Реферат

Реферат Замечательные имена

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024



Содержание:

Введение. 3

Основная часть 3

Вильгельм Шиккард_ 3

Блез Паскаль 3

Готфрид Вильгельм Лейбниц_ 3

Шарль Ксавье Томас де Кольмар_ 3

Джордж Буль 3

Жозеф Мари Жаккард,  Гаспар де Прони_ 3

Чарльз Бэббидж_ 3

Джевонс Уильям Стенли_ 3

Павел Дмитриевич Хрущев, Александр Николаевич Щукарев_ 3

Андрей Петрович Ершов_ 3

Герман Холлерит 3

Говард Айкен_ 3

Джон Атанасов, Тьюринг Алан Матисон_ 3

Д. Мочли, П. Эккерт 3

Уолтер Браттейн, Уильям Бредфорд Шокли_ 3

Джон Бардин_ 3

Исаак Семенович Брук 3

Николай Яковлевич Матюхин_ 3

Михаил Александрович Карцев_ 3

Исторические аспекты. 3

Заключение. 3

Список использованной литературы: 4




Введение.


На сегодняшний день известно  очень много имен ученых, сделавших открытия в области информатики, которые способствовали  развитию вычислительно техники. К сожалению, в литературе, используемой на школьных занятиях, практически отсутствует информация об этих людях.  Это связано, прежде всего, с тем, что в общеобразовательном стандарте вообще не выделяется часов на изучение истории развития информатики.

Как будущий педагог, я считаю, что курс информатики должен содержать большее количество исторических справок, повествующих учащимся  об ученых, благодаря которым они занимаются таким интересным предметом, как информатика.

 В связи с этим моя работа содержит в себе данные об ученых, посвятивших свою жизнь науке-информатике, об их достижениях в этой области. 

Здесь собраны наиболее значимые имена, заслуживающие особого внимания.

Известно, что часы информатики в колледжах ограничены, поэтому исторические справки могут быть изучены на факультативных занятиях.

В будущем эти знания могут пригодиться на олимпиадах. При изучении этой темы не исключена возможность, что наиболее талантливые и заинтересованные учащиеся займутся своими разработками в данной области.




Основная часть



Вильгельм Шиккард


Стремительное развитие цифровой вычислительной техники (ВТ) и становление науки о принципах ее построения и проектирования началось в 40-х годах ХХ-го века, когда технической базой ВТ стала электроника, затем микроэлектроника, а основой для развития архитектуры компьютеров (электронных вычислительных машин ЭВМ) - достижения в области искусственного интеллекта.

До этого времени в течение почти 500 лет цифровая вычислительная техника сводилась к простейшим устройствам для выполнения арифметических операций над числами. Основой практически всех изобретенных за 5 столетий устройств было зубчатое колесо, рассчитанное на фиксацию 10 цифр десятичной системы счисления.

Первый в мире эскизный рисунок тринадцатиразрядного десятичного суммирующего устройства на основе колес с десятью зубцами принадлежит Леонардо да Винчи. Он был сделан в одном из его дневников (ученый начал вести Вильгельм Шиккарддневник еще до открытия Америки в 1492 г.).

В 1623 г. через 100 с лишним лет после смерти Леонардо да Винчи немецкий ученый Вильгельм Шиккард предложил свое решение той же задачи на базе шестиразрядного десятичного вычислителя, состоявшего также из зубчатых колес, рассчитанного на выполнение Шестиразрядный десятичный вычислитель на зубчатых колесахсложения, вычитания, а также табличного умножения и деления. Оба изобретения были обнаружены только в наше время и оба остались только на бумаге. [7]
Первое в мире автоматическое устройство для выполнения операции сложения было создано на базе механических часов. В 1623 году его разработал Вильгельм Шикард, профессор кафедры восточных языков. B в университете Тюбингена (Германия). В наши дни рабочая модель устройства была воспроизведена по чертежам и подтвердила свою работоспособность. Сам изобретатель в письмах называл машину "суммирующими часами!". [4]

Блез Паскаль


1                                         pascal11

Блез Паскаль(1623 - 1662)                                          счетное устройство

В 1641 году французский  математик Блез Паскаль, когда ему было 18 лет, он изобрёл счетную машину - "бабушку" современных арифмометров. Предварительно он построил 50 моделей. Каждая последующая была совершеннее предыдущей. В 1642 году французский  математик Блез Паскаль, конструировал счетное устройство, ставшее известным механическим цифровым вычислительным устройством названным "паскалина", это было  6-ти (или 8-ми) разрядное устройство, на зубчатых колесах, рассчитанное на суммирование и вычитание десятичных чисел, которое стало первым в мире механическим калькулятором, выпускавшимся серийно (главным образом для нужд парижских ростовщиков и менял), чтобы облегчить труд своего отца - налогового инспектора, которому приходилось  производить немало сложных вычислений. Отец и сын вложили в создание своего устройства большие деньги, но  против счетного устройства Паскаля выступили клерки, они боялись потерять из-за него работу, а также работодатели, считавшие, что лучше нанять дешевых счетоводов, чем покупать новую машину.  [4]

Готфрид Вильгельм Лейбниц


Через 30 лет после "Паскалины" в 1673 г. появился "арифметический прибор" Готфрида Вильгельма Лейбница (1646-1716) - двенадцатиразрядное десятичное устройство (механический калькулятор), которое могло выполнять операции умножения и деления путем многократного повторения операций сложения и вычитания., для чего, в дополнение к зубчатым колесам использовался ступенчатый валик. "Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно" - с гордостью писал Лейбниц своему другу.

Готфрид Вильгельм Лейбниц

О машине Лейбница было известно в большинстве стран Европы. В цифровых электронных вычислительных машинах, появившихся более двух веков спустя, устройство, выполняющее арифметические операции (те же самые, что и "арифметический прибор" Лейбница), получило название арифметического. Позднее, по мере добавления ряда логических действий, его стали называть арифметико-логическим.

Изображение медали, нарисованное Готфрид Вильгельмом Лейбницем в 1697г.Оно стало основным устройством современных компьютеров. Таким образом, два гения XVII века, установили первые вехи в истории развития цифровой вычислительной техники. Заслуги В.Лейбница, однако, не ограничиваются созданием "арифметического прибора". Начиная со студенческих лет и до конца жизни он занимался исследованием свойств двоичной системы счисления, ставшей в дальнейшем, основной при создании компьютеров. Он придавал ей некий мистический смысл и считал, что на ее базе можно создать универсальный язык для объяснения явлений мира и использования во всех науках, в том числе в философии. Сохранилось изображение медали, нарисованное В.Лейбницем в 1697 г., поясняющее соотношение между двоичной и десятичной системами исчисления. [7]

Двоичная система Лейбница. В механических устройствах зубчатые колеса могут иметь достаточно много фиксированных и, главное, различимых между собой положений. Количество таких положений, по крайней мере, равно числу зубьев шестерни. В электрических и электронных устройствах речь идет не о регистрации положений элементов конструкции, а о регистрации состояний элементов устройства. Таких устойчивых и различимых состояний всего два: Включен - выключен; открыт закрыт; заряжен - разряжен и т. п. Поэтому традиционная десятичная система, использованная в механических калькуляторах, неудобна для электронных вычислительных устройств.

В 1666 году Он пришел к двоичной системе счисления, занимаясь исследованиями философской концепции единства и борьбы противоположностей. Попытка представить мироздание в виде непрерывного взаимодействия двух начал ( «черного и белого, мужского и женского, добра и зла) и применить к его изучению методы «чистой математики подтолкнули Лейбница к изучению свойств двоичного представления данных с помощью нулей и единиц. Надо сказать, что Лейбницу уже тогда приходила в голову мысль о возможности использования двоичной системы в вычислительном устройстве, но, поскольку для механических  устройств в этом не было никакой необходимости, он не стал использовать в своем калькуляторе (1673 году) принципы двоичной системы. [4]

Шарль Ксавье Томас де Кольмар


В 1820 француз Шарль Ксавье Томас де Кольмар (1785...1870) создал Арифмометр, первый массово производимый калькулятор. Он позволял производить умножение, используя принцип Лейбница, и являлся подспорьем пользователю при делении чисел. Это была самая надежная машина в те времена; она не зря занимала место на столах счетоводов Западной Европы. Арифмометр так же поставил мировой рекорд по продолжительности продаж: последняя модель была продана в начале XX века. [5]

Джордж Буль


Джордж Буль (1815-1864) английский математик и логик, один из основоположников математической логики. [3] Говоря о творчестве Джорджа Буля, исследователи истории вычислительной техники непременно подчеркивают, что этот выдающийся английский ученый первой половины XIX века был самоучкой. Возможно, именно благодаря отсутствию "классического" (в понимании того времени) образования Джордж Буль внес в логику как в науку революционные изменения. Занимаясь исследованием законов мышления, он применил в логике систему формальных обозначений и правил, близкую к математической. Впоследствии эту систему назвали логической алгеброй или булевой алгеброй. Правила этой системы применимы к самым разнообразным объектам и их группам (множествам, по терминологии автора). Основное назначение системы, по замыслу Дж. Буля, состояло в том, чтобы кодировать логические высказывания и сводить структуры логических умозаключений к простым выражениям, близким по форме к математическим формулам. Результатом формального расчета логического выражения является одно из двух  логических значений: истина или ложь.

Значение логической алгебры долгое время игнорировалось, поскольку ее приемы и методы не содержали практической пользы для науки и техники того времени. Однако, когда появилась принципиальная возможность создания средств вычислительной техники на электронной базе, операции, введенные Булем, оказались весьма полезны. Они изначально ориентированы на работу только с двумя сущностями: истина и ложь. Нетрудно понять, как они пригодились для работы с двоичным кодом, который в современных компьютерах тоже представляется всего двумя сигналами: ноль и единица.

Не вся система Джорджа Буля (как и не все предложенные им логические операции) были использованы при создании электронных вычислительных машин, но четыре основные операции: И (пересечение), ИЛИ (объединение), НЕ (обращение) и ИСКЛЮЧАЮЩЕЕ ИЛИ - лежат в основе работы всех видов процессоров современных компьютеров. [4]

На протяжении XVIII века, известного как эпоха Просвещения, появились новые, более совершенные модели, но принцип механического управления вычислительными операциями оставался тем же. Идея программирования вычислительных операций пришла из той же часовой промышленности. Старинные монастырские башенные часы были настроены так, чтобы в заданное время включать механизм, связанный с системой колоколов. Такое программирование было жестким одна и та же операция выполнялась в одно и то же время. [4]

Жозеф Мари Жаккард,  Гаспар де Прони


Идея гибкого программирования механических устройств с помощью перфорированной бумажной ленты впервые была реализована в 1804 году в ткацком станке французского изобретателя Жозефа Мари Жаккарда (1752-1834). Машина Жаккарда представляет собой зевообразовательный механизм ткацкого станка для выработки крупноузорчатых тканей. Дает возможность раздельно управлять каждой нитью основы или небольшой их группы. [3]

 Гаспар де Прони предложил технологию вычислений, при ручном счете, разделившего численные вычисления на три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение собственно вычислений путем арифметических операций над числами в соответствии с составленной программой. [6]

Чарльз Бэббидж


28085Эти два Механическая универсальная цифровая вычислительная машинановшества были использованы

выдающимся английским математиком и изобретателем Чарльзом Бэббиджем (1792-1871), осуществившим, качественно новый шаг в развитии средств цифровой вычислительной техники - переход от ручного к автоматическому выполнению вычислений по составленной программе. [3]  Перечисление всех новаций, предложенных ученым, получится довольно длинным, однако в качестве примера можно упомянуть, что именно Бэббиджу принадлежат такие идеи, как установка в поездах «черных ящиков» для регистрации обстоятельств аварии, переход к использованию энергии морских приливов после исчерпания угольных ресурсов страны, а также изучение погодных условий прошлых лет по виду годичных колец на срезе дерева. Помимо серьезных занятий математикой, сопровождавшихся рядом заметных теоретических работ и руководством кафедрой в Кембридже, ученый всю жизнь страстно увлекался разного рода ключами-замками, шифрами и механическими куклами. [6]

Во многом благодаря именно этой страсти, можно сказать, Бэббидж и вошел в историю как конструктор первого полноценного компьютера. Разного рода механические счетные машины были созданы еще в XVII-XVIII веках, но эти устройства были весьма примитивны и ненадежны. А Бэббидж, как один из основателей Королевского астрономического общества, ощущал острую потребность в создании мощного механического вычислителя, способного автоматически выполнять длинные, крайне утомительные, но очень важные астрономические калькуляции. Математические таблицы использовались в самых разнообразных областях, но при навигации в открытом море многочисленные ошибки в таблицах, рассчитанных вручную, бывало, стоили людям жизни. Основных источников ошибок было три: человеческие ошибки в вычислениях; ошибки переписчиков при подготовке таблиц к печати; ошибки наборщиков.

Будучи еще весьма молодым человеком, в начале 1820-х годов Чарльз Бэббидж написал специальную работу, в которой показал, что полная автоматизация процесса создания математических таблиц гарантированно обеспечит точность данных, поскольку исключит все три этапа порождения ошибок. Фактически вся остальная жизнь ученого была связана с воплощением этой заманчивой идеи в жизнь. Первое вычислительное устройство, разработанное Бэббиджем, получило название «разностная машина», поскольку в вычислениях опиралось на хорошо разработанный метод конечных разностей. Благодаря этому методу все сложно реализуемые в механике операции умножения и деления сводились к цепочкам простых сложений известных разностей чисел.

Хотя работоспособный прототип, подтверждающий концепцию, был построен благодаря правительственному финансированию весьма быстро, сооружение полноценной машины оказалось делом весьма непростым, поскольку требовалось огромное количество идентичных деталей, а индустрия в те времена только-только начинала переходить от ремесленного производства к массовому. Так что попутно Бэббиджу пришлось самому изобретать и машины для штамповки деталей. К 1834 году, когда «разностная машина № 1» еще не была достроена, ученый уже задумал принципиально новое устройство - «аналитическую машину», явившуюся, по сути дела, прообразом современных компьютеров. К 1840 году Бэббидж практически полностью завершил разработку «аналитической машины»,  которая, к сожалению, так и не была до конца построена изобретателем при жизни. Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные. Аналитическая машина содержала два крупных узла - "склад!" и "мельницу!". Данные вводились в механическую память "склада!" путем установки блоков шестерен, а потом обрабатывались в "мельнице!" С использованием команд, которые вводились с перфорированных карт (Как в ткацком станке Жаккарда). А потому он начал проектировать «разностную машину № 2» - как бы промежуточную ступень между первым вычислителем, ориентированным на выполнение строго определенной задачи, и второй машиной, способной автоматически вычислять практически любые алгебраические функции.

Мощь общего вклада Бэббиджа в информатику заключается, прежде всего, в полноте сформулированных им идей. Ученым была спроектирована система, работа которой программировалась через ввод последовательности перфокарт. Система была способна выполнять разнообразные типы вычислений и настолько гибка, насколько это могли обеспечить инструкции, подаваемые на вход. Иными словами, гибкость «аналитической машины» обеспечивалась благодаря «программному обеспечению». Разработав чрезвычайно развитую конструкцию принтера, Бэббидж стал пионером идеи компьютерного ввода-вывода, поскольку его принтер и пачки перфокарт обеспечивали полностью автоматический ввод и вывод информации при работе вычислительного устройства.

Были сделаны и дальнейшие шаги, предвосхитившие конструкцию современных компьютеров. «Аналитическая машина» Бэббиджа могла хранить промежуточные результаты вычислений (набивая их на перфокарты), чтобы обработать их впоследствии или использовать один и тот же промежуточный массив данных для нескольких разных калькуляций. Наряду с разделением «процессора» и «памяти», в «аналитической машине» были реализованы возможности условных переходов, разветвляющих алгоритм вычислений, и организации циклов для многократного повторения одной и той же подпрограммы. Не имея под рукой реального вычислителя, в своих теоретических рассуждениях Бэббидж продвинулся настолько, что сумел глубоко заинтересовать и привлечь к программированию своей гипотетической машины дочь Джорджа Байрона Августину Аду Кинг, графиню Лавлейс, обладавшую бесспорным математическим дарованием и вошедшую в историю как «первый программист».

К сожалению, Чарльзу Бэббиджу не довелось увидеть воплощения большинства из своих революционных идей. Работу ученого всегда сопровождали несколько очень серьезных проблем. Его крайне живой ум совершенно не был способен удержаться на месте и дождаться завершения очередного этапа. Едва предоставив мастерам, чертежи изготовляемого узла, Бэббидж тут же начинал вносить в него поправки и добавления, непрерывно отыскивая пути для упрощения и улучшения работы устройства. Во многом именно из-за этого практически все начинания Бэббиджа так и не были доведены до конца при его жизни.

Однако вплоть до начала 1990-х годов общепринятое мнение было таково, 28086что идеи Чарльза Бэббиджа слишком опережали технические возможности его времени, а потому спроектированные вычислители в принципе невозможно было построить в ту эпоху. И лишь в 1991 году, к двухсотлетию со дня рождения ученого сотрудники лондонского Музея науки воссоздали по его чертежам 2,6-тонную «разностную машину № 2», а в 2000 году - еще и 3,5-тонный принтер Бэббиджа. Оба устройства, созданные по технологиям середины XIX века, превосходно работают и наглядно демонстрируют, что история компьютеров вполне могла начаться сотней лет раньше. [6]

Джевонс Уильям Стенли


Джевонс Уильям Стенли (1835-1882), английский логик, экономист, статистик. Последователь Джорджа Буля. Создал систему логики, основанную на принципе замещения равных.  В 1870 г. (за год до смерти Беббиджа), сконструировал (вероятно, первую в мире) "логическую машину", позволяющую механизировать простейшие логические выводы. Сторонник предельной полезности теории. Пытался применить математический аппарат к анализу экономических явлений. [3]

В России о работе Джевонса стало известно в 1893 г., когда профессор университета в Одессе И.Слешинский опубликовал статью "Логическая машина Джевонса" ("Вестник опытной физики и элементарной математики", 1983 г., №7).

Павел Дмитриевич Хрущев, Александр Николаевич Щукарев


"Строителями" логических машин в дореволюционной России стали Павел Дмитриевич Хрущев (1849-1909) и Александр Николаевич Щукарев (1884-1936), работавшие в учебных заведениях Украины.

Первым воспроизвел машину Джевонса профессор Хрущев. Экземпляр машины, созданный им в Одессе, получил "в наследство" профессор Харьковского технологического института Щукарев, где он работал начиная с 1911 г. Он сконструировал машину заново, внеся в нее целый ряд усовершенствований, и неоднократно выступал с лекциями о машине и о ее возможных практических применениях. Одна из лекций была прочитана в 1914 г. в Политехническом музее в Москве. Присутствовавший на лекции профессор А. Н. Соков писал: "Если мы имеем арифмометры, складывающие, вычитающие, умножающие миллионные цифры поворотом рычага, то, очевидно, время требует иметь логическую машину, способную делать безошибочные выводы и умозаключения, одним нажатием соответствующих клавиш. Это сохранит массу времени, оставив человеку, область творчества, гипотез, фантазии, вдохновения - душу жизни". Эти пророческие слова были сказаны в 1914 г.! [1]

Следует отметить, что сам Джевонс, первосоздатель логической машины, не видел для нее каких- либо практических применений.

К сожалению, машины Хрущева и Щукарева не сохранились. Однако, в статье "Механизация мышления" (логическая машина Джевонса), опубликованной профессором А. Н. Щукаревым в 1925 г. [2], дается фотография машины сконструированной Щукаревым и ее достаточно подробное описание, а также, что очень важно - рекомендации по ее практическому применению.

Андрей Петрович Ершов


Академик Андрей Петрович Ершов (1931-1988) - один из зачинателей теоретического и системного программирования, создатель Сибирской школы информатики. Его существенный вклад в становление информатики как новой отрасли науки и нового феномена общественной жизни широко признан в нашей стране и за рубежом. [3]

Он проводил фундаментальные исследования в области схем программ и теории компиляции. Книга А. П. Ершова "Программирующая программа для электронной вычислительной машины БЭСМ" была одной из первых в мире монографий по автоматизации программирования.

Работы Ершова по технологии программирования заложили основы этого научного направления в нашей стране.

Язык программирования АЛЬФА и оптимизирующий Альфа-транслятор, первая советская система разделения времени АИСТ-0, система учебной информатики Школьница, система подготовки печатных изданий Рубин, многопроцессорная рабочая станция МРАМОР - все эти проекты были инициированы А. П. Ершовым и выполнялись под его руководством.

Он одним первых в нашей стране осознал ключевую роль вычислительной техники в прогрессе науки и общества. Его блестящие идеи заложили основу для развития в России таких научных направлений, как параллельное программирование и искусственный интеллект. Более 20 лет тому назад он начал эксперименты по преподаванию программирования в средней школе, которые привели к введению курса информатики и вычислительной техники в средние школы страны и обогатили нас тезисом "программирование - вторая грамотность".

Ершов принимал активное участие в подготовке множества международных конференций и конгрессов, был редактором или членом редколлегии как русских журналов "Микропроцессорные средства и системы", "Кибернетика", "Программирование", так и международных - Acta Informatica, Information Processing Letters, Theoretical Computer Science.

Академик А. П. Ершов очень много внимания уделял проблемам информационного обеспечения ученых. Свою научную библиотеку он собирал всю жизнь. Ко времени безвременной кончины А. П. Ершова в его личной библиотеке хранилось более 30 тысяч книг, журналов, трудов конференций, препринтов и отдельных оттисков статей практически на всех европейских языках. После смерти академика А. П.  Ершова его наследники передали библиотеку в Институт систем информатики, который к тому времени выделился из Вычислительного центра. Теперь это Мемориальная библиотека им. А. П. Ершова.

В 1988 году был создан благотворительный Фонд имени А. П. Ершова, основной целью которого являлось развитие информатики как изобретательства, творчества, искусства и образовательной активности. [8]

Герман Холлерит (German Hollerith)                                           

Герман Холлерит


первые перфокартыВ 1888 американский инженер Герман Холлерит сконструировал первую электромеханическую счётную машину. Счетная машина Холлерита использовала перфорированную ленту. Лента скользила по изолированному металлическому столу, сверху она прижималась металлической же полосой с рядом не жестко закрепленных и округло сточенных гвоздей. В случае попадания "гвоздя" в отверстие на ленте фиксировалось замыкание электрического контакта, электрический импульс приводил в движение счетный механизм. Таким примитивным, но весьма эффективным образом осуществлялось считывание информации. Но вскоре Холлерит разочаровался в ленте, поскольку она быстро изнашивалась и рвалась, кроме того, довольно часто из-за высокой скорости движения ленты информация не успевала считываться. Поэтому, в качестве носителей информации Холлеритом были избраны перфокарты.

В июне 1890 началась первая в истории "механизированная" перепись населения, с использованием  изобретения Германа Холлерита.  Всего в тот год в США были зарегистрированы 62.622.250 граждан, вся процедура обработки результатов заняла менее трех месяцев, сэкономив 5 бюджетных миллионов (весь госбюджет США того года исчислялся всего лишь десятками миллионов долларов). Помимо скорости новая система давала возможность сравнения статистических данных по самым различным параметрам. [5]

В 1911 году весьма далекий от науки бизнесмен Чарльз Флинт создал Computer Tabulating Recording Company (CTRC). В 1924 Ватсон переименовал CTRC в знаменитейшую ныне IBM (International Machines Алан ТьюрингCorporation). Поэтому именно его и принято считать отцом-основателем IBM.

Говард Айкен


Гениальную идею Беббиджа осуществил Говард Говард АйкенАйкен, американский ученый, создавший в 1944 г. первый в США релейно-механический компьютер. Ее основные блоки - арифметики и памяти были исполнены на зубчатых колесах!

Если Беббидж намного опередил свое время, то Айкен, использовав все те же зубчатые колеса, в техническом плане при реализации идеи Беббиджа использовал устаревшие решения. Еще десятью годами ранее, в 1934 г. немецкий студент Конрад Цузе, работавший над дипломным проектом, решил сделать (у себя дома), цифровую вычислительную машину с программным управлением и с использованием - впервые в мире! - двоичной системы счисления. В 1937 г. машина Z1 (Цузе 1) заработала! Она была двоичной, 22-х разрядной, с плавающей запятой, с Машина Z1 (Цузе 1)Конрад Цузепамятью на 64 числа и все это на чисто механической (рычажной) основе!.

Джон Атанасов, Тьюринг Алан Матисон


В том же 1937 г., когда заработала первая в мире двоичная машина Z1, Джон Атанасов (болгарин по происхождению, живший в США) начал разработку специализированного компьютера, впервые в мире применив электронные лампы (300 ламп). [7].

Английский программист-теоретик Тьюринг Алан Матисон (1912-1954) создал так называемую машину Тьюринга, с помощью которой можно реализовать любой алгоритм, а то, что нельзя на ней реализовать, алгоритмом не является. Машина Тьюринга – это лента, на которой записаны некоторые символы. По ней «бегает» каретка, которая читает текущий символ, и в соответствии с текущим символом и текущим состоянием может переходить к следующему или предыдущему символу, либо оставаться на месте и менять состояние, а также менять текущий символ на ленте. [3]

Д. Мочли, П. Эккерт


Пионерами электроники оказались и англичане - в 1942-43 годах в Англии была создана (с участием Алана Тьюринга) ВМ "Колоссус". В ней было 2000 электронных ламп! Машина предназначалась для расшифровки радиограмм германского вермахта. Работы Цузе и Тьюринга были секретными. О них в то время знали немногие. Они не вызвали какого-либо резонанса в мире. В 1946 г. Д. Мочли и П. Эккерт создали в США ЭВМ "ЭНИАК" (электронный цифровой интегратор и компьютер), в машине использовалось 18 тыс. электронных ламп и она выполняла около 3-х тыс. операций в секунду Однако машина оставалась десятичной, а ее память составляла лишь 20 слов. Программы хранились вне оперативной памяти.
Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В феврале 1944 на одном из предприятий Ай-Би-Эм в сотрудничестве с учёными Гарвардского университета по заказу ВМС США была создана машина «Марк-1».Это был монстр весом в  35 тонн.

Электромеханическая вычислительная машина "Марк 1"

ibm90a                                                                                                

Уолтер Браттейн, Уильям Бредфорд Шокли



Машины на электронных лампах работали существенно быстрее, но сами электронные лампы часто выходили из строя. Для их замены в 1947 американцы Джон Бардин, Уолтер Браттейн и Уильям Бредфорд Шокли  предложили использовать изобретённые ими стабильные переключающие полупроводниковые элементы-транзисторы.

issue_79_000707_032411

На снимке — авторы эпохального

изобретения: Шокли (сидит),

Бардин (слева) и Бриттен (справа)


Джон Бардин


Джон Бардин ( 23.V 1908) - американский физик, член Национальной Академии Наук (1954). Родился в Мэдисоне. Окончил Висконсинский (1828) и Принстонский университеты. В 1935 - 1938 работал в Гарвардском университете, в 1938 - 1941 - в Миннесотском, в 1945 - 1951 - в лабораториях Белл - телефон, с 1951 - профессор Иллинойского университета.

Работы посвящены физике твёрдого тела и сверхпроводимости. Вместе с У.Браттейном открыл в 1948 транзисторный эффект и создал кристаллический триод с точечным контактом - первый полупроводниковый транзистор (Нобелевская премия, 1956). Совместно с Дж.Пирсоном исследовал большое количество образцов кремния с различным содержанием фосфора и серы и рассмотрел механизм рассеяния на донорах и акцепторах (1949). В 1950 с У. Шокли ввёл понятие деформационного потенциала. Независимо от Г.Фрёлиха предсказал (1950) притяжение между электронами за счёт обмена виртуальными фотонами и в 1951 провёл вычисления притяжения между электронами, обусловленного обменом виртуальными фононами. В 1957 совместно с Л.Купером и Дж.Шриффером построил микроскопическую теорию сверхпроводимости (теория Бардина - Купера - Шриффера) (Нобелевская премия, 1972). Развил теорию эффекта Мейсснера на основе модели с энергетической щелью, независимо от других обобщил в 1958 теорию электромагнитных свойств сверхпроводников на случай полей произвольной частоты. В 1961 предложил в теории туннелирования метод эффективного гамильтониана (модель туннелирования Бардина), в 1962 вычислил критические поля и токи для тонких плёнок. В 1968 - 1969 был президентом Американского физического общества. Медаль Ф.Лондона (1962), Национальная медаль за науку (1965) и др. 30 июня 1948 года Ральф Боун, заместитель директора по науке лаборатории «Белл-телефон», сообщил журналистам о новом изобретении: «Мы назвали его транзистор, — он даже запнулся на этом новом слове, — поскольку это сопротивление (resistor — по-английски) из полупроводника, которое усиливает электрический сигнал ». По сравнению с громоздкими вакуумными лампами того времени транзистор выполнял те же функции с гораздо меньшим потреблением энергии и вдобавок имел много меньшие размеры.

Исаак Семенович Брук


В декабре 1951 г. в лаборатории электросистем Энергетического института (ЭНИН) АН СССР под руководством члена-корреспондента АН СССР Исаака Семеновича Брука был выпущен научно-технический отчет "Автоматическая цифровая вычислительная машина (М-1)", утвержденный 15 декабря 1951 г. директором ЭНИН АН СССР академиком Г. М. Кржижановским. Это был первый в СССР научный документ о создании отечественной ЭВМ. [3]

Машина успешно прошла испытания и была переведена в режим эксплуатации для решения задач как в интересах ученых своего института, так и сторонних организаций. Начало исследовательских работ И. С. Брука по проблеме ЦВМ относится к 1948 г. Он первым в СССР (совместно с Б. И. Рамеевым) разработал проект цифровой ЭВМ с жестким программным управлением. Свидетельство об изобретении на "ЦВМ с общей шиной" было получено ими в декабре 1948 г.









И. С. Брук



  Постановление Президиума АН СССР о начале разработки М-1 вышло 22 апреля 1950 г. После этого И. С. Брук получил возможность сформировать коллектив разработчиков.

Николай Яковлевич Матюхин


Первым в команду был принят Н. Я. Матюхин, молодой специалист, только что окончивший радиотехнический факультет Московского энергетического института. Брук набирает на РТФ МЭИ команду молодых специалистов. Нас семеро: два младших научных сотрудника (А. Б. Залкинд и Н. Я. Матюхин), два дипломника (Т. М. Александриди и М. А.Карцев), три техника (Ю. В. Рогачев, Р. П. Шидловский, Л. М. Журкин).









Вот она какая - первая российская ЭВМ



   Впервые в мировой практике создания ЭВМ логические схемы в машине М-1 строились на полупроводниковых элементах - малогабаритных купроксных выпрямителях КВМП-2-7, что позволило в несколько раз сократить количество электронных ламп в машине и значительно уменьшить ее размеры.         Разработка арифметического устройства и системы логических элементов выполнялась Н. Я. Матюхиным и Ю. В. Рогачевым, разработка главного программного датчика - М. А. Карцевым и Р. П. Шидловским, запоминающего устройства на магнитном барабане - Н. Я. Матюхиным и Л. М. Журкиным, запоминающего устройства на электростатических трубках - Т. М. Александриди, устройства ввода-вывода - А. Б. Залкиндом и Д. У. Ермоченковым, разработка системы электропитания - В. В. Белынским, конструкции - И. А. Кокалевским.

Комплексную отладку машины и отработку технологии программирования и тестирования возглавил Н. Я. Матюхин.

Николай Яковлевич Матюхин (1927-1984) впоследствии стал членом-корреспондентом АН СССР, доктором технических наук, профессором, главным конструктором вычислительных средств для системы ПВО СССР в Научно-исследовательском институте автоматической аппаратуры. [3]

Михаил Александрович Карцев


Михаил Александрович Карцев (1923-1983) также стал доктором технических наук, профессором, главным конструктором вычислительных средств для системы предупреждения о ракетном нападении (СПРН). Он - основатель и первый директор НИИ вычислительных комплексов (НИИВК). Созданные под его руководством сверхбыстродействующие многопроцессорные ЭВМ успешно функционируют в составе СПРН и в настоящее время. [3]

М-2 была разработана в Лаборатории электросистем Энергетического института АН СССР (с 1957 г. - Лаборатория управляющих машин и систем АН СССР, с 1958 г. - Институт электронных управляющих машин) под руководством члена-корреспондента АН СССР И. С. Брука. В группу, работавшую над М-2, входили на разных этапах от 7 до 10 инженеров: М. А. Карцев, Т. М. Александриди, В. В. Белынский, А. Б. Залкинд, В. Д. Князев, В. П. Кузнецова, Ю. А. Лавренюк, Л. С. Легезо, Г. И. Танетов, А. И. Щуров. Группой разработки М-2 руководил М. А. Карцев.

m2a

В. В. Белынский и Ю. А. Лавренюк у пульта М-2.
Разработка и монтаж машины были проведены с апреля по декабрь 1952 г. С 1953 г. осуществлялась круглосуточная эксплуатация М-2 при решении прикладных задач. Зимой 1955 г., а затем в 1956 г. машина была существенно модернизирована, после чего она имела оперативную память на ферритовых сердечниках емкостью 4096 чисел. Ферритовая память для М-2 была разработана группой под руководством М. А. Карцева, в состав которой входили О. В. Росницким, Л.В. Ивановым, Е.Н. Филиновым, В.И. Золотаревским.

По мере эксплуатации машины, начиная с 1953 года, накапливалось ее программное обеспечение в виде библиотеки стандартных программ и подпрограмм (А. Л. Брудно, М. М. Владимирова при участии А. С. Кронрода и Г. М. Адельсон-Вельского).

Круг программистов, работавших в разных организациях, в который входили Г. М. Адельсон-Вельский, В. Л. Арлазаров, М. М. Бонгард, А. Л. Брудно, М. Я. Вайнштейн, Д. М. Гробман, А. С. Кронрод, Е. М. Ландис, И. Я. Ландау, А. Л. Лунц и другие. Помимо чисто практических приемов программирования вычислительных задач в кодах машины М-2, они занимались программированием игровых задач, задач распознавания и диагностики. Результаты этих исследований привели к находкам оригинальных методов перебора, в частности метода ветвей и границ, построения справочных систем с логарифмическими записью и поиском и т. д.

Оперативная память М-2 была разработана с использованием 34 обычных электронно-лучевых трубок типа 13 Л037, а не специальных потенциалоскопов (которые применялись в БЭСМ и "Стреле"). Это была сложная инженерная разработка, которую выполнили Т. М. Александриди и Ю. А. Лавренюк, обеспечив требуемые характеристики памяти и избежав трудностей с комплектованием машины специальными потенциалоскопами, которые были у разработчиков БЭСМ.

Магнитный барабан для дополнительного внутреннего запоминающего устройства был разработан (автор А. И. Щуров) и изготовлен в Лаборатории одновременно с разработкой машины.

Исторические аспекты.


И в качестве дополнительной информации можно предложить учащимся ознакомиться со следующими историческими аспектами, которые могут пригодиться на олимпиадах по информатике.

1958-1959 Джек Килби и Роберт Нойс создали уникальную цепь логических элементов на поверхности кремниевого кристалла, соединенного алюминиевыми контактами - первый прототип микропроцессора, интегральную микросхему.
1963 Дуглас Энгельбарт получила патент на изобретенный им манипулятор - "мышь".
1964 Профессора Джон Кэмени и Томас Курд разрабатывают простой язык программирования - BASIC.
1968 Уэйн Пикетт разрабатывает концепцию "винчестера" - жесткого магнитного диска. Дуглас Энгельбарт демонстрирует в Стэндфордском Институте систему гипертекста, текстовый процессор, работу с мышью и клавиатурой. Роберт Нойс и Гордон Мур основывают фирму Intel.
1969 Кеннет Томпсон и Деннис Ритчи создают операционную систему UNIX. 1971 Никлас Вирт создает язык программирования Pascal.                            1972 Билл Гейтс и Пол Аллен основывают компанию Traf-0-Data и разрабатывают компьютерную систему, предназначенную для управления потоками автомобилей на скоростных шоссе.
1973 Боб Мэткэлф изобретает систему связи компьютеров, получившую название Enternet. Гари Килдалл создает первую простую операционную систему для персональных компьютеров и дает ей имя СР/М.
1974 Брайен Кэрниган и Деннис Ритчи создают язык программирования С ("Си").                                                                                                                     1975 Пол Аллен и Билл Гейтс разрабатывают интерпретатор языка Basic для компьютера Altair и основывают собственную фирму - Micro-Soft (уже через год дефис в названии фирмы исчезает).
1983 . Создан язык программирования ADA (Ада), названный в честь леди Ады Байрон, жены поэта Байрона и автора одной из первых "программ" для "аналитической машины" Чарльза Бэббиджа.
1986 Питер Нортон создает первую версию файлового менеджера Norton Commander                                                                                                           1990 Тим Бернерс-Ли разрабатывает язык гипертекстовой разметки документов - HTML.


Заключение.


При написании этой работы было проанализировано довольно большое количество литературных источников, что позволяет сделать вывод о  значительном вкладе выше представленных ученых в развитии нестоящей на месте науке информатике.  Безусловно,  сейчас известно очень много имен  этих замечательных людей, но я остановилась на некоторых из них, так как я считаю, что они  заложили основу в становлении информатики.

По моему мнению, в школе необходимо изучать историю развития вычислительных систем, потому что это познавательно и интересно. Я хотела бы предложить изучение этой темы на факультативных занятиях, в виде ролевой игры. В старших классах на уроках информатики  в виде лабораторной работы можно было бы предложить ученикам создать в текстовом процессоре Microsoft Word реферат, используя сканер для ввода фотографии ученого и интернет для поиска информации о нем, эта лабораторная работа содержит в себе целый комплекс заданий, (использование поисковых сайтов, копирование и форматирование текста, загрузка рисунка со сканера в графический редактор, сохранение его на диск и вставка рисунка в Word) и может использоваться как итоговый срез знаний.


Список использованной литературы:


1.      Журнал "Вокруг света", №18, статья А. Н. Сокова "Мыслительная машина"

2.      "Вестник знания", №12

3.      Москва «Советская энциклопедия» 1985г.

4.      Симонович

5.      А. П. Пятибратов, А. С. Касаткин, Р. В. Можаров. “ЭВМ, МИНИ-ЭВМ и микропроцессорная техника в учебном процессе.”

6.      А. П. Пятибратов, А. С. Касаткин, Р. В. Можаров “Электронно-вычислительные машины в управлении”.

7.      Статья «Вычислительная техника - информатика - информационные технологии, Родословное дерево» по материалам книг Б. Н. Малиновского.

8.      Архив академика Ершова, электронная версия http://ershov.iis.nsk.su/archive статья Поттосина о Ершове.

9.      "Вестник опытной физики и элементарной математики", 1983 г., №7
.          



1. Реферат Копец, Иосиф
2. Лекция на тему Особенности строения нервной системы
3. Реферат Средневековая культура западной Европы 2
4. Реферат на тему Phillis Wheatley Essay Research Paper Phillis Wheatley
5. Реферат на тему Значение минеральных веществ в кормлении животных
6. Реферат Понятие и сущность правового регулирования
7. Реферат на тему Referendums Essay Research Paper Referendums are
8. Контрольная_работа на тему Схемы абсорбционных установок
9. Реферат на тему MD-Assisted Suicide
10. Реферат Залог, как способ обеспечения обязательств