Реферат

Реферат Азотфиксирующие бактерии

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024





ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ботаники
Реферат на тему:

«Азотфиксирующие бактерии»
Работу проверил

Л.В.Селютина.

Работу выполнил

студент 2 курса

ЕГФ ГБО

Удеревская Е.
Липецк 2011

Среди процессов, от которых зависит биологическая продуктивность на земном шаре, одним из важнейших является фиксация микроорганизмами азота атмосферы. Проблема биологической азотфиксации относится к числу основных проблем сельскохозяйственной и биологической науки. Перед учеными стоит задача изыскать возможности управления процессом азотфиксации и на этой основе увеличить урожайность сельскохозяйственных культур.

Биологический азот может служить существенным дополнением азотного фонда почвы, способствуя повышению ее плодородия и обеспечивая тем самым более экономное расходование технического азота — азота удобрений.

В земной коре общее содержание азота (молекулярного и в виде соединений) достигает 0,04% (по массе). Основная масса азота на Земле находится в атмосферном воздухе; 78% воздуха — чистый молекулярный азот.

Содержание доступного растениям азота в почве обычно невелико. Поэтому повышение урожайности сельскохозяйственных растений связано в первую очередь с улучшением их азотного питания.

Дефицит азота в значительной степени компенсируется биологическим путем, в основном за счет запаса азота, аккумулированного в почве микроорганизмами, в первую очередь азотфиксирующими.

         Существуют две группы фиксирующих атмосферный азот микроорганизмов. Одна из них находится в симбиозе с высшими растениями, образуя клубеньки на корнях. К этой группе относятся клубеньковые бактерии. Микроорганизмы другой группы обитают в почве независимо от растений. К ним относятся азотобактер, клостридиум, бейеринкия и другие свободноживущие микроорганизмы. Потенциальные возможности симбиотических азотфиксаторов значительно выше, чем свободноживущих.

         Данные палеонтологии свидетельствуют о том, что самыми древними бобовыми культурами, имевшими клубеньки, были некоторые растения, принадлежащие к группе Eucaesalpinioideae.

У современных видов бобовых растений клубеньки обнаружены на корнях многих представителей семейства Рарilijоnасеае.

Филогенетически более примитивные представители таких семейств, как Caesalpiniaceae Mimosaceae, в большинстве случаев клубеньков не образуют.

Из 13 000 видов (550 родов) бобовых растений наличие клубеньков выявлено пока только приблизительно у 1300 видов (243 рода). Сюда в первую очередь относятся виды растений, использующиеся в сельском хозяйстве (более 200).

         Сформировав клубеньки, бобовые растения приобретают способность усваивать атмосферный азот. Однако они способны питаться и связанными формами азота — солями аммония и азотной кислоты. Лишь одно растение — копеечник (Hedysarum coronarium) — ассимилирует только молекулярный азот. Поэтому без клубеньков в природе это растение не встречается.

Клубеньковые бактерии снабжают бобовое растение азотом, который фиксируют из воздуха. Растения же, в свою очередь, поставляют бактериям продукты углеводного обмена и минеральные соли, необходимые им для роста и развития.

В 1866 г. известный ботаник и почвовед М. С. Воронин увидел в клубеньках на корнях бобовых растений мельчайшие «тельца». Воронин выдвинул смелые для того времени предположения: он связал образование клубеньков с деятельностью бактерий, а усиленное деление клеток ткани корня с реакцией растения на проникшие в корень бактерии.

20 лет спустя голландский ученый Бейеринк выделил из клубеньков гороха, вики, чины, фасоли, сераделлы и лядвенца бактерии и изучал их свойства, проверив способность заражать растения и вызывать образование клубеньков. Он назвал эти микроорганизмы Bacillus radicicola. Поскольку к роду Bacillus относятся бактерии, образующие споры, а клубеньковые бактерии лишены этой способности, А. Пражмовский переименовал их в Bacterium radicicola. Б. Франк предложил более удачное родовое название клубеньковых бактерий — Rhizobium (от греч. rhizo — корень, bio — жизнь; жизнь на корнях). Это название привилось и используется в литературе до сих пор.

Для обозначения вида клубеньковых бактерий принято к родовому названию Rhizobium добавлять термин, соответствующий латинскому названию того вида растения, из клубеньков которого они выделены и на котором могут образовывать клубеньки. Например, Rhizobium trifolii — клубеньковые бактерии клевера, Rhizobium lupini — клубеньковые бактерии люпина и т. д.

Для клубеньковых бактерий характерно поразительное разнообразие форм — полиморфность. На это обращали внимание многие исследователи, изучая клубеньковые бактерии в чистой культуре в лабораторных условиях и почве. Клубеньковые бактерии могут быть палочковидными и овальными. Среди этих бактерий встречаются также фильтрующиеся формы, L-формы, кокковидные неподвижные и подвижные организмы.

Молодые клубеньковые бактерии в чистой культуре на питательных средах обычно имеют палочковидную форму (рис. 143, 2, 3), размер палочек примерно 0,5—0,9 X 1,2—3,0 мкм, подвижные, размножаются делением.

При старении клубеньковые бактерии теряют подвижность и переходят в состояние так называемых опоясанных палочек. Такое название они получили вследствие чередования в клетках плотных и неплотных участков протоплазмы. Полосатость клеток хорошо выявляется при просмотре в световом микроскопе после обработки клеток анилиновыми красителями. Плотные участки протоплазмы (пояски) прокрашиваются хуже, чем промежутки между ними. Пояски могут располагаться в середине клетки или на концах. Вероятно, с возрастом бактериальная клетка наполняется жировыми включениями, не воспринимающими окраску и вследствие этого обусловливающими исчерченность клетки. Стадия «опоясанных палочек» предшествует стадии формирования бактероидов — клеток неправильной формы: утолщенных, разветвленных, сферических, грушевидных и колбовидных (см. рис).



Рис.1. Бактероиды клубеньковых бактерий.

Термин «бактероиды» ввел в литературу Дж. Брунхорст в 1885 г., применив его к необычным по форме образованиям, значительно более крупным, чем палочковидные клетки бактерий, встречающимся в тканях клубеньков.

Бактероиды содержат большее количество волютиновых гранул и характеризуются более высоким содержанием гликогена и жира, чем палочковидные клетки. Бактероиды, выращенные в искусственных питательных средах и образовавшиеся в тканях клубенька, физиологически однотипны. Есть мнение, что бактероиды — это формы бактерий с незавершенным процессом деления. При незавершенном делении клеток клубеньковых бактерий возникают дихотомически ветвящиеся формы бактероидов. Количество бактероидов увеличивается при старении культуры; их появлению способствуют истощение питательной среды, накопление продуктов обмена, внесение в среду алкалоидов.

Понятие специфичности клубеньковых бактерий — собирательное. Оно характеризует способность бактерий образовывать клубеньки у растений. Если говорить о клубеньковых бактериях вообще, то для них образование клубеньков только у группы бобовых растений уже само по себе специфично — они обладают избирательностью к бобовым растениям.

Однако если рассматривать отдельные культуры клубеньковых бактерий, то оказывается, что среди них есть такие, которые способны заражать лишь определенную, иногда большую, иногда меньшую, группу бобовых растений, и в этом смысле специфичность клубеньковых бактерий — это избирательная способность в отношении растения-хозяина. Специфичность клубеньковых бактерий может быть узкой (клубеньковые бактерии клевера заражают только группу клеверов — видовая специфичность, а клубеньковые бактерии люпина могут характеризоваться даже сортовой специфичностью — заражать только алкалоидные или безалкалоидные сорта люпина). При широкой специфичности клубеньковые бактерии гороха могут заражать растения гороха, чины, бобов, а клубеньковые бактерии чины и бобов могут заражать растения гороха, т. е. все они характеризуются способностью «перекрестного заражения». Специфичность клубеньковых бактерий лежит в основе их классификации.

Специфичность клубеньковых бактерий возникла в результате их длительного приспособления к одному растению или к группе их и генетической передачи этого свойства. В связи с этим различная приспособленность клубеньковых бактерий к растениям имеется и в пределах группы перекрестного заражения. Так, клубеньковые бактерии люцерны могут образовать клубеньки у донника. Но тем не менее они более приспособлены к люцерне, а бактерии донника — к доннику.

В процессе инфекции корневой системы бобовых растений клубеньковыми бактериями большое значение имеет вирулентность микроорганизмов. Если специфичностью определяется спектр действия бактерий, то вирулентность клубеньковых бактерий характеризует активность их действия в пределах данного спектра. Под вирулентностью подразумевается способность клубеньковых бактерий проникать в ткань корня, размножаться там и вызывать образование клубеньков.

Большую роль играет не только сама способность проникать в корни растения, но и скорость этого проникновения.

Важным свойством клубеньковых бактерий является их активность (эффективность), т. е. способность в симбиозе с бобовыми растениями ассимилировать молекулярный азот и удовлетворять в нем потребности растения-хозяина. В зависимости от того, в какой степени клубеньковые бактерии способствуют повышению урожайности бобовых культур, их принято делить на активные (эффективные), малоактивные (малоэффективные) и неактивные (неэффективные).

Неактивный для одного растения-хозяина штамм бактерий в симбиозе с другим видом бобового растения может быть вполне эффективным. Поэтому при характеристике штамма с точки зрения его эффективности следует всегда указывать, в отношении какого вида растения-хозяина проявляется его действие.

         Для обеспечения нормального процесса инфицирования корневой системы клубеньковыми бактериями необходимо наличие довольно большого количества жизнеспособных клеток бактерий в прикорневой зоне. Мнения исследователей в отношении количества клеток, необходимых для обеспечения процесса инокуляции, различны. Так, по данным американского ученого О. Аллена (1966), для инокуляции мелкосеменных растений требуется 500—1000 клеток, для инокуляции крупносеменных — не менее 70 000 клеток на 1 семя. По мнению австралийского исследователя Дж. Винцента (1966), в момент инокуляции на каждое семя должно приходиться по крайней мере несколько сотен жизнеспособных и активных клеток клубеньковых бактерий. Имеются данные, что в ткань корня могут внедряться и единичные клетки.

При развитии корневой системы бобового растения размножение клубеньковых бактерий на поверхности корня стимулируется выделениями корня. Продукты разрушения корневых чехликов и волосков играют также немаловажную роль в обеспечении клубеньковых бактерий подходящим субстратом.

О механизме проникновения клубеньковых бактерий в корень растения существует ряд гипотез. Наиболее интересные из них следующие. Авторы одной из гипотез утверждают, что клубеньковые бактерии проникают в корень через повреждения эпидермальной и коровой ткани (особенно в местах ответвления боковых корней). Эта гипотеза была выдвинута на основании исследований Бриля (1888), вызвавшего образование клубеньков у бобовых растений путем прокалывания корней иглой, погруженной предварительно в суспензию клубеньковых бактерий. Как частный случай такой путь внедрения вполне реален. Например, у арахиса клубеньки преимущественно располагаются в пазухах ответвлений корней, что наводит на мысль о проникновении клубеньковых бактерий в корень через разрывы при прорастании боковых корней.

Интересна и не лишена оснований гипотеза о проникновении клубеньковых бактерий в ткань корня через корневые волоски. Путь прохождения клубеньковых бактерий через корневые волоски признает большинство исследователей.

Не исключено, что клубеньковые бактерии могут проникать в корень через эпидермальные клетки молодых верхушек корня. По мнению Пражмовского (1889), бактерии могут проникать в корень только через молодую клеточную оболочку (корневых волосков или эпидермальных клеток) и совершенно не способны преодолевать химически измененный или опробковевший слой коры. Этим можно объяснить, что клубеньки обычно развиваются на молодых участках главного корня и появляющихся боковых корнях.

Проникнув в корень (через корневой волосок, эпидермальную клетку, места повреждений корня), клубеньковые бактерии далее перемещаются в ткани корня растения. Наиболее легко бактерии проходят через межклеточные пространства.

Внедриться в ткань корня может или одиночная клетка, или группа клеток бактерий. Если внедрилась отдельная клетка, она и в дальнейшем может перемещаться по ткани как одиночка. Путь инфицирования корня одиночными клетками свойствен растениям люпина.

Однако в большинстве случаев внедрившаяся клетка, активно размножаясь, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения.

По существу, инфекционная нить — это колония размножившихся бактерий. Началом ее служит то место, куда проникла отдельная клетка или группа клеток. Не исключено, что колония бактерий (а следовательно, и будущая инфекционная нить) начинает формироваться еще на поверхности корня до момента внедрения бактерий в корень.



Рис.2.Схема возникновения  инфекционных нитей.

Для симбиоза, обеспечивающего хорошее развитие растений, необходим определенный комплекс условий среды. Если условия окружающей среды будут неблагоприятными, то, даже несмотря на высокую вирулентность, конкурентную способность и активность микросимбионта, эффективность симбиоза будет низкой.

Для развития клубеньков оптимальная влажность 60—70% от полной влагоемкости почвы. Минимальная влажность почвы, при которой еще возможно развитие клубеньковых бактерий в почве, приблизительно равна 16% от полной влагоемкости. При влажности ниже этого предела клубеньковые бактерии обычно уже не размножаются, но тем не менее они не погибают и могут длительное время сохраняться в неактивном состоянии. Недостаток влаги приводит и к отмиранию уже сформировавшихся клубеньков.

Избыточная влажность, как и ее недостаток, также неблагоприятна для симбиоза — из-за снижения степени аэрации в зоне корней ухудшается снабжение корневой системы растения кислородом. Недостаточная аэрация отрицательно влияет и на живущие в почве клубеньковые бактерии, которые, как известно, лучше размножаются при доступе кислорода. Тем не менее высокая аэрация в зоне корней приводит к тому, что кислород начинают связывать восстановители молекулярного азота, снижая степень азотфиксации клубеньков.

Важную роль во взаимоотношениях клубеньковых бактерий и бобовых растений играет температурный фактор. Температурные характеристики разных видов бобовых растений различны. Также и разные штаммы клубеньковых бактерий имеют свои определенные температурные оптимумы развития и активной фиксации азота. Следует отметить, что оптимальные температуры развития бобовых растений, образования клубеньков и азотфиксации не совпадают. Так, в природных условиях образование клубеньков может наблюдаться при температурах несколько выше О °С, азотфиксация при таких условиях практически не происходит. Возможно, лишь арктические симбиозирующие бобовые растения связывают азот при очень низких температурах. Обычно же этот процесс происходит лишь при 10 °С и выше. Максимальная азотфиксация ряда бобовых растений наблюдается при 20—25 °С. Температура выше 30 °С отрицательно влияет на процесс азотонакопления.

Большое влияние на жизнедеятельность клубеньковых бактерий и образование клубеньков оказывает реакция почвы. Для разных видов и даже штаммов клубеньковых бактерий значение рН среды обитания несколько различно. Так, например, клубеньковые бактерии клевера более устойчивы к низким значениям рН, чем клубеньковые бактерии люцерны. Очевидно, здесь также сказывается адаптация мпкроорганизмов к среде обитания. Клевер растет на более кислых почвах, чем люцерна. Реакция почвы как экологический фактор оказывает влияние на активность и вирулентность клубеньковых бактерий. Наиболее активные штаммы, как правило, легче выделить из почв с нейтральными значениями рН. В кислых почвах чаще встречаются неактивные и слабовирулентные штаммы. Кислая среда (рН 4,0 — 4,5) оказывает непосредственное влияние и на растения, в частности нарушая синтетические процессы обмена веществ растений и нормальное развитие корневых волосков. В кислой среде у инокулированных(искусственно зараженных)  растений резко сокращается срок функционирования бактероидной ткани, что ведет к снижению степени азотфиксации.

Для клубеньковых бактерий ткань хозяина представляет такую питательную среду, которая может удовлетворить даже самый требовательный штамм вследствие содержания в ткани всех типов питательных веществ. Тем не менее после внедрения клубеньковых бактерий в ткань растения-хозяина их развитие определяется не только внутренними процессами, но и в значительной степени зависит от действия внешних факторов, оказывающих влияние на весь ход инфекционного процесса. Содержание или отсутствие того или иного питательного вещества в окружающей среде может быть определяющим моментом для проявления симбиотической азотфиксации.

Большое значение в активации усвоения азота бобовыми растениями имеет фосфорное питание. При низком содержании фосфора в среде проникновение бактерий в корень происходит, но клубеньки при этом не образуются. Бобовым растениям присущи некоторые особенности в обмене фосфорсодержащих соединений. Семена бобовых отличаются повышенным содержанием фосфора. Запасной фосфор при прорастании семян используется не так, как у других культур, — сравнительно равномерно для формирования всех органов, а в большей степени сосредоточиваясь в корнях. Поэтому в ранние сроки развития бобовые растения, в отличие от злаковых, в большей степени удовлетворяют свои потребности в фосфоре за счет семядолей, а не запасов почвы. Чем крупнее семена, тем меньше бобовые растения зависят от фосфора почвы. Однако при симбиотическом способе существования потребность бобовых растений в фосфоре выше, чем при автотрофном. Поэтому при недостатке фосфора в среде у инокулированных растений ухудшается снабжение растений азотом.

Для симбиотической азотфиксации необходимы также магний, сера и железо. При недостатке магния тормозится размножение клубеньковых бактерий, снижается их жизнедеятельность, подавляется симбиотическая азотфиксация. Сера и железо оказывают также благоприятное влияние на образование клубеньков и процесс азотфиксации.

Определенное значение в симбиозе клубеньковых бактерий и бобовых растений имеют биологические факторы.

Являясь симбиотическими организмами, клубеньковые бактерии распространяются в почвах, сопутствуя определенным видам бобовых растений. После разрушения клубеньков клетки клубеньковых бактерий попадают в почву и переходят к существованию за счет различных органических веществ подобно другим почвенным микроорганизмам. Почти повсеместное распространение клубеньковых бактерий является доказательством высокой степени их адаптируемости к различным почвенно-климатическим условиям, способности вести симбиотический и сапрофитный способ жизни.

Схематизируя имеющиеся к настоящему времени данные по распространению клубеньковых бактерий в природе, можно сделать следующие обобщения.

В целинных и окультуренных почвах присутствуют обычно в больших количествах клубеньковые бактерии тех видов бобовых растений, которые имеются в составе дикой флоры или культивируются длительное время в данной местности. Численность клубеньковых бактерий всегда наивысшая в ризосфере бобовых растений, несколько меньше их в ризосфере других видов и мало в почве вдали от корней.

В почвах встречаются как эффективные, так и неэффективные клубеньковые бактерии. Имеется много данных о том, что длительное сапрофитное существование клубеньковых бактерий, особенно в почвах с неблагоприятными свойствами (кислых, засоленных), ведет к снижению и даже утрате активности бактерий.

Перекрестная заражаемость разных видов бобовых растений нередко приводит в природе и сельскохозяйственной практике к появлению на корнях клубеньков, недостаточно активно фиксирующих молекулярный азот. Это, как правило, зависит от отсутствия в почве соответствующих видов клубеньковых бактерий.

Особенно часто такое явление наблюдается при использовании новых видов бобовых растений, которые либо заражаются неэффективными видами бактерий перекрестных групп, либо развиваются без клубеньков.

Из всего выше сказанного можно сделать вывод о том, что азотфиксирующие бактерии играют важную роль в жизни бобовых растений и обогащении почвы азотом. При этом на развитие и жизнедеятельность этих микроорганизмов влияет большое число факторов.


1. Реферат на тему Writing Styles Of Good Earth Compared To
2. Реферат на тему Warren G Hardings Mysterious Death Essay Research
3. Реферат Сущность планирования деятельности предприятия
4. Реферат Клещи в Крыму
5. Реферат на тему Feminism Essay Research Paper The word
6. Реферат на тему The Bluest Eye Essay Research Paper bluest
7. Реферат на тему Фондовые биржи виды биржевых сделок
8. Реферат на тему Women In Chaucer
9. Реферат Теоретические основы валютной системы России
10. Реферат Образование Русского централизованного государства 2-я пол. XV - н. XIV вв.