Пример условного обозначения призматической направляющей шпонка исполнения 3 с размерами b = 12 мм, h = 8 мм, l = 100 мм Шпонка 3 - 12 х 8 х 100 ГОСТ 8790-79.

Сегментные шпонки применяют, как правило, для передачи небольших крутящих моментов. Размеры сегментных шпонок и шпоночных пазов (ГОСТ 24071-80) выбираются в зависимости от диаметра вала.

Зависимость полей допусков ширины паза сегментного шпоночного соединения от характера шпоночного соединения:



Характер шпоночного соединения

Поле допуска ширины паза

на валу

во втулке

Нормальное

N9

Js9

Плотное

Р9

Р9



Для термообработанных деталей допускаются предельные отклонения ширины паза вала по Н11, ширины паза втулки - D10.

Стандарт устанавливает следующие поля допусков размеров шпонок:

- ширины b – h9;

- высоты h (h1) - h11;

- диаметра D - h12.

Условное обозначение сегментных шпонок состоит из слова "Шпонка"; обозначения исполнения (исполнение 1 не указывают); размеров сечения b x h (h1); обозначения стандарта.

Клиновые шпонки применяют в неподвижных соединениях, когда требования к соосности соединяемых деталей невысоки. Размеры клиновых шпонок и шпоночных пазов нормированы ГОСТ 24068-80. Длину паза на валу для клиновой шпонки исполнения 1 выполняют равной 2l, для остальных исполнений длина паза равна длине l закладной шпонки.

Предельные отклонения размеров b, h, l для клиновых шпонок такие же, как и для призматических (ГОСТ 23360-78). По ширине шпонки b стандарт устанавливает соединения по ширине паза вала и втулки с использованием полей допуска D10. Длина паза вала L – по Н15. Предельные отклонения глубин t1 и t2 соответствуют отклонениям для призматических шпонок. Предельные отклонения угла наклона верхней грани шпонки и паза ± АТ10/2 по ГОСТ 8908-81. Пример условного обозначения клиновой шпонки исполнения 2 с размерами b = 8 мм, h = 7 мм, l = 25 мм: Шпонка 2 - 8 х 7 х 25 ГОСТ 24068-80.

Контроль элементов шпоночного соединения универсальными средствами измерений из-за малости их поперечных размеров существенно затруднен. Поэтому для их контроля широко используются калибры.

В соответствии с принципом Тейлора проходной калибр для контроля отверстия со шпоночным пазом представляет собой вал со шпонкой, равной длине шпоночного паза или длине шпоночного сопряжения. Такой калибр осуществляет комплексный контроль всех размеров, формы и расположения поверхностей. Комплект непроходных калибров предназначен для поэлементного контроля и включает непроходной калибр для контроля центрирующего отверстия (гладкая непроходная пробка полного или неполного профиля) и шаблоны для поэлементного контроля ширины и глубины шпоночного паза.

Проходной калибр для контроля вала со шпоночным пазом представляет собой призму («наездник») с выступом-шпонкой, равной длине шпоночного паза или длине шпоночного сопряжения. Комплект непроходных калибров предназначен для поэлементного контроля и включает непроходной калибр-скобу для контроля размеров центрирующей поверхности вала и шаблоны для поэлементного контроля ширины и глубины шпоночного паза.
2.1.Допуски резьбы
Соединение винта и гайки в зависимости от точности их резьб. Все резьбы, принятые в машиностроении, за исключением трубных, имеют зазоры по вершинам и впадинам, и при правильном исполнении резьбового соединения винт и гайка соприкасаются только боковыми сторонами (рис. 167, а) Для полного соприкосновения боковых сторон профиля всех витков резьбы, участвующих в данном соединении, главное значение имеет точное выполнение (в некоторых пределах) размеров среднего диаметра резьбы винта и гайки, шага этой резьбы и угла ее профиля. Точность наружного и внутреннего диаметров винта и гайки имеет меньшее значение, поскольку соприкосновения поверхностей резьбы по этим диаметрам не происходит.

При слишком большом зазоре по среднему диаметру соприкосновение витков резьбы происходит лишь по одной стороне (рис. 167, б). При слишком малом зазоре по среднему диаметру для свинчивания резьбовых деталей, у одной из которых шаг резьбы неправилен, необходимо, чтобы витки одной из деталей врезались в витки другой. Например, если шаг винта получился больше должного или, как говорят, «растянутым», то для соединения такого винта с гайкой с правильной резьбой витки гайки должны врезаться в витки винта (рис. 167, в). Это, очевидно, невозможно, и свинчиваемость данных деталей может быть достигнута лишь уменьшением среднего диаметра винта (рис. 167, г) или увеличением среднего диаметра резьбовых деталей, у одной из которых шаг резьбы неправилен, необходимо, чтобы витки одной из деталей врезались в витки другой. Например, если шаг винта получился больше должного или, как говорят, «растянутым», то для соединения такого винта с гайкой с правильной резьбой витки гайки должны врезаться в витки винта (рис. 167, в). Это, очевидно, невозможно, и свинчиваемость данных деталей может быть достигнута лишь уменьшением среднего диаметра винта (рис. 167, г) или увеличением среднего диаметра гайки. При этом может случиться так, что только один крайний виток гайки будет касаться соответствующего витка винта и, не по всей боковой поверхности его.

Таким же способом можно обеспечить свинчиваемость резьбы деталей, если угол профиля одной из них или положение этого профиля неправильно. Например, если угол профиля винта меньше должного, что исключает возможность свинчиваемости винта с правильной гайкой (рис. 167, д), то при уменьшении среднего диаметра этого винта данные детали могут быть свинчены (рис. 167, е). В этом случае соприкосновение резьбы винта и гайки происходит только по верхним участкам боковой стороны профиля резьбы винта и по нижним участкам профиля резьбы гайки.

Путем уменьшения среднего диаметра винта с неправильным расположением профиля (рис. 167, ж) также можно получить свинчиваемость данного винта с гайкой, однако и в этом случае поверхность соприкосновения резьб винта и гайки может получиться недостаточной для качественного резьбового соединения (рис. 167, з).

Построение допусков резьб. Затруднения, связанные с проверкой нарезаемой резьбы, возникают главным образом при измерении ее шага и профиля. Действительно, если все три диаметра наружной резьбы могут быть проверены с достаточной в большинстве случаев практики точностью посредством микрометров, то для соответственной (по точности) проверки шага и угла профиля резьбы необходимы более сложные измерительные инструменты и даже приборы. Поэтому при изготовлении резьбовых деталей задаются допуски только на диаметры резьбы; допустимые ошибки в шаге и профиле учитываются в допуске на средний диаметр, потому что, как это было показано выше, ошибки в шаге и профиле всегда можно устранить изменением среднего диаметра одной из резьбовых деталей.

Допуск на средний диаметр устанавливается таким, чтобы при небольших ошибках в шаге или угле профиля винт и гайка свинчивались без ущерба для прочности резьбового соединения.

Допуски на наружный и внутренний диаметры винта и гайки назначаются такими, чтобы между вершиной профиля резьбы винта и соответствующей впадиной резьбы гайки получался зазор.

Числовые значения этих допусков приняты большими, превышающими примерно в два раза допуски на средний диаметр.

Допуски метрических и дюймовых резьб. Для метрических резьб с крупными и мелкими шагами для диаметров от 1 до 600 мм по ГОСТ 9253—59 установлены три класса точности: первый (кл. /), второй (кл. 2) и третий (кл. 3), а для резьб с мелкими шагами также класс 2а (кл. 2а). Эти обозначения указывались на выпущенных ранее чертежах. В новом ГОСТ 16093—70 классы точности заменены на квалитеты точности, которым присвоены обозначения: h, g
, е
и d
для болтов и Н и G
для гаек.

Для дюймовой, а также трубной резьб, установлено два класса точности — второй (кл. 2) и третий (кл. 3).

Допуски трапецеидальных резьб. Для трапецеидальных резьб установлены три класса точности, обозначаемые: кл. 1, кл. 2, кл. 3, кл. ЗХ.

2.2. Допуск размера. Поле допуска

Допуском размера называется разность между наибольшим и наименьшим предельными размерами или алгебраическая разность между верхним и нижним отклонениями. Допуск обозначается IT (International Tolerance) или TD - допуск отверстия и Td - допуск вала.

Допуск размера всегда положительная величина. Допуск размера выражает разброс действительных размеров в пределах от наибольшего до наименьшего предельных размеров, физически определяет величину официально разрешенной погрешности действительного размера элемента детали в процессе его изготовления.

Поле допуска - это поле, ограниченное верхним и нижним отклонениями. Поле допуска определяется величиной допуска и его положением относительно номинального размера. При одном и том же допуске для одного и того же номинального размера могут быть разные поля допусков.

Для графического изображения полей допусков, позволяющего понять соотношения номинального и предельных размеров, предельных отклонений и допуска, введено понятие нулевой линии.

Нулевой линией называется линия, соответствующая номинальному размеру, от которой откладываются предельные отклонения размеров при графическом изображении полей допусков. Если нулевая линия расположена горизонтально, то в условном масштабе положительные отклонения откладываются вверх, а отрицательные - вниз от нее. Если нулевая линия расположена вертикально, то положительные отклонения откладываются справа от нулевой линии.

Поля допусков отверстий и валов могут занимать различное расположение относительно нулевой линии, что необходимо для образования различных посадок.

Различают начало и конец поля допуска. Началом поля допуска является граница, соответствующая наибольшему объему детали и позволяющая отличить годные детали от исправимых негодных. Концом поля допуска является граница, соответствующая наименьшему объему детали и позволяющая отличить годные детали от неисправимых негодных.

Для отверстий начало поля допуска определяется линией, соответствующей нижнему отклонению, конец поля допуска - линией, соответствующей верхнему отклонению. Для валов начало поля допуска определяется линией, соответствующей верхнему отклонению, конец поля допуска - линией, соответствующей нижнему отклонению.

2.3. Образование полей допусков и посадок


Поле допуска образуется сочетанием одного из основных отношений с допуском по одному из квалитетов, поэтому условное обозначение поля допуска состоит из условного обозначения основного отклонения (буквы) и номера квалитета.

Предпочтительные поля допусков обеспечиваются режущи инструментом и калибрами по нормальному ряду чисел, а рекомендуемые - только калибрами. Дополнительные поля допусков являются полями ограниченного применения и используются тог да, когда применение основных полей допусков не позволяет вы полнить требования, предъявляемые к изделию.

В ЕСДП предусмотрены все группы посадок: с зазором, натягом и переходные. Посадки не имеют названий, отражающих конструктивно-технологические или эксплуатационные свойства, а представляются только в условных обозначениях сочетаемых полей допусков отверстия и вала.

Посадки, как правило, применяют в системе отверстия (предпочтительно) или в системе вала.

Все посадки в системе отверстия для заданных номинальны размеров сопряжений и их квалитетов образуются полями допусков отверстий с неизменными основными отклонениями Ни раз личными основными отклонениями валов.

Для посадок с зазором в системе отверстия используют по допусков валов с основными отклонениями от а до h включительно.

Для переходных посадок в системе отверстия применяют no допусков валов с основными отклонениями к, т, п.

Для посадок с натягом в системе отверстия выбирают поля д пусков валов с основными отклонениями от р до zc.

Для посадок в системе вала для заданных номинальных размеров и квалитетов сопряжений используют поля допусков с неизменными основными отклонениями h вала и различными основными отклонениями отверстий.

Для посадок с зазором в системе вала выбирают поля допусков отверстий с основными отклонениями от А до Н включительно.

Для переходных посадок в системе вала используют поля до пусков отверстий с основными отклонениями Js, К, М, N.

ГОСТ 25347-82 выделяет рекомендуемые посадки, в числе которых указаны предпочтительные посадки первоочередного применения.

Для диапазона от 1 до 500 мм в системе отверстия выделено 69 рекомендуемых посадок, из них 17 - предпочтительных, а в системе вала - 59 рекомендуемых посадок, в том числе 11 предпочтительных.

Глава 3. Системы допусков и посадок


С учетом опыта использования и требований национальных систем допусков ЕСДП состоит из двух равноправных систем допусков и посадок: системы отверстия и системы вала.

Выделение названных систем допусков и посадок вызвано различием в способах образования посадок.

Система отверстия — система допусков и посадок при которой предельные размеры отверстия для всех посадок для данного номинального размера dH сопряжения и квалитета остаются постоянными, а требуемые посадки достигаются за счет изменения предельных размеров вала .

Система вала — система допусков и посадок, при которой предельные размеры вала для всех посадок для данного номинального размера сопряжения и квалитета остаются постоянными, а требуемые посадки достигаются за счет изменения предельных размеров отверстия .

Система отверстия имеет более широкое применение по сравнению с системой вала, что связано с ее преимуществами технико-экономического характера на стадии отработки конструкции. Для обработки отверстий с разными размерами необходима иметь и разные комплекты режущих инструментов (сверла, зенкера, развертки, протяжки и т. п.), а валы независимо от их размера обрабатывают одним и тем же резцом или шлифовальным кругом. Таким образом, система отверстия требует существенно меньших расходов производства как в процессе экспериментальной обработки сопряжения, так и в условиях массового или крупносерийного производства.

Система вала является предпочтительной по сравнению с системой отверстия, когда валы не требуют дополнительной разметочной обработки, а могут пойти в сборку после так называемых заготовительных технологических процессов.

Система вала применяется также в случаях, когда система отверстия не позволяет осуществлять требуемые соединения при данных конструктивных решениях.

При выборе системы посадок необходимо учитывать допуски на стандартные детали и составные части изделий: в шариковых и роликовых подшипниках посадки внутреннего кольца на вал осуществляются в системе отверстия, а посадки наружного кольца в корпус изделия - в системе вала.

Деталь, размеры которой для всех посадок при неизменных номинальном размере и квалитете не меняются, принято называть основной деталью.

В соответствии со схемой образования посадок в системе отверстия основной деталью является отверстие, а в системе вала - вал.

Основной вал — вал, верхнее отклонение которого равно нулю.

Основное отверстие — отверстие, нижнее отклонение которого равно нулю.

Таким образом, в системе отверстия неосновными деталями будут валы, в системе вала — отверстия.

Расположение полей допусков основных деталей должно быть постоянным и не зависеть от расположения полей допусков неосновных деталей. В зависимости от расположения поля допуска основной детали относительно номинального размера сопряжения различают предельно асимметричные и симметричные системы допусков.

ЕСДП — предельно асимметричная система допусков, при этом Допуск задается "в тело" детали, т.е. в плюс - в сторону увеличения размера от номинального для основного отверстия и в минус - в сторону уменьшения размера от номинального для основного вала.

Предельно асимметричные системы допусков и посадок имеют некоторые экономические преимущества перед симметричными системами, что связано с обеспечением основных деталей предельными калибрами.

Следует также отметить применение в ряде случаев несистемных посадок, т. е. отверстие выполняется в системе вала, а вал - в системе отверстия. В частности, несистемная посадка используется для боковых сторон прямобочного шлицевого соединения.

3.1.Схемы расположения полей допусков стандартных сопряжений

1 Гладкое цилиндрическое соединение 

а) Ø178 H7/g6



Параметр

Значение

d(D) =

 178 мм

es =

 -14 мкм

ei =

 -39 мкм

ES =

 40 мкм

EI =

 0 мкм

dmax = d + es=

 177,986 мм

dmin = d + ei =

 177,961 мм

Dmax = D + ES =

 178,04 мм

Dmin = D + EI =

 178 мм

Td = dmax - dmin = es – ei =

 25 мкм

TD = Dmax – Dmin = ES - EI =

 40 мкм

Smax = Dmax - dmin =

79 мкм

Smin= Dmin – d max =

14 мкм

Scp = (Smax + Smin) / 2 =

 46,5 мкм

TS= Smax – Smin =

 65 мкм

Характер сопряжения

 Зазор

Система задания посадки

 Основное отверстие

б) Ø70 S7/h7





Параметр

Значение

d(D) =

 70 мм

es =

 0

ei =

 -30 мкм

ES =

 -48 мкм

EI =

 -78 мкм

dmax = d + es=

 70 мм

dmin = d + ei =

 69,97 мм

Dmax = D + ES =

 69,952 мм

Dmin = D + EI =

 69,922 мм

Td = dmax - dmin = es – ei =

 30 мкм

TD = Dmax – Dmin = ES - EI =

 30 мкм

Nmin = dmin - Dmax       

 18 мкм

Nmax = dmax - Dmin           

 78 мкм

Ncp = (Nmax + Nmin) / 2 =

 48 мкм

TN = Nmax – Nmin =

 60 мкм

Характер сопряжения

 Натяг

Система задания посадки

Основной вал




в) Ø 178H7/m6



Параметр

Значение

d(D) =

 178 мм

es =

 40 мкм

ei =

 15 мкм

ES =

 40 мкм

EI =

 0

dmax = d + es=

 178,04 мм

dmin = d + ei =

 178,015 мм

Dmax = D + ES =

 178,04 мм

Dmin = D + EI =

 178 мм

Td = dmax - dmin = es – ei =

 25 мкм

TD = Dmax – Dmin = ES - EI =

 40 мкм

Smax = Dmax - dmin =

 25 мкм

Nmax = dmax - Dmin =

 40 мкм

Scp = (Smax + Smin) / 2 = 

 -7,5 мкм

TS = Smax – Smin =

 65 мкм

Характер сопряжения

 Переходная

Система задания посадки

 Основное отверстие


Для комбинированной посадки определим вероятность образования посадок с натягом и посадок с зазором. Расчет выполним в следующей последовательности.

- рассчитаем среднее квадратическое отклонение зазора (натяга), мкм


-

 определим предел интегрирования






табличное значение функции Ф(z)= 0,32894

- вероятность натяга в относительных единицах
PN' = 0,5 + Ф(z) = 0,5 + 0,32894 = 0,82894
-  вероятность натяга в процентах 
PN = PN' x 100% = 0,82894*100%= 82,894%     
-  вероятность зазора в относительных единицах 
PЗ' = 1 – PN = 1 - 0,82894 = 0,17106
-  вероятность зазора в процентах 
PЗ = PЗ' x 100% = 0,17103*100% = 17,103%





 Список использованной литературы




1. Коротков В. П., Тайц Б. А. «Основы метрологии и теории точности измерительных устройств». М.: Изд-во стандартов, 1978. 351 с.

2. А. И. Якушев, Л. Н. Воронцов, Н. М. Федотов. «Взаимозаменяемость, стандартизация и технические измерения»: – 6-е изд., перераб. и дополн. – М.: Машиностроение, 1986. – 352 с., ил.

3. В. В. Бойцова «Основы стандартизации в машиностроении». М.: Изд-во стандартов. 1983. 263 с.

4. Козловский Н.С., Виноградов А.Н. Основы стандартизации, допуски, посадки и технические измерения. М., «Машиностроение», 1979

5. Допуски и посадки. Справочник. Под ред. В.Д. Мягков. Т.1 и 2.Л., «Машиностроение», 1978



1. Контрольная_работа на тему Построение арифметико-логического устройства для выполнения операции умножения целых чисел
2. Реферат Здоровый образ жизни 11
3. Реферат на тему Mcclelland Vs Grant Essay Research Paper George
4. Реферат на тему Fake Myth Essay Research Paper Many centuries
5. Контрольная работа на тему Прокатное и кузнечнопрессовое производство
6. Реферат Ценообразование 19
7. Реферат Духовно-світооглядні джерела формування громадянського суспільства
8. Реферат Экологические и природные факторы
9. Реферат на тему Ww2 Essay Research Paper The United States
10. Реферат Государственный долг России и его влияние на экономику страны