Реферат

Реферат Возникновение и развитие системных представлений

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024





Министерство по образованию
Российской Федерации
Санкт-Петербургский государственный
Инженерно-экономический университет
«Возникновение и развитие системных представлений»
по дисциплине «Системный анализ»
Санкт-Петербург
2010

Оглавление:

Введение

Основные принципы системного подхода

Аспекты системного подхода

Возникновение и развитие системных представлений

Становление системы

Система как целое

Преобразование системы

Модели и моделирование.
Классификация моделей


Виды подобия моделей

Адекватность моделей

Заключение

Список литературы


Введение

В наше время происходит невиданный прогресс знания, который, с одной стороны, привел к открытию и накоплению множества новых фактов, сведений из различных областей жизни, и тем самым поставил человечество перед необходимостью их систематизации, отыскания общего в частном, постоянного в изменяющемся. С другой стороны, рост знания порождает трудности его освоения, обнаруживает неэффективность ряда методов используемых в науке и практике. Кроме того, проникновение в глубины Вселенной и субатомный мир, качественно отличный от мира соизмеримого с уже устоявшимися понятиями и представлениями, вызвало в сознании отдельных ученых сомнение во всеобщей фундаментальности законов существования и развития материи. Наконец, сам процесс познания, все более приобретающий форму преобразующей деятельности, обостряет вопрос о роли человека как субъекта в развитии природы, о сущности взаимодействия человека и природы, и в связи с этим, о выработке нового понимания законов развития природы и их действия.

Дело в том, что преобразующая деятельность человека изменяет условия развития естественных систем, и тем самым способствует возникновению новых законов, тенденций движения.

В ряду исследований в области методологии особое место занимает системный подход и в целом "системное движение". Само системное движение дифференцировалось, разделялось на различные направления: общая теория систем, системный подход, системный анализ, философское осмысление системности мира.

Существует ряд аспектов внутри методологии системного исследования: онтологический (системен ли в своей сущности мир, в котором мы живем?); онтологически-гносеологический (системно ли наше знание и адекватна ли его системность системности мира?); гносеологический (системен ли процесс познания и есть ли пределы системному познанию мира?); практический (системна ли преобразующая деятельность человека?) Проще всего составить представление о системном анализе, перечислив его самые основные понятия и утверждения.

Системный подход — направление методологии исследования, в основе которого лежит рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, то есть рассмотрение объекта как системы.

Говоря о системном подходе, можно говорить о некотором способе организации наших действий, таком, который охватывает любой род деятельности, выявляя закономерности и взаимосвязи с целью их более эффективного использования. При этом системный подход является не столько методом решения задач, сколько методом постановки задач. Как говорится, «Правильно заданный вопрос — половина ответа». Это качественно более высокий, нежели просто предметный, способ познания.

Основные принципы системного подхода

                 Целостность, позволяющая рассматривать одновременно систему как единое целое и в то же время как подсистему для вышестоящих уровней.

                 Иерархичность строения, то есть наличие множества (по крайней мере, двух) элементов, расположенных на основе подчинения элементов низшего уровня элементам высшего уровня. Реализация этого принципа хорошо видна на примере любой конкретной организации. Как известно, любая организация представляет собой взаимодействие двух подсистем: управляющей и управляемой. Одна подчиняется другой.

                 Структуризация, позволяющая анализировать элементы системы и их взаимосвязи в рамках конкретной организационной структуры. Как правило, процесс функционирования системы обусловлен не столько свойствами её отдельных элементов, сколько свойствами самой структуры.

                 Множественность, позволяющая использовать множество кибернетических, экономических и математических моделей для описания отдельных элементов и системы в целом.

                 Системность, свойство объекта обладать всеми признаками системы

Основные определения системного подхода

Основоположниками системного подхода являются: Л. фон Берталанфи, А. А. Богданов, Г.Саймон, П.Друкер, А.Чандлер.

                 Система — совокупность элементов и связей между ними.

                 Структура — способ взаимодействия элементов системы посредством определенных связей (картина связей и их стабильностей).

                 Процесс — динамическое изменение системы во времени.

                 Функция — работа элемента в системе.

                 Состояние — положение системы относительно других её положений.

                 Системный эффект — такой результат специальной переорганизации элементов системы, когда целое становится больше простой суммы частей.

                 Структурная оптимизация — целенаправленный итерационный процесс получения серии системных эффектов с целью оптимизации прикладной цели в рамках заданных ограничений. Структурная оптимизация практически достигается с помощью специального алгоритма структурной переорганизации элементов системы. Разработана серия имитационных моделей для демонстрации феномена структурной оптимизации и для обучения.
Аспекты системного подхода

Системный подход — это подход, при котором любая система (объект) рассматривается как совокупность взаимосвязанных элементов (компонентов), имеющая выход (цель), вход (ресурсы), связь с внешней средой, обратную связь. Это наиболее сложный подход. Системный подход представляет собой форму приложения теории познания и диалектики к исследованию процессов, происходящих в природе, обществе, мышлении. Его сущность состоит в реализации требований общей теории систем, согласно которой каждый объект в процессе его исследования должен рассматриваться как большая и сложная система и, одновременно, как элемент более общей системы.

Развернутое определение системного подхода включает также обязательность изучения и практического использования следующих восьми его аспектов:

         1.       системно-элементного или системно-комплексного, состоящего в выявлении элементов, составляющих данную систему. Во всех социальных системах можно обнаружить вещные компоненты (средства производства и предметы потребления), процессы (экономические, социальные, политические, духовные и т. д.) и идеи, научно-осознанные интересы людей и их общностей;

         2.       системно-структурного, заключающегося в выяснении внутренних связей и зависимостей между элементами данной системы и позволяющего получить представление о внутренней организации (строении) исследуемой системы;

         3.       системно-функционального, предполагающего выявление функций, для выполнения которых созданы и существуют соответствующие системы;

         4.       системно-целевого, означающего необходимость научного определения целей и подцелей системы, их взаимной увязки между собой;

         5.       системно-ресурсного, заключающегося в тщательном выявлении ресурсов, требующихся для функционирования системы, для решения системой той или иной проблемы;

         6.       системно-интеграционного, состоящего в определении совокупности качественных свойств системы, обеспечивающих её целостность и особенность;

         7.       системно-коммуникационного, означающего необходимость выявления внешних связей данной системы с другими, то есть, её связей с окружающей средой;

         8.       системно-исторического, позволяющего выяснить условия во времени возникновения исследуемой системы, пройденные ею этапы, современное состояние, а также возможные перспективы развития.

Практически все современные науки построены по системному принципу. Важным аспектом системного подхода является выработка нового принципа его использования — создание нового, единого и более оптимального подхода (общей методологии) к познанию, для применения его к любому познаваемому материалу, с гарантированной целью получить наиполное и целостное представление об этом материале.


Возникновение и развитие системных представлений

Научно-техническая революция привела к возникновению таких понятий, как большие и сложные экономические системы, обладающие специфическими для них проблемами. Необходимость решения таких проблем привела к появлению особых подходов и методов, которые постепенно накапливались и обобщались, образуя, в конце концов, особую науку - системный анализ.

В начале 80-х годов системность стала не только теоретической категорией, но и осознанным аспектом практической деятельности. Широко распространилось понятие того, что наши успехи связаны с тем, насколько системно мы подходим к решению возникающих проблем, а наши неудачи вызваны отсутствием системности в наших действиях. Сигналом о недостаточной системности в нашем подходе к решению какой-либо задачи является появление проблемы, разрешение же возникшей проблемы происходит, как правило, при переходе на новый, более высокий, уровень системности нашей деятельности. Поэтому системность не только состояние, но и процесс.

В различных сферах человеческой деятельности возникли различные подходы и соответствующие методы решения специфических проблем, которые получили различные названия: в военных и экономических вопросах - «исследование операций», в политическом и административном управлении - «системный подход», в философии «диалектический материализм», в прикладных научных исследованиях - «кибернетика». Позже стало ясно, что все эти теоретические и прикладные дисциплины образуют как бы единый поток, «системное движение», которое постепенно оформилось в науку, получившую название «системный анализ». В настоящее время системный анализ является самостоятельной дисциплиной, имеющей свой объект деятельности, свой достаточно мощный арсенал средств и свою прикладную область. Являясь по существу прикладной диалектикой, системный анализ использует все средства современных научных исследований - математику, моделирование, вычислительную технику и натурные эксперименты.

Самая интересная и сложная часть системного анализа - это «вытаскивание» проблемы из реальной практической задачи, отделение важного от несущественного, поиск правильной формулировки для каждой из возникающих проблем, т.е. то, что называется «постановкой задачи».

Многие довольно часто недооценивают работу, связанную с формулировкой задачи. Однако многие специалисты полагают, что «хорошо поставить задачу - значит на половину ее решить». Хотя в большинстве случаев заказчику кажется, что он уже сформулировал свою проблему, системный аналитик знает, что предлагаемая клиентом постановка задачи является моделью его реальной проблемной ситуации и неизбежно имеет целевой характер, оставаясь приблизительной и упрощенной. Поэтому необходимо проверить эту модель на адекватность, что приводит к развитию и уточнению первоначальной модели. Очень часто первоначальная формулировка изложена в терминах не тех языков, которые необходимы для построения модели.
Становление системы

Становление - это этап в развитии системы, в процессе которого она превращается в развитую систему. Становление, есть единство "бытие" и "ничто", но это не простое единство, а безудержное движение [7].

Процесс становления также как и возникновение системы связан с количественным увеличением качественно тождественного множества элементов. Так в термодинамических условиях земной поверхности количество кислорода и кремния преобладает над всеми остальными элементами, а на поверхности других планет преобладают другие элементы. Это свидетельствует о потенциальной возможности количественного роста любого элемента при при благоприятных физико-химических условиях.

В процессе становления системы происходит появление у нее новых качеств: природного и функционального. Природным качеством является определяющий признак того или иного класса, уровня систем, позволяющий говорить о тождественности систем этого класса. Функциональное качество включает в себя специфические свойства системы, приобретаемые ею в результате ее способа связи со средой. Если природное качество постепенно исчезает вместе с данной системой, то функциональное качество может изменяться соответственно внешним условиям.

того новые качества появляются и у отдельных элементов системы, вернее элемент приобретает это качество при образовании системы (например стоимость товара).

Противоречие между качественно тождественными элементами является одним из источников развития системы. Одно из следствий этого противоречия - тенденция к пространственному расширению системы. Возникнув, качественно тождественные элементы стремятся разойтись в пространстве. Это "стремление" обусловлено непрерывным количественным ростом этих элементов и возникающими между ними противоречиями.

С другой стороны существуют системообразующие факторы, которые не дают возникшей системе распасться из-за существующих в системе внутренних противоречий и расширения. И существует граница системы, выход за которую может быть губителен для элементов вновь возникшей системы. Кроме того на вновь возникшие элементы новой системы действуют системы уже существующие, в данной среде ранее. Они препятствуют проникновению новых систем в среду своего существования.

Таким образом, с одной стороны, элементы новой системы находятся в противоречии друг с другом, а с другой стороны, под давлением внешней среды и условий существования они оказываются во взаимодействии, в единстве. При этом тенденция развития такова, что внутренние противоречия между качественно тождественными элементами системы приводят их к тесной взаимосвязи, и ,в конце концов, приводят к становлению системы в целом.

Как, например, описывается процесс становления атомов: "Некогда существовала "популяция" элементарных частиц. Между ними осуществлялись процессы комбинаторики, а комбинации подвергались "отбору". Комбинаторика подчинялась степеням свободы и запретам, действующим в мире элементарных частиц. "Выживали" только те комбинации, которые допускались средой. Это были процессы физической эволюции материи, результат ее - система атомов таблицы Менделеева, а ее длительность - несколько десятков миллиардов лет" [8].

Становление есть противоречивое единство процессов дифференциации и интеграции. Причем углубляющаяся дифференциация элементов соответственно усиливает и их интеграцию [5].

в процессе возникновения и становления наблюдается количественный рост новых элементов. Основным движущим развитие противоречием оказывается при этом противоречие между новыми элементами и старой системой, которая разрешается победой нового, т.е. возникновением новой системы, нового качества.

Система как целое

Целостность или зрелость системы определяется наряду с другими признаками так же наличием в единой системе доминирующих противоположных подсистем, каждая из которых объединяет элементы обладающие функциональными качествами, противоположными функциональным качествам другой подсистемы.

Система в период зрелости внутренне противоречива не только вследствие глубокой дифференциации элементов, приводящей доминирующие из них к взаимной противоположности, но и вследствие двойственности своего состояния как системы завершающей одну форму движения, и являющейся элементарным носителем высшей формы движения.

Завершающая одну форму движения, система представляет собой целостность и "стремится" полностью раскрыть возможности этой высшей формы движения. С другой стороны, как элемент высшей системы, как элементарная система - носительница новой формы движения, она ограничена в своем существовании законами внешней системы. Естественно, что это противоречие между возможностью и действительностью в развитии внешней системы в целом оказывает воздействие и на развитие ее элементов. А наиболее перспективными в развитии оказываются те элементы, функции которых соответствуют потребностям внешней системы. Иначе говоря, система, специализируясь, положительно воздействует на развитие преимущественно тех элементов, чьи функции отвечают специализации. А так как преобладающими в системе являются элементы чьи функции соответствуют условиям внешней системы (или окружающей среде), то и система в целом становится специализированной. Она может существовать, функционировать только в той среде, в которой сформировалась. Всякий переход зрелой системы в другую среду неизбежно вызывает ее преобразование. Так, "простой переход минерала из одной области в другую вызывает в нем изменение и перегруппировку, отвечающую новым условиям. Это объясняется тем, что минерал может существовать неизменно лишь до тех пор, пока он находится в условиях своего образования. Как только он из них вышел, для него начинаются новые стадии существования.

Даже при благоприятных внешних условиях, внутренние противоречия в системе выводят ее из достигнутого на определенном этапе состояния равновесия, таким образом, система неизбежно вступает в период преобразования.

Преобразование системы

Так же как и при образовании системы при ее преобразовании, изменении, существуют внутренние ивнешние причины, проявляющиеся с большей или меньшей силой в различных системах.

Внешние причины:

1.Изменение внешней среды , вызывающее функциональное изменение элементов. В имеющейся среде невозможно длительное существование неизменной системы: любое изменение, как бы медленно и незаметно оно протекало, неизбежно приводит к качественному изменению системы. Причем изменение внешней среды может происходить как независимо от системы, так и под воздействием самой системы. Примером может служить деятельность человеческого общества, способствующая изменению окружающей среды не только на пользу, но и во вред (загрязнение водоемов, атмосферы, и пр.)

2.Проникновение в систему чуждых объектов, приводящих к функциональным изменениям отдельных элементов ( превращения атомов под влиянием космических лучей).

Внутренние причины:

1.Непрерывный количественный рост дифференцированных элементов системы в ограниченном пространстве , в результате чего обостряются противоречия между ними.

2.Накопление "ошибок" в воспроизведении себе подобных (мутации в живых организмах). Если элемент -"мутант" более соответствует изменяющейся среде, то он начинает размножаться. Это и есть возникновение нового, вступающего в противоречие со старым.

3.Прекращение роста и воспроизведения составляющих систему элементов, в результате система погибает.

Исходя из понимания зрелой системы как единства и постоянства структуры можно определить различные формы преобразования, непосредственно связанные с изменением каждого из перечисленных атрибутов системы:

 Преобразование приводящее к уничтожению всех взаимосвязей элементов системы (разрушение кристалла, распад атома и т.п.).

 Преобразование системы в качественно иное, но равное по степени организации состояние. Это происходит вследствие:

а) изменения состава элементов системы ( замещение одного атома в кристалле на другой),

б) функционального изменения отдельных элементов и/или подсистем в системе (переход млекопитающих от сухопутного образа жизни к водному).

 Преобразование системы в качественно иное, но низшее по степени организованности состояние. Оно происходит вследствие:

а) функциональных изменений элементов и/или подсистем в системе (приспособление животных к новым условиям среды обитания)

б) структурного изменения (модификационные превращения в неорганических системах: например переход алмаза в графит).

Преобразование системы в качественно иное, но высшее по степени организованности состояние. Оно происходит как в рамках одной формы движения, так и при переходе от одной формы к другой. Этот тип преобразования связан с прогрессивным, поступательным развитием системы.

Преобразование - неизбежный этап в развитии системы. Она вступает в него в силу нарастающих противоречий между новым и старым, между изменяющимися функциями элементов и характером связи между ними, между противоположными элементами. Преобразование может отражать как завершающий конечный этап в развитии системы, так и переход систем-стадий друг в друга. Преобразование есть период дезорганизации системы, когда старые связи между элементами рвутся, а новые еще только создаются. Преобразование может означать и реорганизацию системы, а также превращение системы как целого в элемент другой, высшей системы.

Сегодня специальные науки убедительно доказывают системность познаваемых ими частей мира. Вселенная предстает перед нами как система систем. Конечно понятие "система" подчеркивает отграниченность, конечность и, метафизически мысля, можно прийти к выводу, что поскольку Вселенная это "система", то она имеет границу, т.е. конечна. Но с диалектической точки зрения как бы ни представлять себе самую большую из систем, она всегда будет элементом другой, более обширной системы. Это справедливо и в обратном направлении, т.е. Вселенная бесконечна не только "вширь", но и "вглубь".

 До сих пор все имеющиеся в распоряжении науки факты свидетельствуют о системной организации материи.

Модели и моделирование. Классификация моделей

Первоначально моделью называли некое вспомогательное средство, объект, который в определенных ситуациях заменял другой объект. Например, манекен в определенном смысле заменяет человека, являясь моделью человеческой фигуры. Древние философы считали, что отобразить природу можно только с помощью логики и правильных рассуждений, т.е. по современной терминологии с помощью языковых моделей. Через несколько столетий девизом английского Научного общества стал лозунг: «Ничего словами!», признавались только выводы, подкрепленные экспериментально или математическими выкладками.

В настоящее время для постижения истины существует 3 пути:

теоретическое исследование;

эксперимент;

моделирование.

Моделью называется объект-заместитель, который в определенных условиях может заменять объект-оригинал, воспроизводя интересующие нас свойства и характеристики оригинала, причем имеет существенные преимущества:

- дешевизну;

- наглядность;

- легкость оперирования и т.п.

В теории моделей моделированием называется результат отображения одной абстрактной математической структуры на другую - тоже абстрактную, либо как результат интерпретации первой модели в терминах и образах второй.

Paзвитие понятия модели вышло за пределы математических моделей и стало относиться к любым знаниям и представлениям о мире. Поскольку модели играют чрезвычайно важную роль в организации любой деятельности человека их можно разделить на познавательные (когницитивные) и прагматические, что соответствует делению целей на теоретические и практические.

Познавательная модель ориентирована на приближении модели к реальности, которую эта модель отображает. Познавательные модели являются формой организации и представления знаний, средством соединения новых знаний с имеющимися. Поэтому при обнаружении расхождения между моделью и реальностью встает задача устранения этого расхождения с помощью изменения модели.

Прагматические модели являются средством управления, средством организации практических действий, способом представления образцово правильных действий или их результата, т.е. являются рабочим представлением целей. Поэтомy при обнаружении расхождения между моделью и реальностью надо направить усилия на изменение реальности так, чтобы приблизить реальность к модели. Таким образом, прагматические модели носят нормативный характер, играют роль образца, под который подгоняется действительность. Примерами прагматических моделей служат планы, кодексы законов, рабочие чертежи и т.д.

Другим принципом классификации целей моделирования может служить деление моделей на статические и динамические.

Для одних целей нам может понадобиться модель конкретного состояния объекта в определенный момент времени, своего рода «моментальная фотография» объекта. Такие модели называются статическими. Примером являются структурные модели систем.

В тех же случаях, когда возникает необходимостъ в отображении процесса изменения состояний, требуются динамические модели систем.

В распоряжении человека имеется два типа материалов для построения моделей - средства самого сознания и средства окружающею материального мира. Соответственно этому модели делятся на абстрактные (идеальные) и материальные.

Очевидно, что к абстрактным моделям относятся языковые конструкции и математические модели. Математические модели обладают наибольшей точностью, но чтобы дойти до их использования в данной области, необходимо получить достаточное количество знаний. По мнению Канта, любая отрасль знания может тем более именоваться наукой, чем в большей степени в ней используется математика.

  Виды подобия моделей

Чтобы некоторая материальная конструкция могла быть моделью, т.е. замещала в каком-то отношении оригинал, между оригиналом и моделью должно быть установлено отношение подобия. Существуют разные способы установления такого подобия, что придает моделям особенности, специфичные для каждого способа.

Прежде всего, это подобие, устанавливаемое в процессе создания модели. Назовем такое подобие прямым. Примером такого подобия являются фотографии, масштабированные модели самолетов, кораблей, макеты зданий, выкройки, куклы и т.д.

Следует помнить, что как бы хороша ни была модель, она все-таки лишь заменитель оригинала, только в определенном отношении. Даже тогда, когда модель прямого подобия выполнена из того же материала, что и оригинал, т.е. подобна ему субстратно, возникают проблемы переноса результатов моделирования на оригинал. Например, при испытании уменьшенной модели самолета в аэродинамической трубе задача пересчета данных модельного эксперимента становится нетривиальной и возникает разветвленная, содержательная теория подобия, позволяющая привести в соответствие масштабы и условия эксперимента, скорость потока, вязкость и плотность воздуха. Трудно достигается взаимозаменяемость модели и оригинала в фотокопиях произведений искусства, голографических изображениях предметов искусства.

Второй тип подобия между моделью и оригиналом называется косвенным. Косвенное подобие между оригиналом и моделью объективно существует в природе и обнаруживается в виде достаточной близости или совпадения их абстрактных математических моделей и вследствие этого широко используется в практике реального моделирования. Наиболее характерным примером может служить электромеханическая аналогия между маятником и электрическим контуром.

Оказалось, что многие закономерности электрических и механических процессов описываются одинаковыми уравнениями, различие состоит в разной физической интерпретации переменных, входящих в это уравнение. Роль моделей, обладающих косвенным подобием, очень велика и роль аналогий (моделей косвенного подобия) в науке и практике трудно переоценить. Аналоговые вычислительные машины позволяют найти решение почти всякого дифференциального уравнения, представляя собой, таким образом, модель, аналог процесса, описываемого этим уравнением. Использование электронных аналогов в практике определяется тем, что электрические сигналы легко измерить и зафиксировать, что дает известные преимущества модели.

Третий, особый класс моделей составляют модели, подобие которых оригиналу не является ни прямым, ни косвенным, а устанавливается в результате соглашения. Такое подобие называется условным. С моделями условного подобия приходится иметь дело очень часто, поскольку они являются способом материального воплощения абстрактных моделей. Примерами условного подобия служат деньги (модель стоимости), удостоверение личности (модель владельца), всевозможные сигналы (модели сообщения).

Например, сигналом наступления кочевников у древних славян служили костры на курганах. Бумажные денежные знаки могут играть роль модели стоимости только до тех пор, пока в среде их обращения существуют правовые нормы, поддерживающие их функционирование. Керенки в настоящее время имеют только историческую ценность, но это не деньги, в отличие от царских золотых монет, которые представляют материальную ценность из-за наличия благородного металла. Особенно наглядна условность знаковых моделей: цветок в окне явочной квартиры Штирлица означал провал явки, ни сорт, ни цвет не имели никакого отношения к знаковой функции цветка.

  Адекватность моделей

Модель, с помощью которой успешно достигается поставленная цель, будем называть адекватной этой цепи. Адекватность означает, что требования полноты, точности и правильности (истинности) модели выполнены не вообще, а лишь в той мере, которая достаточна достижения поставленной цели.

В ряде случаев удается ввести меру адекватности некоторых целей, т.е. указать способ сравнения двух моделей по степени успешности достижения цели с их помощью. Если к тому же есть способ количественно выразить меру адекватности, то задача улучшения модели существенно облегчается. Именно в таких случаях можно количественно ставить, вопросы об идентификации модели т.e. о нахождении в заданном классе моделей наиболее адекватной, об исследовании чувствительности и устойчивости моделей т.e. зависимости меры адекватности модели от ее точности, об адаптации моделей, т.е. подстройке параметров модели с целью повышения ее точности.

Приближенность модели не следует путать с адекватностью. Приближенность модели может быть очень высокой, но во всех случаях модель - это другой объект и различия неизбежны (единственной совершенной моделью любого объекта является сам объект). Величину, меру, степень приемлемости различия можно ввести, только соотнося его с целью моделирования. Так некоторые подделки произведений искусства даже эксперты не могут отличить от оригинала, но все-таки это всего лишь подделка, и с точки зрения вложения капитала не представляет никакой ценности, хотя для любителей искусства ничем не отличается от оригинала. У английского фельдмаршала Монтгомери во время войны был двойник, появление которого на разных участках фронта намеренно дезинформировало разведку немцев.

Упрощение является сильным средством для выявления главных эффектов в исследуемом явлении: это видно на примере таких явлений физики, как идеальный газ, абсолютно упругое тело, математический маятник и абсолютно твердый рычаг.

Есть еще один, довольно загадочный, аспект упрощенности модели. Почему-то оказывается, что из двух моделей, одинаково хорошо описывающих систему, та модель, которая проще, ближе к истине. Геоцентрическая модель Птоломея позволяла рассчитать движение планет, хотя и по очень громоздким формулам, с переплетением сложных циклов. Переход к гелиоцентрической модели Коперника значительно упростил расчеты. Древние говорили, что простота - печать истины.   Таковы в общих чертах основные представления системного анализа как методологии решения проблем.

Применение системного анализа на практике может происходить в двух ситуациях: когда исходным пунктом является появление новой проблемы и когда исходным пунктом является новая возможность, найденная вне непосредственной связи с данным кругом проблем. Решение проблемы в ситуации новой проблемы проводится по следующим основным этапам: обнаружение проблемы, оценка ее актуальности, определение цели и принуждающих связей, определение критериев, вскрытие структуры существующей системы, определение дефектных элементов существующей системы, ограничивающих получение заданного выхода, оценка веса их влияния на определяемые критериями выходы системы, определение структуры для построения набора альтернатив, построение набора альтернатив, оценка альтернатив, выбор альтернатив для реализации, определение процесса реализации, согласование найденного решения, реализация решения, оценка результатов реализации решения.

Реализация новой возможности проходит другим путем. Использование данной возможности в данной области зависит от наличия в ней или в смежных областях актуальной проблемы, нуждающейся для своего разрешения в такой возможности. Использование возможностей в отсутствие проблем может таить в себе, как минимум, бесполезную растрату ресурсов. Использование возможностей при наличии проблем, но игнорирующее проблемы, превращающееся в самоцель, может способствовать углублению и обострению проблемы. Развитие науки и техники приводит к тому, что возникновение ситуации новой возможности становится заурядным явлением. Это требует серьезного анализа ситуации при появлении новой возможности. Возможность утилизируется, если лучшая альтернатива включает в себя эту возможность. В противоположном случае возможность может остаться неиспользованной. Внедрение новой техники на основе одного только критерия срока самоокупаемости может быть примером подхода, когда утилизация новой технической возможности осу ществляется вне анализа проблем. Большой процент неудач при внедрении машинных систем управления в США на первом этапе их создания является в значительной мере следствием отсутствия в этот период проблемно-ориентированного подхода.

Рассмотрим теперь, каким образом системный анализ представляет организацию.Несвоевременное, расточительное решение или же обострение проблемы и возникающие, как следствие, потери свидетельствуют о том, что механизм контроля состояния системы, в которой возникла проблема, выработки и реализации необходимых решений работает неудовлетворительно. Например, это могло быть при определении перспективной для данного рынка продукции или при принятии на вооружение данной технической системы. Но неудовлетворительная работа этого механизма означает неудовлетворительную работу организации, реализующей этот механизм. Улучшение его работы может быть достигнуто улучшением выполнения функций решения проблем, предусматриваемых системным анализом.Для этого необходимо рассматривать организацию не как структуру подчинения с установленными или сложившимися отношениями, а как процесс решения проблемы. Такой подход позволяет рассматривать организацию как систему, а для ее описания, изучения и улучшения использовать концептуальный аппарат системного анализа.

Для улучшения выполнения функций решения проблем, реализуемых организацией, могут быть использованы разнообразные методы: от рационализации форм документов до применения математических моделей и вычислительных машин. Методы могут, следовательно, иметь альтернативы, их отбор может производиться в соответствии с принципами системного анализа. «Мощность» всех функциональных подсистем от обнаружения (идентификации) проблем до реализации решения должна быть примерно одинаковой. Бессмысленно иметь мощные методы выработки решения, если функция идентификации состояния выполняется неудовлетворительно. Решение о совершенствовании организации должно вырастать из ее проблем и соответст вовать им по масштабу и сложности. Таким образом, отдельные методы совершенствования функций могут найти свое место только при конструировании организации как целостной системы.

Заключение

Мы видим, что мир представляет собой единство систем, находящихся на разном уровне развития, причем каждый уровень служит средством и основой существования другого, более высокого уровня развития систем. Данное относится не только к природе, но и обществу, где мы наблюдаем ряд организационных форм, наиболее грандиозные из которых получили название "общественно-экономические формации".

Сыгравшие свою роль системы уходят, другие же продолжают существовать.

Из основных законов существования Вселенной является существование одних систем за счет других. Скажем кристаллы возникают на материале базовой породы, раствора или расплава; растения преобразуют минералы, животные развиваются за счет растений и других животных; человек для своего существования преобразует и животных, и растения и системы неживой природы.

Мир, будучи системой систем, сложнейшим материальным образованием, находится в процессе непрерывного движения, возникновения и уничтожения, взаимоперехода одних систем в другие, причем одни системы изменяются медленно и длительное время кажутся неизменными, другие же изменяются настолько стремительно, что в рамках обыденных человеческих представлений фактически не существуют. Чем обширнее система, тем медленнее она изменяется, а чем меньше, тем быстрее она проходит этапы своего существования. В этом простом соответствии скрыт глубокий смысл еще не до конца понятой связи пространства и времени. И здесь можно увидеть одну из закономерностей развития материи: от меньшего к большему и от большего к меньшему, осознание которой привело к пониманию развития и качественного изменения систем слагающих мир, и мира как системы.

Список литературы

Блауберг И.В., Юдин В.Г. Становление и сущность системного подхода. М.,1973

Аверьянов А.Н. Системное познание мира. М.: Политиздат, 1985.

Андреев И.Д. Методологические основы познания социальных явлений. М.,1977.

Фурман А.Е. Материалистическая диалектика. М., 1969.

Клир И. Исследования по общей теории систем. М.

Анохин П.К. Философские аспекты функционирования системы.

Гегель. Наука логики, т1., с.167.

Геодакян В.А. Организация систем - живых и неживых.- Системные исследования. Ежегодник, М., 1970.

Вернадский В.И. Избранные сочинения М., 1955, т. 2.

Блохинцев Д.И. Проблемы структуры элементарных частиц. - Философские проблемы физики элементарных частиц. М., 1963.

Кулындышев В.А., Кучай В.К. Унаследованность: качественная и количественная оценки. - Системные исследования в геологии. Владивосток, 1979.

http://lc.narod.ru/aidos/aidos01/1.htm

http://ermak.cs.nstu.ru/mmsa/glava1/glava1_4.htm

www.vikipedia.ru

1. Реферат Маркетинговое исследование рынка пива
2. Реферат на тему United States Governmental Issues During The Late
3. Курсовая на тему Бухгалтерський облік на підприємстві
4. Реферат Основы технологий производственных процессов 2
5. Контрольная работа на тему Словообразование Имя числительное
6. Контрольная_работа на тему Политическая специфика избирателей и современных выборов
7. Реферат на тему Glaring Blindness Essay Research Paper Blindness is
8. Реферат Образ Петра Первого в романах Дмитрия Мережковского Петр и Алексей и Петр 1 Алексея Толстог
9. Реферат Метод SWOT-анализа
10. Биография Концепция государственного регулирования экономики Дж.М. Кейнса